• Aucun résultat trouvé

QUASIPERIODIC PATTERNS

N/A
N/A
Protected

Academic year: 2021

Partager "QUASIPERIODIC PATTERNS"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: jpa-00225133

https://hal.archives-ouvertes.fr/jpa-00225133

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

QUASIPERIODIC PATTERNS

A. Katz, M. Duneau

To cite this version:

(2)

JOURNAL DE PHYSIQUE

Colloque C8, supplkment a u n012, Tome 46, dkcembre 1985 page C8-31

QUASIPERIODIC PATTERNS

A. Katz and M. Duneau

Centre de Physique Thdorique, EcoZe Polytechnique, Plateau de PaZaiseau,

91 128 PaZaiseau Cedex, France

Resum6 - Noun CLXpVbVMn une ththeohie den pawagen e t pLu4 giin&cLeemevLt den o&uc- &en quai-pCkiodiyueh pkL6entartt un ohdtre ohievLtationnd gLobd. NUUA pk&- oevLtoMn no&e "muhode de La bande" (une wa4iauzte

d a

miithoden de pkoje&on)

n u t

un modPLe unLdimeMnionneR. Nou4 expooom emLLite Le can de La o y m W e icooathedhiyue en vue de L1appficication aux q u a i - d t u u x du t y p e ALwnivLium- Mangan2ne. La muhode popobiie donne uccPb aux phophiEtk% tan2 LoccLea

(danoi6iccLtion den enwLtonneme& poooibLu de chayue oLte) yue g L o b d a (ccLecul e x p f i c i t e de La &aMndohm&e de Founien].

A b s t r a c t

-

We phaevLt a t h ~ v t r y

06

y u a n i p d o d i c Xilingo and mohe genend quani;o&odic pcLttehuzcl wLth Long hange ohievLtcLtiond okdeh. We explain out " b a k i p method" ( a vahiartt od t h e p o j e o t i o n me~oo!A) on a one dimenbiond mod&. Then t h e icooahehcLe cane AA inwuLLgigcLted i n v i w

0 6

fithe quanictyotah

od

t h e type AL-Mn. OWL method &VWA t h e bRudy

03

t h e d o c d p k o p ~ e ~ (ouch

an

fie &oi6ic&on od t h e u&ex n e i g h b o u t h o o ~ ) an weRe an t h e ydobd onen, and an a n d y i i c exphenoion

ad

t h e FowLieh &at~a~ndotun AA ddehived, exkibi- LLng f i t h e quanipiyJeh-iodicay.

INTRODUCTION

T h i s l e c t u r e d e a l s w i t h t h e t h e o r y o f q u a s i p e r i o d i c t i l i n g

,

and more g e n e r a l l y w i t h q u a s i p e r i o d i c p a t t e r n s . We p r e s e n t t h e i d e a s i n t r o d u c e d i n C91

,

w h i c h we c a l l t h e " s t r i p method".

The i n t e r e s t f o r non p e r i o d i c t i l i n g s came f i r s t f r o m problems o f mathematical l o g i c However, s i n c e t h e i n v e n t i o n b y R. Penrose o f h i s w e l l known a p e r i o d i c t i l i n g o f t h e p l a n e [ 1 , 7 1

,

t h e m o t i v a t i o n has changed t o t h e s t u d y o f t h e g e o m e t r i c a l p r o p e r t i e s o f t h e s e p a t t e r n s . A f t e r t h e f i r s t t h e o r e t i c a l work b y R. Penrose, J. Conway [71 and N.G. de B r u i j n [ 2 1 , A.L. Mackay [ 3 ] and Mosseri and Sadoc [ 4 ] have drawn a t t e n t i o n t o t h e p o s s i b l e i m p l i c a t i o n s o f these s t r u c t u r e s f o r s o l i d s t a t e p h y s i c s . A 3-dimensional general i z a t i o n o f t h e Penrose t i 1 in g ( u s i n g two rhombohedra i n s t e a d o f two rhombs) has been d e v i s e d by R. Amrnann and t h e o r e t i c a l l y d e s c r i b e d by Kramer and N e r i [5,61 i n t h e c o n t e x t o f t h e de B r u i j n approach.

