• Aucun résultat trouvé

IR SPECTROSCOPY WITH SURFACE ELECTROMAGNETIC WAVES

N/A
N/A
Protected

Academic year: 2021

Partager "IR SPECTROSCOPY WITH SURFACE ELECTROMAGNETIC WAVES"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: jpa-00224143

https://hal.archives-ouvertes.fr/jpa-00224143

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

IR SPECTROSCOPY WITH SURFACE ELECTROMAGNETIC WAVES

A. Sievers, Z. Schlesinger, Y. Chabal

To cite this version:

A. Sievers, Z. Schlesinger, Y. Chabal. IR SPECTROSCOPY WITH SURFACE ELEC- TROMAGNETIC WAVES. Journal de Physique Colloques, 1984, 45 (C5), pp.C5-167-C5-178.

�10.1051/jphyscol:1984525�. �jpa-00224143�

(2)

JOURNAL DE PHYSIQUE

Colloque C5, supplément a u n04, Tome 45, a v r i l 1984 page C5-167

I R SPECTROSCOPY WITH SURFACE ELECTROMAGNETIC WAVES A . J . Sievers, 2. ~ c h l e s i n ~ e r * and Y . J . chabal*

h b o r a t o r y o f Atomic and S o l i d S t a t e P h y s i c s and M a t e r i a l s S c i e n c e Center, Cornez2 U n i v e r s i t y , I t h a c a , NY 19853, U.S.A.

Resume

-

On u t i l i s e des ondes é l e c t r o m a g n e t i q u e s de s u r f a c e pour t e s t e r l e s modes de v i b r a t i o n de molécules s u r des s u r f a c e s m e t a l l i q u e s .

A b s t r a c t

-

S u r f a c e e l e c t r o m a g n e t i c waves a r e used t o probe m o l e c u l a r v i b r a t i o n a l modes on m e t a l s u r f a c e s .

1

-

INTRODUCTION

Because o f i t s i n t r i n s i c h i g h s p e c t r a l r e s o l u t i o n capabi l i t y and p r e c i s i o n a t a l 1 p r e s s u r e ranges, i n f r a r e d spectroscopy was one o f t h e f i r s t t e c h n i q u e s used f o r t h e s t u d y o f v i b r a t i o n a l modes o f adsorbates on m e t a l s u r f a c e s . So f a r t h i s l o w s e n s i t i v i t y t e c h n i q u e has o n l y been used t o s t u d y i n r e f l e c t i o n t h e s t r o n g modes o f CO on v a r i o u s s i n g l e c r y s t a l m e t a l s u b s t r a t e s o r i n t r a n s m i s s i o n t h e modes o f o t h e r absorbed gases on f i n e metal p a r t i c l e s

/1/.

S u r f a c e e l e c t r o m a g n e t i c waves (SEW's), which i n t h e i n f r a r e d can propagate f o r a few cm on metal s u r f a c e s /2,3/ s h o u l d p r o v i d e enhanced s u r f a c e s e n s i t i v i t y o v e r t h e r e f l e c t i o n - a b s o r p t i o n s p e c t r o s c o p i c t e c h n i q u e s . I n t h i s paper, which i s t h e second i n a t w o - p a r t s e r i e s on our e x p e r i m e n t a l i n v e s t i g a t i o n s w i t h SEW's /4/, we h i g h l i g h t our s t u d i e s o f t h e v i b r a t i o n a l modes o f molecules on m e t a l s u r f a c e s .

The f e a s i b i l i t y o f u s i n g b o t h s i n g l e f r e q u e n c y l a s e r and broad band SEW t r a n s m i s s i o n spectroscopy i n t h e IR t o s t u d y t h e v i b r a t i o n a l modes o f molecules on m e t a l s u r f a c e s has been demonstrated b o t h w i t h a d i s p e r s i o n compensating edge c o u p l e r

/5/,

and a l s o w i t h a g r a t i n g c o u p l e r /6/. Measurements have been made o f t h e t r a n s m i s s i o n o f SEW's across a v a r i e t y o f d i e l e c t r i c - c o a t e d m e t a l s u r f a c e s /7/. F o r s p e c i f i c c o a t i ng geometri es t h e i n t e r f e r e n c e between SEN and s u r f a c e skimmi ng e l e c t r o m a g n e t i c r a d i a t i o n can be used t o probe t h e p r o p e r t i e s o f t h e SEW's.

For metal s u r f a c e s w i t h monolayer c o a t i n g s t h e s e n s i t i v i t y o f t h e SEW and t h e s u r f a c e r e f l e c t i o n - a b s o r p t i o n s p e c t r o s c o p i c t e c h n i q u e are compared e x p e r i m e n t a l l y . Given equal p r o b i n g i n t e n s i t y a t a met al-absorbate i n t e r f a c e , SEW spectroscopy p r o v i d e s about an o r d e r o f magnitude improvement i n c o n s t r a s t o v e r r e f l e c t i o n spectroscopy /5,6,8/.

II

-

BACKGROUND

E x p e r i m e n t a l l y , t h e SEN on a b a r e m e t a l s u r f a c e i s c h a r a c t e r i z e d b y two q u a n t i t i e s : t h e h e i g h t o f t h e f i e l d above t h e m e t a l , c a l l e d Y i n Eq (1-14), and t h e

a t t e n u a t i o n c o e f f i c i e n t f o r p r o p a g a t i o n along t h e s u r f a c e , c a l l e d a i n Eq (1-15) / 4 / . The c a l c u l a t e d Y and a f o r Drude Ag as a f u n c t i o n - p f f r e q u e n c y a r e shown i n Fig.1. The r e l a x a t i o n f r e q u e n c y o f t h e Ag e l e c t r o n s , T

,

i s t a k e n t o be t h e room t e m p e r a t u r e value.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984525

(3)

C5-168 J O U R N A L D E PHYSIQUE

Wovelenqth (microns)

io3 ioZ IO I F i g u r e 1. C a l c u l a t e d SEW h e i g h t

'

1 '

and a b s o r p t i o n c o e f f i c i e n t versus

102

- 1

f r e q u e n c y f o r a b a r e Ag l i k e Drude

s u r f a c e . The c a l c u l a t i o n i s f o r T=300°K and t h e r e l a x a t i o n t i m e of

-

t h e m e t a l T i s i d e n t i f i e d i n t h e

-

f i g u r e . The v e r t i c a l dashed l i n e

5

i n d i c a t e s t h e f r e q u e n c y where t h e

O -

- ,

evanescent wave h e i g h t i s equal t o

2 t h e wavelength o f t h e mode. At

-

lower f r e q u e n c i e s t h e wave i s 5 d e l o c a l i z e d s i n c e t h e h e i g h t - exceeds t h e wavelength w h i l e a t

l a r g e r f r e q u e n c i e s t h e converse i s

- 3 t r u e . Note t h a t n e i t h e r t h e h e i g h t nor t h e a b s o r p t i o n c o e f f i c i e n t s c a l e wi t h t h e wavelength.

L 1 , l

IO 102 io3

Frequency ~cm"1 104

Since t h e SEW wavevector q, i s g r e a t e r t h a n t h e f r e e space wavevector qo (see Eq 1-11) p l a n e waves cannot be used d i r e c t l y t o e x c i t e SEW's on metal s u r f a c e s . By u s i n g p r i sms, edges o r g r a t i n g s as i n t e r m e d i a r i es, t h i s wavevector d i f f e r e n c e between p l a n e waves and t h e bound mode can be e l i m i n a t e d . Three d i f f e r e n t t y p e s o f evanescent f i e l d c o u p l e r s a r e shown i n F i g . 2.

The i d e a o f u s i n g t o t a l i n t e r n a l r e f l e c t i o n t o i n c r e a s e t h e p a r a l l e l component o f t h e i n c i d e n t wavevector was p i o n e e r e d i n t h e v i s i b l e by O t t o /9/. When l i g h t i s i n c i d e n t f r o m t h e h i g h i n d e x s i d e o f a d i e l e c t r i c i n t e r f a c e a t an a n g l e g r e a t e r t h a n t h e c r i t i c a l angle t h e wavevector o f t h e r e f r a c t e d evanescent wave i s g r e a t e r t h a n qo and can be matched t o t h e SEW wavevector. T h i s geometry i s shown i n F i g . 2a.

The two p r i s m t e c h n i q u e shown i n F i g . 2b was d e v i s e d b y Schoenwald, e t a l

/IO/,

i n 1973. They were t h e f i r s t t o show t h a t , i n t h e IR, SEW's propagate macroscopic d i s t a n c e s . F i g . 2c shows t h e edge c o u p l e r geometry which was developed i n o r d e r t o e l i m i n a t e t h e d i f f r a c t i o n o f b u l k r a d i a t i o n which o c c u r s a t t h e c o r n e r o f t h e i n p u t p r i s m i n F i g . 2b, and which produces an annoying background s i g n a l o f r a d i a t i o n a t t h e o u t p u t prism. A l 1 o f t h e e x p e r i m e n t a l measurements d e s c r i b e d h e r e were made w i t h edge c o u p l e r s .

C O ) F i g u r e 2. Some SEW c o u p l i n g g e o m e t r i e s

which use t h e p r i n c i p l e o f t o t a l i n t e r n a l r e f l e c t i o n .

( a ) The p r i s m - a i r - m e t a l c o u p l e r o f O t t o /9/. The c o u p l i n g o f e l e c t r o m a g n e t i c r a d i a t i o n t o t h e SEW mode o c c u r s most s t r o n g l y when t h e component o f t h e wave- v e c t o r p a r a l l e l t o t h e m e t a l s u r f a c e matches t h e SEW wavevector.

( b ) The two p r i s m IR c o u p l e r o f Schoenwald, e t a l / I O / . SEW's a r e generated a t t h e f i r s t prism, t r a n s m i t t e d t o t h e second p r i s m and t h e n c o n v e r t e d back t o e l e c t r o m a g n e t i c r a d i a t i o n a t t h e second orism.

(C 1

( c ) The I R edge c o u p l e r o f Chabal and S i e v e r s

/ I l / .

SEW's a r e generated a t t h e edge o f an o p t i c a l l y - t h i c k m e t a l f i l m which has been evaporated on t h e prism. T h i s geometry a u t o m a t i c a l l y separates t h e SEN o u t p u t f r o m t h e " s u r f a c e skimming" b u l k r a d i a t i o n generated a t t h e f i r s t edge.

(4)

III

-

SEW INTERFERENCE EFFECTS ON PARTIALLY COATED METAL SURFACES

I n t h i s section, we describe some o f t h e experimental measurements which lead t o t h e i d e n t i f i c a t i o n o f i n t e r f e r e n c e between SEW's and b u l k r a d i a t i o n /4/. CO and CO, l a s e r s were used t o e x c i t e SEW's. The two types o f f i l m geometries t h a t were used are shown i n Fig. 3. With both geometries t h e SEW i s launched on and recovered from t h e edge o f t h e o p t i c a l l y - t h i c k bare metal f i l m , b u t propagates across a Ge coated r e g i o n i n between. The syrnbol Rc i s used t o represent t h e l e n g t h o f t h e SEW path through t h e coated region. With t h e geometry shown i n Fig. 3a t h e transmission across t h e surface i s measured as a f u n c t i o n o f frequency w i t h a, f i x e d whereas w i t h t h e geometry shown i n Fig. 3c t h e transmission i s measured as a f u n c t i o n o f Rc a t a f i x e d frequency.