The s p e c i a l p r o p e r t i e s o f t h e F o u r i e r t r a n s f o r m o f t h e Penrose p a t t e r n s , w h i c h a r e now i d e n t i f i e d as t h e i r q u a s i p e r i o d i c i t y , have been e m p i r i c a l l y observed b y

A. L. Flackay, u s i n g o p t i c a l methods. D. L e v i n e and

P. S t e i n h a r d t have suggested i n r e f .

[81 t o t a k e q u a s i p e r i o d i c i t y as t h e b a s i s t o b u i l d i c o s a h e d r a l q u a s i c r y s t a l s .

The e x p e r i m e n t a l d i s c o v e r y o f i c o s a h e d r a l symmetry t o g e t h e r w i t h some k i n d of l o n g range s p a t i a l o r d e r i n s o l i d s by D. Schechtnan, I. Blech, D. G r a t i a s , and J.W. Cahn

[ I 0 1 has aroused an i n t e n s e a c t i v i t y among t h e o r i s t s , as w e l l about o n t h e s t r u c t u r a l

problem [6,8,9,11,12,13,14,151

,

and a b o u t s t a b i l i t y q u e s t i o n s w h i c h w i l l n o t be

(3)

JOURNAL

DE

PHYSIQUE

discussed here.

The theory described here, which takes i n t o account both t h e icosahedral symmetry and the q u a s i p e r i o d i c i t y o f the t i l i n g

,

i s based on an idea independantely introduced i n t h i s c o n t e x t by V. E l s e r [12, 131 and us [9,15] ( f o l l o w i n g N.G. de B r u i j n ) .

A OWE DIMENSIONAL MODEL

L e t us begin by a d e s c r i p t i o n o f t h i s method i n t h e s i m p l e s t one-dimensional case (see F i g . 1) : t o t i l e o f a s t r a i g h t l i n e w i t h two types o f i n t e r v a l s , we s t a r t w i t h the square l a t t i c e 2' i n the plane IR', i n which the l i n e E t o be t i l e d i s drawn. Consider now t h e s t r i p o b t a i n e d by s h i f t i n g t h e u n i t square K o f t h e l a t t i c e along t h e l i n e . The c l a i m i s t h a t , f o r almost a l l p o s i t i o n s o f the l i n e , t h i s s t r i p contains a unique broken l i n e (made o f edges o f t h e l a t t i c e ) , which j o i n s e x a c t l y a l l the v e r t i c e s f a l l i n g i n s i d e t h e s t r i p . I t j u s t remains t o p r o j e c t t h i s broken l i n e o r t h o g o n a l l y on t h e given d i r e c t i o n t o g e t the p r e d i c t e d t i l i n g , the two t i l e s a and b being c l e a r l y t h e p r o j e c t i o n s o f t h e v e r t i c a l and h o r i - zontal edges o f t h e u n i t square K.

One can understand t h e e s s e n t i a l f e a t u r e s o f o u r t i l i n g w i t h t h i s simple example. Consider f i r s t t h e choice o f the u n i t square t o b u i l d t h e s t r i p . I t i s c l e a r t h a t one has t o take a u n i t c e l l o f the l a t t i c e i n order t o o b t a i n a t i l i n g (by t h e p r o j e c t i o n s o f the edges o f t h e c e l l ) : w i t h a narrower s t r i p , one would g e t "holes" i n t h e broken l i n e , and w i t h a l a r g e r s t r i p , one would g e t e x t r a p o i n t s . However, any u n i t c e l l o f 712 i s possible, and n o t o n l y the canonical square. This i s c l o s e l y r e l a t e d t o the s e l f - s i m i l a r l y p r o p e r t i e s o f these t i 1 ings.

Secondly, consider t h e slope o f t h e l i n e E w i t h r e s p e c t t o t h e canonical b a s i s of IR'. I t i s c l e a r t h a t t h e t i l i n g i s p e r i o d i c i f and o n l y i f t h i s slope i s a r a t i o n a l number : i n f a c t , t h e slope i s j u s t the r a t i o o f t h e r e l a t i v e abundances of each type o f t i l e s , and t h i s r a t i o i s c e r t a i n l y r a t i o n a l f o r a p e r i o d i c t i l i n g .