Figure 3. Sample geometries f o r studying SEW's on p a r t i a l ly-coated metal surfaces.

(a) The l a r g e r e c t a n g l e represents an o p t i c a l l y t h i c k metal f i l m on an even l a r g e r coupler sub- s t r a t e . A t h i n Ge c o a t i n g has been evaporated ont0 t h e metal i n t h e r e g i o n shown. A narrow beam o f SEW's, which have been generated by a l a s e r source, propagates from l e f t t o r i g h t across t h e bare and Ge coated surface. I n t h i s manner, several d i s c r e t e values o f t h e Ge l e n g t h a, can be sequenti a l l y probed w i t h SEW's.

( c ) The wedge shaped Ge c o a t i n g on t h e o p t i c a l l y t h i c k metal f i l m allows ac t o be v a r i e d

c o n t i n u o u s l y by t r a n s l a t i n g t h e sample i n t h e plane o f t h e F i g u r e perpendicular t o t h e SEW beam

d i r e c t i o n . (SEN i n t e r f e r o m e t e r geometry).

The e a r l i e s t measurements were made on f i l m s w i t h f i x e d Ge pathlengths.

Transmission f o r such d i e l e c t r i c o v e r c o a t i n g taken w i t h a tuneable CO, l a s e r a r e shown i n Fig. 4. I n Fig. 4c f o r t h e l a r g e s t Ge overcoating two minima are

observed. This experimental r e s u l t i s reminiscent o f t h e channel spectrum obtained f o r a d i e l e c t i v e w i t h p a r a l l e l sides. I n t h a t case t h e frequency d i f f e r e n c e between t h e two minima i s i n v e r s e l y proportioned t o t h e round t r i p o p t i c a l path. Upon f i t t i n g t h e date i n Fig. 4 t o such an expression one discovers t h a t t h e e f f e c t i v e index o f r e f r a c t i o n must be much smaller than one.

The phenomenon u n d e r l y i n g t h i s i n t e r f e r e n c e behavior can be more e a s i l y understood by studying samples w i t h v a r i a b l e SEW pathlengths across t h e Ge c o a t i n g (Fig. 3c).

Fig. 5 shows p l o t s o f t h e transmission as a f u n c t i o n o f ac a t a frequency 1043 cm-' f o r t h r e e d i f f e r e n t arrangements. To t h e l e f t o f t h e p o i n t Rc = O t h e SEW propagates across t h e bare metal surface. The f l u c t u a t i o n s i n s i g n a l l e v e l i n t h i s r e g i o n are due t o f i l m i m p e r f e c t i o n s . The s t r o n g q u a s i p e r i o d i c o s c i l l a t i o n s observed f o r a

>

O i n t h e t o p t r a c e occur f o r a Ge c o a t i n g t h i c k n e s s o f 0.24 p.

When t h e c o a t i n g thickness i s increased t o 0.75 p t h e SEW i n t h e coated r e g i o n i s completely attenuated b e f o r e i t reaches t h e o t h e r s i d e o f t h e d i e l e c t r i c f i l m . The data shown i n t h e middle t r a c e o f F i g . 5 must be caused by surface skimming b u l k waves which are produced a t t h e f i r s t d i e l e c t r i c edge and which then generate SEW's a t t h e second d i e l e c t r i c edge. This conclusion was v e r i f i e d by making one geometry which was coated w i t h metal except f o r a wedge-shaped area where t h e Ge c o a t i n g would normally be, but which was now l e f t uncoated so t h e d i e l e c t r i c coupler was exposed. When SEW's rneet t h e ernpty edge they are coupled o u t and o n l y

(5)

C5-170 JOURNAL

DE

PHYSIQUE

t h e s u r f a c e skimming b u l k r a d i a t i o n remains t o generate a new SEM a t t h e f a r s i d e o f t h e wedge. The lower t r a c e i n F i g . 5 shows t h e measured SEM o u t p u t f o r t h i s l a s t case.

wove*rqïitn I+d

F i g u r e 4. SEM t r a n s m i s s i o n vs. f r e q u e n c y

01 lc = 2 m m

f o r a p a r t i a l l y coated Au s u r f a c e i n t h e 10 p wavelength r e g i o n . The Ge c o a t i n g t h i c k n e s s i s 0.12 p and t h e w i d t h s are shown. The t r a n s - m i s s i o n i s measured as a f u n c t i o n o f frequency

O O w i t h a l i n e t u n e a b l e CO2 l a s e r .

F i g u r e 5. SEW i n t e r f e r o m e t e r t r a n s m i s s i o n measurements across t h r e e d i f f e r e n t k i n d s o f d i e l e c t r i c wedges. The observed t r a n s m i s s i o n s i g n a l as a f u n c t i o n o f SEM p a t h l e n g t h t h r o u g h t h e Ge coated l e n g t h ( l c ) i s shown f o r a l a s e r frequency = 1043 cm-'.

(a) Ge on Au. The Ge t h i c k n e s s i s 0.25 p.

The SEW component i s s m a l l e r t h a n t h e b u l k wave component.

( b ) Ge on Au. Now t h e Ge t h i c k n e s s i s 0.7 p and t h e SEW component i s e x t i n g u i s h e d . Only t h e b u l k component remains i n t h e Ge r e g i o n . (c! The Au f i l m c o n t a i n s a wedge-shaped h o l e which i s t h e same s i z e as i n ( a ) and ( b ) above. At t h e wedge edge t h e SEM i s coupled back i n t o t h e c o u p l e r and l o s t . Only a b u l k wave remains i n t h e wedge r e g i o n ( j u s t as f o r case ( b ) ) .