Fig. 1

(4)

Now, g i v e n a n i r r a t i o n a l slope, c o n s i d e r what happens when t h e s t r i p i s t r a n s l a t e d i n IR' : each t i m e a p o i n t l e a v e s t h e s t r i p , a n o t h e r p o i n t e n t e r s t h e s t r i p . These two p o i n t s a r e t h e v e r t i c e s o f t h e d i a g o n a l o f some square i n t h e l a t t i c e , i n such a way t h a t t h e b r o k e n l i n e "jumps" f r o m one s i d e o f t h e square t o t h e o t h e r . T h i s i s t h e o n l y e l e m e n t a r y change o f t h e t i 1 in g , b u t f o r any f i n i t e t r a n s l a t i o n o f t h e s t r i p ( t r a n s v e r s e t o i t s d i r e c t i o n ) such jumps o c c u r i n f i n i t e l y many times, i n such a way t h a t f o r each i r r a t i o n a l s l o p e , t h i s c o n s t r u c t i o n g e n e r a t e s a non coun-2 t a b l e s e t o f d i f f e r e n t t i l i n g s ( o f course, each t i m e t h e t r a n s l a t i o n belongs t o Z

,

one g e t s m e r e l y a t r a n s l a t i o n o f t h e i n i t i a l t i l i n g ) .

N o t i c e t h a t we can s l i g h t l y g e n e r a l i z e t h e c o n s t r u c t i o n and d i s t i n g u i s h between t h e l i n e a l o n g which t h e s t r i p i s b u i l t and t h e l i n e on which t h e broken l i n e i s p r o j e c t e d

t o o b t a ~ n t h e t i l i n g . It i s c l e a r t h a t t h e o r i e n t a t i o n o f t h i s l a s t l i n e ( t h e t i l e d one) m e r e l y d e f i n e s t h e r e l a t i v e s i z e s o f t h e t i l e s , and t h a t t h e o r i e n t a t i o n o f t h e s t r i p d e f i n e s a l l t h e i m p o r t a n t p r o p e r t i e s , f o r i n s t a n c e t h e r e l a t i v e abundance o f each t y p e o f t i l e . I f we v a r y t h e o r i e n t a t i o n o f t h e s t r i p w h i l e m a i n t a i n i n g unchanged t h e t i l e d l i n e , we g e t d i f f e r e n t t i l i n g w i t h t h e same p a i r o f t i l e s . Each t i m e t h e s l o p e i s r a t i o n a l , t h e t i l i n g i s p e r i o d i c , i n such a way t h a t t h e non p e r i o d i c t i l i n g o b t a i n e d f o r i r r a t i o n a l s l o p e s can be t h o u g h t o f as " i n t e r p o l a t i o n s " b e t w e e n . p _ e ~ i o d i c ~ t t i c e s .

L e t u s now e x p l a i n why any f i n i t e p a t c h o f t i l e s t h a t belongs t o a t i l i n g appears i n - f i n i t e l y many t i m e s i n any t i l i n g d e f i n e d t h r o u g h a s t r i p w i t h t h e same g i v e n i r r a - t i o n a l s l o p e (Conway's 1 o c a l isomorphism p r o p e r t y , see [7

1

) . Consider such a t i 1 ing, p i c k any f i n i t e p a t c h of t i l e s i n i t . and c o n s i d e r t h e f i n i t e b r o k e n l i n e t h a t p r o - ~ e c t s i n t h i s p a t c h . S i n c e t h e s l o p e - i s i r r a t i o n a l , i t i s c l e a r t h a t t h e p r o j e c ' t i o n o f t h i s b r o k e n l i n e on E' (see f i g . 1 ) i n s t r i c t l y s m a l l e r t h a n t h e p r o j e c t i o n o f t h e whole s t r i p , i n such a way t h a t t h e i r e x i s t s an open s e t (non empty ! ) o f t r a n s l a t i o n s i n E ' t h a t keep t h e p r o j e c t i o n o f t h e f i n i t e b r o k e n l i n e i n s i d e t h e s t r i p . Now con- s i d e r t h e a u x i l i a r y s t r i p t h a t p r o ' e c t s on E ' o n t o t h i s s e t o f t r a n s l a t i o n s : t h e r e a r e i n f i n i t e v e r t i c e s o f