A more complex f r e q u e n c y dependence i s observed when an Au f i l m i s f i r s t covered wi t h 2008 thick-wedge of KReO, and t h e n coated again wi t h a second wedge o f Ge about 0.15 t h i c k . Because t h e Re04- molecule has a d i p o l e a c t i v e resonance a t 950 cm-', t h e d i e l e c t r i c f u n c t i o n o f t h i s composite c o a t i n g i s f r e q u e n c y dependent. The e x p e r i m e n t a l t r a c e s f o r t h i s sample a r e shown i n Fig. 6. Note t h a t t h e i n t e r f e r e n c e p e r i o d i s v e r y l o n g j u s t above t h e Re04- resonance frequency, b u t decreases r a p i d l y w i t h i n c r e a s i n g frequency. For a l 1 o f t h e s e d a t a t h e o s c i l l a t i o n s e x h i b i t e d i n t h e f i g u r e s have p e r i o d s much 1 arger t h a n t h e wavelength o f t h e i n c i d e n t r a d i a t i o n . The o r i g i n , frequency dependence and c o a t i n g t h i c k n e s s dependence o f a l 1 o f t h e s e o s c i l l a t i n g and monotonic t r a n s m i s s i o n s i g n a l s can be understood i n terms of a SEN--bulk wave i n t e r f e r e n c e phenomenon 141.

(6)

F i g u r e 6. Frequency dependence o f t h e SEW i n t e r f e r o g r a m f o r an Au f i l m c o a t e d w i t h a resonant absorber. An o p t i c a l l y - t h i c k Au f i lm f i r s t coated w i t h 200A o f KReO, and t h e n w i t h 0.15 p o f Ge b o t h i n a wedge shape. The d i s - p e r s i v e n a t u r e o f t h e d i e l e c t r i c f u n c t i o n o f Re04 near i t s v 3 v i b r a t i o n a l mode at 950 cm-' causes t h e measured i n t e r f e r e n c e p e r i o d t o s h i f t s u b s t a n t i a l l y f o r r e l a t i v e l y small changes i n l a s e r f r e q u e n c y near t h e resonance.

The i n t e r f e r e n c e p e r i o d i s v e r y l o n g j u s t above t h e resonance (965 cm-' ) , b u t decreases r a p i d l y w i t h i n c r e a s i ng 1 aser frequency.

The b a s i c i d e a i s q u i t e s i m p l e . An SEW i s launched on a b a r e r e g i o n o f t h e m e t a l surface and propagates towards a Ge c o a t e d r e g i o n as i l l u s t r a t e d i n F i g . 7a.

When t h e SEW i s i n c i d e n t a t t h e Ge s t e p (z=0) b o t h an SEM and a b u l k wave packet are t r a n s m i t t e d i n t o t h e Ge c o a t e d r e g i o n ( F i g . 7b) s i n c e b o t h El[ and HB must be

c o n t i n u o u s across t h e (z=0) boundary. The SEW and b u l k wave p a c k e t s propagate across t h e Ge coated m e t a l s u r f a c e w i t h d i f f e r e n t phase v e l o c i t i e s . At t h e second Ge s t e p (z=R,) b o t h components c o n t r i b u t e t o t h e a m p l i t u d e o f an SEW t r a n s m i t t e d i n t o t h e b a r e m e t a l r e g i o n , F i g . 7c. The edges o f t h e Ge c o a t i n g t h u s act as b e a m s p l i t t e r s , f i r s t s e p a r a t i n g t h e i n c i d e n t SEW i n t o two beams a t z=O and t h e n r e c o m b i n i n g t h e s e two beams a t z=Rc. Each beam c a r r i e s a m p l i t u d e and phase i n f o r m a t i o n .

F i g u r e 7. P i c t o r i a l d e s c r i p t i o n o f t h e SEW i n t e r - f e r o m e t e r . For t h e TM p o l a r i z e d SEW t h e t r a n s v e r s e magnetic f i e l d i s p e r p e n d i c u l a r t o t h e p l a n e o f t h e F i g u r e . The magnetic f i e l d p r o f i l e s o f t h e SEN and b u l k wave packet a r e superimposed on a drawing o f a p a r t i a l l y c o a t e d m e t a l .

Z = O Z= lC ( a ) The b a r e m e t a l SEW i s i n c i d e n t on t h e c o a t i n g edge.

( b ) 5 0 t h a c o a t e d m e t a l SEW and a b u l k wave packet

( b ) p r o p a g a t i n g i n t h e c o a t i n g r e g i o n are launched.

( c ) At t h e second d i e l e c t r i c edge t h e SEW and b u l k wave o a c k e t s combine t o launch a b a r e metal SEW and ,,, ,, , ,,,,,,. , ,,/ a b u l k wave packet ( t h e l a t t e r i s n o t shown).

Because t h e SEW and b u l k waves move a t d i f f e r e n t v e l o c i t i e s i n p a r t ( b ) c o n s t r u c t i v e and d e s t r u c t i v e

I I

i n t e r f e r e n c e o c c u r s .

(7)

C5-172 JOURNAL DE PHYSIQUE

I V

-

COMPARISON OF SEW AND REFLECTION SPECTROSCOPY

A d e m o n s t r a t i o n t h a t SEW s p e c t r o s c o p y has t h e s e n s i t i v i t y t o measure v i b r a t i o n a l modes f o r monolayer coverages on metal can be o b t a i n e d f r o m a s i m p l e m o d i f i c a t i o n t o t h e Thomas-Kuhn o p t i c a l sum r u l e . The i n t e g r a t e d a b s o r p t i o n s t r e n g t h o f a

v i b r a t i o n a l mode i n a t h r e e - d i m e n s i o n a l system i s d i r e c t l y r e l a t e d t o t h e number o f absorbing c e n t e r s p e r u n i t volume by t h e o p t i c a l sum r u l e ; narnely,

where n i s t h e number o f c e n t e r s p e r cm3, e* and m* t h e e f f e c t i v e charge and e f f e c t i v e mass o f t h e normal mode, and t h e l a s t f a c t o r c o r r e c t s f o r t h e d i f f e r - ence between t h e a p p l i e d f i e l d and t h e l o c a l f i e l d . For molecules adsorbed o n t 0 a m e t a l s u r f a c e w i t h t h e I R a c t i v e v i b r a t i o n a l mode p e r p e n d i c u l a r t o t h e s u r f a c e t h e e l e c t r i c d i p o l e moment i s enhanced b y t h e image d i p o l e moment. We s h a l l i n c l u d e t h i s f a c t o r i n e*.

For monolayer coverages i t i s ns, t h e number p e r cm2, which i s u s u a l l y quoted.

The n i n Eq. 1 can be r e w r i t t e n i n terms o f ns b y n o t i n g t h a t t h e number o f molecules w i t h i n t h e h e i g h t o f t h e SEW wave i s n S / y which i s t h e number per t h e a p p r o p r i a t e v o l urne so

The assumption i s t h a t t h e a b s o r p t i o n i s t h e same independent o f how t h e ns m o l e c u l e s a r e d i s t r i b u t e d w i t h i n t h e SEW h e i g h t Y.

The g e n e r a l f o r m o f t h e sum r u l e as i t a p p l i e s t o SEW's i s

where t h e l o c a l f i e l d c o r r e c t i o n i s i g n o r e d f o r t h e weak s u r f a c e d i p o l e l i m i t . The coverages o f SF6 l i s t e d i n F i g . 8 a r e c a l c u l a t e d f r o m Eq. 3 assuming no image depth enhancement.

F i g u r e 8. A b s o r p t i o n c o e f f i c i e n t

0 4 - vs. SEW f r e q u e n c y f o r p h y s i s o r b e d

SF6 on AU (T=10O0K).

Curve A: ns=l.6x1015 ( 4 mono1 a y e r s ) ;

6 0 3 -

z Curve

B:

n s = 1 . 2 x 1 ~ 1 5 cm-'

%! (2.8 monolayers);

Curve C : ns=6.4x1014 (1.6 monolayers).

Curve G = t h e a b s o r p t i o n f o r 0.07 T o r r o f SF6 gas a t T=300°K ( f o r r e f e r e n c e ) . The SEW's were generated w i t h a l i n e t u n e a b l e CO, l a s e r . A f t e r Ref. 12.

9M 94 5 960 975 990

Y (cm-')

(8)

With t h i s sum r u l e one can show t h a t t h e minimum coverage which can be seen by SEW's i n t h e weak source l i m i t i s r e l a t e d t o t h e v i b r a t i o n a l mode parameters and t h e Drude m e t a l parameters. The SEW a t t e n u a t i o n c o e f f i c i e n t f o r a m e t a l w i t h a monolayer coverage can be w r i t t e n

where am i s due t o t h e b a r e m e t a l and a a i s due t o t h e adsorbate. The maximum s i g n a l t o n o i s e i s o b t a i n e d i n t h e weak source l i m i t where t h e adsorbate induced change i n t r a n s m i t t e d i n t e n s i t y across t h e s u r f a c e A I due t o t h e presence o f a a s a t i s f i e s t h e e q u a t i o n :

where aa

<

am.

For a sharp v i b r a i i o n a l a b s o r p t i o n l i n e , t h e l i n e w i d t h i s much l e s s t h a n t h e c e n t e r f r e q u e n c y v o and Eq. 3 becomes

A m*cZ A 1

n l =

- -

(",,,Y )

(II Imi

min

x

(e*12

I n t h e l i m i t UT

>>

1 f o r a Drude m e t a l Eq. 6 reduces t o

Note t h a t Eq. 7 i s a p r o d u c t o f t h r e e t.errm: The f i r s t i s r e l a t e d t o t h e p r o p e r t i e s o f t h e v i b r a t i o n a l mode; t h e second, t o t h e p r o p e r t i e s o f t h e m e t a l s u b s t r a t e ; and t h e t h i r d , t o t h e s e n s i t i v i t y o f t h e e x p e r i i n e n t a l arrrangement.

An i m p o r t a n t q u e s t i o n i s : How do t h e s e n s i t i v i t i e s o f r e f l e c t i o n (RA) and SEW s p e c t r o s c o p y compare? To answer t h i s q u e s t i o n we model an absorbate by a l a y e r o f o p t i c a l t h i c k n e s s d and a b s o r p t i v i t y A. Next t h e model a d s o r b a t e i s p l a c e d on a Drude m e t a l and t h e responses t o RA and SEW experiments a r e e s t i m a t e d .

For RA spectroscopy w i t h a weak source so t h a t t h e measurement i s d e t e c t o r n o i s e l i m i t e d , Greenler 1131 showed t h a t t h e s i g n a l - t o - n o i s e r a t i o i s o p t i m i z e d f o r t h e TM p o l a r i z a t i o n when AR ( t h e depth o f an RA band) i s maximized w i t h r e s p e c t t o t h e number o f r e f l e c t i o n s No. T h i s maximum v a l u e occurs when

(9)

C5-174 JOURNAL DE PHYSIQUE

where R i s t h e r e f l e c t i o n c o e f f i c i e n t a s s o c i a t e d w i t h one r e f l e c t i o n f o r a p a r t i c u y a r a n g l e o f i n c i d e n c e ( t y p i c a l l y = 8 5 " ) .