Z3 i n s i d e i t , and each o f them d e f i n e s a t r a n s l a t i o n

t h a t maps t h e f i n i t e broken l i n e i n s i d e o u r main s t r i p o n t o a copy o f i t , which i s i n d i s t i n g u i s h from a p a r t o f t h e i n f i n i t e b r o k e n l i n e t h a t p r o j e c t s on t h e t i l i n g . T h i s shows t h a t any f i n i t e p a t c h which appears i n a t i l i n g , appears i n f i n i t e l y many t i n e s . One can show w i t h t h e same t y p e o f argument t h a t , g i v e n any two p a r a l l e l s t r i p s and a f i n i t e b r o k e n l i n e i n one o f them, t h e r e always e x i s t s a t r a n s l a t i o n i n

22 t h a t

maps t h e f i n i t e b r o k e n l i n e i n s i d e t h e o t h e r s t r i p , which means t h a t any f i n i t e p a t c h t h a t appears i n one t i l i n g appears i n a l l t h e t i l i n g s a s s o c i a t e d w i t h t h e same s l o p e . There a r e i n t e r e s t i n g q u e s t i o n s c o n c e r n i n g t h e d i s t a n c e between two c o p i e s o f a g i v e n p a t c h . I t can be shown t h a t t h e r a t e o f " r a r e f a c t i o n " o f t h e c o p i e s o f a p a t c h when i t s s i z e i n c r e a s e s depends on a r i t h m e t i c a l p r o p e r t i e s o f t h e slope. F o r a l g e b r a i c numbers, t h e mean d i s t a n c e between two c o p i e s i s p r o p o r t i o n a l t o t h e s i z e o f t h e patch, b u t f o r L i o u v i l l e numbers, t h e mean d i s t a n c e can grow a r b i t r a r y q u i c k l y .

F i n a l l y , l e t us d e s c r i b e t h e c a l c u l u s o f t h e F o u r i e r t r a n s f o r m o f t h e measure d e f i - ned b y p u t t i n g one D i r a c d e l t a a t each v e r t e x o f t h e t i l i n g ( f i g . 2 ) . F o l l o w i n g t h e s t r i p method, t h i s measure i s o b t a i n e d i n t h r e e s t e p s : t a k e t h e square l a t t i c e o f D i r a c d e l t a s i n t h e p l a n e , m u l t i p l y b y t h e c h a r a c t e r i s t i c f u n c t i o n o f t h e s t r i p , and t h e n p r o j e c t on t h e l i n e . To compute t h e F o u r i e r t r a n s f o r m , we have j u s t e t o o p e r a t e t h e " F o u r i e r images" o f t h e s e t h r e e s t e p s i n t h e r e c i p r o c a l space. The f i r s t one i s t o t a k e t h e F o u r i e r t r a n s f o r m o f t h e square l a t t i c e , which i s o f course a n o t h e r square l a t t i c e o f D i r a c d e l t a s . The second s t e p i s t h e c o n v o l u t i o n b y t h e F o u r i e r t r a n s f o r m o f t h e c h a r a c t e r i s t i c f u n c t i o n o f t h e s t r i p , w h i c h i s easy t o conpute s i n c e i t i s a p r o d u c t : i n t h e d i r e c t i o n E* dual t o t h e d i r e c t i o n o f t h e s t r i p , t h i s F o u r i e r t r a n s f o r m i s a D i r a c d e l t a and i n t h e o r t h o g o n a l d i r e c t i o n

(5)

C8-34 JOURNAL

DE

PHYSIQUE

L e t us make a few comments about the r e s u l t . The most important p o i n t i s t h a t the F o u r i e r transform thus obtained i s a sum o f weighted D i r a c d e l t a s , c a r r i e d by

2

the p r o j e c t i o n o f the whole l a t t i c e Z

,

i . e . by a two generators Z-module, and t h i s p r o p e r t y o f the support o f i t s F o u r i e r t r a n s f o r m i s t h e v e r y d e f i n i t i o n o f the quasi p e r i o d i c i t y o f a measure. Observe t h a t t h e q u a s i p e r i o d i c i t y f o l l o w s d i r e c t l y from the s t r i p being b u i l t on a s t r a i g h t 1 in e : one could produce more general t i 1 in g s w i t h a s t r i p obtained by s h i f t i n g t h e u n i t c e l l along a curved o r u n d u l a t i n g l i n e ( w h i l e m a i n t a i n i n g the p r o j e c t i o n on a s t r a i g h t l i n e ) and they would n o t be quasi- p e r i o d i c . The second p o i n t i s t h a t a t r a n s l a t i o n o f the s t r i p changes t h e F o u r i e r transform o n l y by a phase f a c t o r ( a d i f f e r e n t one f o r each D i r a c d e l t a ) i n such a way t h a t a l l the t i l i n g s associated w i t h t h e same i r r a t i o n a l slope g i v e the same d i f f r a c t i o n p a t t e r n s , as f a r as o n l y i n t e n s i t i e s are measured.