For l a r g e angles o f i n c i d e n c e (45"

<

8

<

8 6 " ) , t h e f r a c t i o n a l change i n r e f l e c t i v i t y f o r No r e f l e c t i o n s i s

The s i n 2 8 f a c t o r o c c u r s because o n l y t h e component o f t h e E f i e l d p e r p e n d i c u l a r t o t h e s u r f a c e i s i m p o r t a n t . The angular dependence o f t h e o p t i c a l p a t h g i v e s t h e cos8 term.

For SEW s p e c t r o s c o p y we have a l r e a d y seen from Eq. 4 t h a t

AI a a

- z - = A

1 am SEW

We must now r e l a t e t h e ASEW f o r inhomogeneous waves t o t h e A o b t a i n e d f o r p l a n e waves. Because much o f t h e SEW wave i s s p a t i a l l y removed f r o m t h e adsorbate l a y e r , t h e SEW c o n f i g u r a t i o n has a sample f i l l f r a c t i o n which i s s m a l l e r t h a n t h e p l a n e wave f i l l f r a c t i o n by d/Y where Y i s t h e h e i g h t o f t h e SEW above t h e m e t a l so ASEW i s s m a l l e r t h a n A by t h i s f a c t o r . On t h e o t h e r hand, s i n c e t h e SEW i n t e r a c t s over t h e l e n g t h Io i n s t e a d o f t h e t h i c k n e s s d, A(d/Y) i s i n c r e a s e d by t h e

a d d i t i o n a l f a c t o r (Ro/d). The r e s u l t a n t expression, which i s independent o f d, i s

By combining Equations 9, 4, and 10, an e q u a t i o n which r e l a t e s t h e two s p e c t r o s c o p i e s i s o b t a i ned; namely,

A I no cos 8 AR

y "

Nosinie

T h i s e q u a t i o n can be s i m p l i f i e d f u r t h e r s i n c e a a

<<

am so t h a t i n t h e energy 1 i m i t e d r e g i o n

1 0

-

= (amy)-' = 2wp7 Y

( 1 2 )

f o r a Drude metal i n t h e UT

>>

1 l i m i t . I n s e r t i n g E q u a t i o n 12 i n t o Eq. 11 g i v e s

cos 6 AR

(10)

RA experiments are t y p i c a l l y mqde a t 0

- 85"

w i t h No 2 so t h a t cos 0 / s i n 2 0

-

0.1. For m s t m e t a l s wpz

-

10

.

P u t t i n g t h e s e parameters i n t o Eq. 13 we f i n d

Given equal p r o b i n g i n t e n s i t y a t t h e m e t a l - a b s o r b a t e i n t e r f a c e , SEW spectroscopy would p r o v i d e more s e n s i t i v i t y i n t h e d e t e c t o r n o i s e - l i m i t e d regime. However, because o f t h e l o w - c o u p l i n g e f f i c i e n c y , l i t t l e improvement can be expected at t h e p r e s e n t t i m e over RA s p e c t r o s c o p y i f a weak source i s used.

A d i f f e r e n t comparison s h o u l d be made i f one makes b o t h measurements w i t h a s t r o n g IR l a s e r source. I n t h i s l i m i t i t i s t h e source n o i s e n o t t h e d e t e c t o r n o i s e which dominates /Il/. Because source n o i s e i s p r o p o r t i o n a l t o t h e i n t e n s i t y , t h e

s i g n a l - t o - n o i se r a t i o i s o p t i m i zed b y maximi z i n g t h e c o n t r a s t , namely, AR/R o r AI/I. Although b o t h Equation 9 ( f o r AR/R) and E q u a t i o n 2 ( f o r A I / I ) i n d i c a t e t h a t t h e sample should be made as l o n g as p o s s i b l e i n t h e s t r o n g source l i m i t , one can compare t h e two t e c h n i q u e s b y r e q u i r i n g t h a t t h e two c o n t r a s t s be equal, t h e r e f o r e ,

The s u b s c r i p t N r e f e r s t o t h e number o f r e f l e c t i o n s needed i n RA spectroscopy t o s a t i s f y Eq. 11, namely,

a0 cos 0 N = -

y

sin'B'

Again f o r 0

-

85' and Y = 60 p t h e n N = 17 a,. For t h e RA experiment w i t h t h e sample c o n s i s t i n g o f two p a r a l l e l m e t a l p l a t e s separated b y a 1 nun gap t h e RA sample would have t o be 38 t i m e s t h e l e n g t h o f t h e SEM sample i n o r d e r t o o b t a i n t h e same c o n t r a s t . Since t h e sample l e n g t h s f o r t h e SEW measurements i n t h e 10 p m r e g i o n are on t h e o r d e r o f a few cm, t h e c o r r e s p o n d i n g RA samples are i m p r a c t i c a l . For t h e s t r o n g IR source l i m i t SEM spectroscopy i s t o be p r e f e r r e d .

The f i r s t d i r e c t comparison o f SEM and RA s p e c t r o s c o p y was made u s i n g an edge c o u p l e r i n t h e weak source l i n i t

151.

The p o l y c h r o m a t i c edge c o u p l e r used i n t h i s experiment i s c o n t r a s t e d w i t h t h e monochromatic two-prism c o u p l e r i n Fig. ( 9 ) .

F i g u r e 9. Monochromatic and p o l y c h r o m a t i c

o ' ~ J A

g

SEM c o u p l i n g geometries. Because d i e l e c t r i c

m a t e r i a l s a r e d i s p e r s i v e each frequency has

-

i t s own t o t a l i n t e r n a 1 r e f l e c t i o n o r SEW

/',,'/ , / , / ' / i , / I 7 c o u p l i n g angle.