F i n a l l y , observe t h a t although t h e support o f t h e F o u r i e r transform i s a dense set, the i n t e n s e peaks correspond t o v e r t i c e s which are near the l i n e E* (see f i g . 2 ) , and t h a t t h e s e t o f peaks whose i n t e n s i t y i s g r e a t e r than any s t r i c t l y p o s i t i v e t h r e s h o l d i s always d i s c r e t e . I n f a c t , t h e q u a n t i t a t i v e a n a l y s i s o f the i n t e n s i t i e s i n t h e d i f f r a c t i o n p a t t e r n may be used t o r e c o n s t r u c t the geometry i n the d i r e c t space (up t o a t r a n s l a t i o n o f the s t r i p ) i n t h e same sense and w i t h the same l i m i t a t i o n s as i n o r d i n a r y c r y s t a l l o g r a p h y .

THE GENERAL CASE

We g i v e now the g e n e r a l i s a t i o n o f t h i s method t o a r b i t r a r y dimensions. We generate a q u a s i p e r i o d i c t i l i n g o f a p-dimensional space E as t h e p r o j e c t i o n , from a h i g h e r dimensional space IR", o f a p-dimensional surface made up o f a s u i t a b l e union of p-facets o f a r e g u l a r n-dimensional l a t t i c e L i n 1 ~ ~ .

F i g . 2,

(6)

A c t u a l l y , l e t

L=

Z n be t h e n-dim l a t t i c e i n lRn generated by the n a t u r a l basis [el,.

.

.

,en], and l e t yn be the u n i t cube. L e t E c l R n be a p-dimensional subspace o f lRn, and assume t h a t E does n o t c o n t a i n any p o i n t o f t h e l a t t i c e , except the o r i g i n .

There are (") d i f f e r e n t p-facets ( t h e p-dimensional analog o f an edge) of yn con- P

t a i n i n g t h e o r i g i n . These f a c e t s p r o j e c t on E on a - p r i o r i (n) d i f f e r e n t p-volumes.

D

A t i l i n g o f E by mean o f these volumes i s obtained i n the f o i l o w i n g way : L e t S=E+y be the open s t r i p generated by s h i f t i n g yn along E . Then the c l a i m i s t h a t

n

t h e union o f a l l p - f a c e t s e n t i r e l y contained i n S i s e x a c t l y a p-dimensional surface o f I R ~ , t h e p r o j e c t i o n o f which on E gives t h e announced t i l i n g .

I f E' i s t h e orthogonal complement o f E i n lRn, t h e p r o j e c t i o n K o f the s t r i p on E' i s j u s t t h e p r o j e c t i o n o f t h e u n i t cube yn. Moreover, i f E n L = 10

1

,

t h e p r o j e c t i o n of t h e l a t t i c e L i n E' i s one t o one. Thus t h e s e t o f v e r t i c e s o f t h e q u a s i p e r i o d i c t i l i n g corresponds t o the s e t o f p o i n t s o f L t h a t p r o j e c t i n E' i n s i d e K.

Now, i f E i s i n v a r i a n t under the a c t i o n o f a subgroup G o f t h e p o i n t group o f the l a t t i c e L, the a - p r i o r i

(i)

d i f f e r e n t t i l e s f a l l i n t o classes, i n such a way t h a t the t i l e s o f each c l a s s have the same shape, and are permuted by G.

The s e t o f p-volumes around a given v e r t e x x o f t h e t i l i n g i s completely s p e c i f i e d by the s e t o f corresponding p - f a c e t s f a l l i n g i n K around t h e corresponding p o i n t x ' i n E l . Note t h a t no ( p + l ) , (p+2),

...,

n - f a c e t o f L can p r o j e c t i n E ' s t r i c t l y i n s i d e K.