( a ) The two p r i s m evanescent wave c o u p l i n g t e c h n i q u e f a v o r s t h e l a u n c h i n g and r e c o v e r i n g

b) o f m n o c h r o m a t i c SEW's a t a f i x e d angle. The

i n t e r n a l a n g l e o f i n c i d e n c e a t t h e p r i s m base

wL?-?'-

8,; i s ( b ) independent The edge c o u p l i n g of frequency. t e c h n i q u e i n a geometry g,

5;

which f a v o r s t h e l a u n c h i n g and r e c o v e r i n g o f

19 p o l y c h r o m a t i c SEW's. The d i s p e r s i v e r e f r a c t i o n

O o f t h e i n c i d e n t beam p a r t i a l l y compensates f o r t h e f r e q u e n c y dependence o f t h e c o u p l i n g angle f o r SEM g e n e r a t i o n .

(11)

C5-176 J O U R N A L DE PHYSIQUE

The e x p e r i m e n t a l arrangement f o r broadband SEW g e n e r a t i o n i s shown i n F i g . ( 1 0 ) . Broadband SEW's were generated on Au and Ag f i l m s w i t h a Nernst glower thermal I R source. A Michelson i n t e r f e r o m e t e r coupled t o a As:Si p h o t o d e t e c t o r was used t o measure s p e c t r o s c o p i c a l l y t h e t r a n s m i t t e d SEW1s i n t h e 600 and 1800 cm-' frequency r e g i o n .

rnirror

rnirror

F i g u r e 10. Top view o f t h e e x p e r i m e n t a l o p t i c a l s e t - u p f o r a broadband SEW t r a n s - m i s s i o n experiment

.

I n c o h e r e n t r a d i a t i o n f r o m a Nernst glower i s focused on a d i s - p e r s i o n compensated edge c o u p l e r . The k n i f e edge r n i r r o r r e d i r e c t s t h e SEM beam i n t o a M i c h e l s o n i n t e r f e r o m e t e r . A S i :As d e t e c t o r measures t h e i n t e r f e r o m e t e r o u t p u t s i g n a l . For i n i t i a l alignment t h e glower i s removed and He-Ne and CO, l a s e r beams a r e d i r e c t e d t h r o u g h t h e o p t i c a l path.

interferorneter

/W

\ f

detector

For a m e t a l samplf c o a t e d w i t h one monolayer of KReO, a sharp v i b r a t i o n a l a b s o r p t i o n l i n e near 930 cm- was measured as shown i n F i g u r e l i a . The r e s o l u t i o n o f t h i s spectrum i s about 50 cm-'. The SEW spectrum o f a b a r e r e g i o n o f t h e same Au s u r f a c e i s a l s o shown f o r r e f e r e n c e . Next, t h e same sample was measured by s u r f a c e

r e f l e c t i o n spectroscppy.. The presence o f t h e KRe0, c o a t i n g produces a 25 cm-' wide m u l t i p l e t a t 930 cm which i s about 1% deep f o r an a n g l e of i n c i d e n c e o f 70". T h i s spectrum shows a t r i p l e t s t r u c t u r e which t h e SEW measurement d i d n o t r e s o l v e . T h i s a b s o r p t i o n was used t o compare t h e SEW and RA s p e c t r o s c o p i c t e c h n i q u e s . The i n t e g r a t e d o p t i c a l d e n s i t y o f t h e a b s o r p t i o n l i n e i s at l e a s t an o r d e r o f magnitude l a r g e r wi t h SEW spectroscopy t h a n wi t h r e f l e c t i o n s p e c t r o s c o p y no m a t t e r what angle o f i n c i d e n c e i s chosen.

F i g u r e 11. SEW f o u r i e r t r a n s f o r m s p e c t r a and b u l k wave r e f l e c t a n c e s p e c t r a i n a KRe0, c o a t e d Au sub- s t r a t e . The c o a t i n g t h i c k n e s s i s about 1 monolayer.

( a ) The upper c u r v e i s a SEW t r a n s m i s s i o n spectrum o f a KRe0, c o a t e d Au s u r f a c e . The lower c u r v e i s a spectrum o f an uncoated r e g i o n o f t h e sarne Au f i l m . I n bothlcases t h e t r a n s m i s s i o n goes t o zero a t 500 cm- because t h e d i e l e c t r i c s u b s t r a t e i s opaque.

1000 2000 The c u t o f f a t about 1500 cm- i s m a i n l y due t o t h e

Frequency (cm-') f r e q u e n c y dependence o f t h e a t t e n u a t i o n c o e f f i c i e n t . The v 3 mode of t h e Re04- m7nolayer produces t h e

( b ) a b s o r p t i o n l i n e a t 930 cm-

.

.;; 099 ( b ) R e f l e c t a n c e s p e c t r a from t h e same sample as i n ( a ) a r e shown f o r a TM p o l a r i z e d beam o f r a d i a t i o n i n c i d e n t a t any a n g l e o f 70" w i t h r e s p e c t t o t h e normal. The upper t r a c e i s a spectrum o f t h e KReO,

097 c o a t e d r e g i o n w h i l e t h e lower t r a c e i s f r o m t h e b a r e m e t a l s u b s t r a t e .

L96ou;sJ

Frequency (cm-')

(12)

Another d e m o n s t r a t i o n o f t h e s e n s i t i v i t y o f t h e SEM t e c h n i q u e was o b t a i n e d b y u s i n g t h e broadband set-up w i t h Ag f i l m s . The KReO, was evaporated o n t 0 one h a l f o f t h e Ag f i l m w i t h i n one m i n u t e of t h e Ag e v a p o r a t i o n . The SEM t r a n s m i s s i o n s p e c t r a o f b o t h t h e b a r e and t h e two monolayer t h i c k coated p o r t i o n s o f t h e f i l m were observed s p e c t r o s c o p i c a l l y t o change as a f u n c t i o n o f t i m e i n a i r . The s p e c t r a a r e shown i n F i g u r e 12. The o r i g i n o f t h e new Ag l i n e i s unknown.

F i g u r e 12. SEW t r a n s m i s s i o n s p e c t r a o f f r e s h l y evaporated and contaminated Ag s u b s t r a t e s .

( a ) and ( b ) Transmission s p e c t r a o f b a r e and KReO, coated r e g i o n s o f an Ag f i l m t a k e n one day a f t e r t h e f i lm e v a p o r a t i o n .

( c ) and ( d ) S p e c t r a o f t h e same sample t a k e n two weeks l a t e r . A f t e r Ref. 14.

O I 2 r IO'

Frequency (cm-')

V

-

CONCLUSIONS

So f a r 0 n l y one UHV experiment has been attempted w i t h SEM spectroscopy

/a/.

The vl

v i b r a t i o n a l mode o f H chemisorbed on W(100) a t s a t u r a t i o n coverage was measured w i t h 2 cm-' r e s o l u t i o n . A UHV c o m p a t i b l e b u t e x c e e d i n g l y i n t r i c a t e p a r a l l e l p l a t e geometry was devised so t h a t SEW's c o u l d be e x c i t e d on t h e W(100) s u r f a c e w i t h quasi - t u n e a b l e CO2 1 aser r a d i a t i o n . At room t e m p e r a t u r e t h e measured c e n t e r

f r e q u e n c y o f t h e v l mode, as measured w i t h SEW's, was i n good agreement w i t h e a r l i e r e l e c t r o n energy l o s s measurements. Because t h e sample geometry was not c o m p a t i b l e w i t h temperature dependent s t u d i e s o r w i t h o t h e r s u r f a c e s e n s i t i v e probes, work w i t h t h i s c o u p l i n g c o n f i g u r a t i o n has been d i s c o n t i n u e d .

R e c e n t l y Z h i z h i n , e t a l /6/, showed t h a t g r a t i n g c o u p l e r s t o g e t h e r w i t h broadband f o u r i e r t r a n s f o r m s p e c t r o s c o p i c t e c h n i q u e s c o u l d be used t o p e r f o r m SEN

s p e c t r o s c o p i c measurements on b u l k rnetal s u b s t r a t e s . We, i n t u r n , have found t h a t g r a t i n g c o u p l e r s can be r e a d i l y etched i n t o s i n g l e c r y s t a l W and t h a t t h e c o u p l i n g e f f i c i e n c y i s l a r g e r t h a n f o r t h e edge c o u p l e r . The e l i m i n a t i o n o f t h e d i e l e c t r i c c o u p l e r i s p a r t i c u l a r l y i m p o r t a n t f o r SEN s t u d i e s o f s i n g l e c r y s t a l samples i n UHV and i t i s now c l e a r t h a t t h e n e x t g e n e r a t i o n o f SEM c o u p l e r s wi 11 make use of p e r i o d i c s t r u c t u r e s .

T h i s work was supported b y t h e N a t i o n a l Science Foundation under Grant No.#

DMR-81-06097 and b y t h e A i r Force under Grant No.# AFOSR-81-0121B. M a t e r i a l s Science Center Report No.# 5125.

(13)

JOURNAL

DE

PHYSIQUE

V I

-

REFERENCES

*

C u r r e n t address: Bel 1 Telephone Labs, 600 Mountain Avenue, Murray Hi 11, New Jersey, 079741.

1. PRITCHARD J. and CATTERICK T., I n f r a r e d Spectroscopy i n Experimental Methods i n C a t a l y t i c Research, ANDERSON R.B. and DAWSON P.T., e d i t o r s , (Academic Press 1976), Chapter 7.

2. AGRANOVICH V.M. and MILLS D.L., edi t o r s , S u r f a c e P o l a r i t o n s (North-Ho1 land, Amsterdam, 1982).

3. BOARDMAN A.D., e d i t o r , E l e c t r o m a g n e t i c Surface Modes, (John W i l e y and Sons, New York, 1982)

.

4. SIEVERS A.J. and SCHLESINGER Z.. E l l i p s o m e t r y and Other D p t i c a l Methods f o r Surface and T h i n F i l m A n a l y s i s , ABELES, F., e d i t o r , J o u r n a l de Physique, C o l l o q u e (1983). H e r e a f t e r r e f e r r e d t o as 1 i n t h e t e x t .

5. SCHLESINGER Z. and SIEVERS A.J., Surf. S c i

102

(1981) L29;

107

(1981) 639.

6. ZHIZHIN G.N., MOSKALOVA M.A., SIGAREV A.A. and YAKOVLEV V.A., O p t i c s Commun.

g

(1982) 31.

7. SCHLESINGER 2. and SIEVERS A.J., Phys. Rev. BX-(1982) 6444.

8. CHABAL Y.J. and SIEVERS A.J., Phys. Rev. B s ( 1 9 8 1 ) 2921.

9. OTTO A., Z. Physik

-

216 (1968) 398.

10. SCHOENWALD J., BURSTEIN E. and NELSON J.M., S o l i d S t a t e Commun. (1973) 185.

11. CHABAL Y .J. and SIEVERS A.J., Appl. Phys. L e t t .

31

(1978) 90.

12. CHABAL Y.J. and SIEVERS A.J., J. Vac. S c i . Technol. (1978) 638.

13. GREENLER R.G., J. Voc. S c i . Tech.

g

(1975) 1410.

14. SCHLESINGER Z., Ph.D. Thesis, Corne11 U n i v e r s i t y , 1982.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to