THE ICOSAHEDRAL CASE

L e t us now s p e c i a l i z e t o t h e case o f the icosahedral symmetry. The s i m p l e s t cons- 6

t r u c t i o n i n v o l v e s I R endowed w i t h an orthogonal r e p r e s e n t a t i o n o f t h e icosahedral 6

group G , which permutes Z6 and such t h a t I R f a 1 1s i n two G - i n v a r i a n t 3-spaces, E and E ' equipped w i t h non e q u i v a l e n t i r r e d u c i b l e r e p r e s e n t a t i o n s o f G.

The 20 d i f f e r e n t 3-facets o f

L=

ZL6 fa71 i n E (and E ' ) on d i f f e r e n t rhombohedra, w i t h t h e same f a c e t s ( w i t h angles Atn(2) and n - A t n ( 2 ) ) , each o f which being repeated 10 times. These are the rhombohedra considered by A.L. Mackay i n [31

,

P. Kramer and R. N e r i i n [5,61, and us i n [91 ( F i g . 3b and c ) .

6 The open s t r i p i s d e f i n e d by S=E+y6 where y6 i s the open u n i t cube o f I R

.

It can be seen t h a t t h e p r o j e c t i o n s n ( L ) on E and n l ( L ) on E' are Z-modules

6 which a r e dense i n E and E '

.

I f E ~ , . ,

. ,

s6

,

i s the n a t u r a l b a s i s o f IR

,

n ( k ~ ~ ) , . . . , n ( c ~ ~ ) p o i n t t o t h e 12 v e r t i c e s o f a r e g u l a r icosahedron centered a t t h e o r i g i n o f E and so do n1(?c1)

,..

.

,

n 1 ( + s 6 ) i n E ' .

(7)

JOURNAL

DE

PHYSIQUE

F i g . 3

The p r o j e c t i o n ( a ) o f t h e u n i t cube o f i n E and E ' i s a triacontahedron. A 5 - f o l d a x i s , a 3 - f o l d a x i s and 2 - f o l d a x i s are represented. I n ( b ) a f l a t rhombohe- dron and i n ( c ) a t h i c k rhombohedron, which a r e the 2 t i l e s o f t h e icosahedral t i l i n g s .

f a l l i n s i d e an o t h e r rhombohedron, spanned by el ,e ,e

,

i n such a way t h a t ( i , j ,k,l ,m,n) i s a permutation o f (1,2,3,4,5,6), an9 l o e a t e d i n t h e triacontahedron i n one o f e i g h t canonical p o s i t i o n s according t o the v e r t e x considered. Looking f o r the i n t e r s e c t i o n s o f these 160 rhombohedra y i e l d s a c e l l decomposition o f t h e triacontahedron i n which each c e l l corresponds t o a v e r t e x neighbourhood. One thus can see t h a t , up t o the symmetry operations, t h e r e a r e o n l y i n these t i l i n g s 24 p o s s i b l e p a t t e r n s o f rhombohedra around a p o i n t . I n p a r t i c u l a r the c e n t r a l c e l l o f the triacontahedron corresponds t o a 20-pronged s t a r w i t h t h e icosahedral symmetry. We present i n F i g . 4,5 and 6 t h r e e sections o f t h i s t i l i n g , which are associated t o axes o f o r d e r 5, 3 and 2 r e s p e c t i v e l y . The c u t s , which are made along 2-dimensional supfaces taken from 2-facets o f the t i 1 in g , y i e l d q u a s i p e r i o d i c t i 1 in g s o f the plane. A c t u a l l y the f i r s t section, c a r r i e d o u t o r t h o g o n a l l y t o a 5 - f o l d a x i s , p r o j e c t s on a g e n e r a l i s e d Penrose t i l i n g . The two o t h e r s e c t i o n s p r o j e c t on q u a s i p e r i o d i c ti- l i n g s o f t h e plane associated w i t h 3 - f o l d and 2 - f o l d symmetries.

As i n t h e one dimensional case, t h e s t r i p can be t r a n s l a t e d , which y i e l d s an uncoun- t a b l e s e t o f non-isomorphic t i l i n g s .

(8)

v e r t e x , i s q u a s i p e r i o d i c : i t s F o u r i e r t r a n s f o r m i s a sum o f w e i g h t e d D i r a c measures w i t h s u p p o r t i n t h e Z-module generated b y t h e p r o j e c t i o n s o f t h e b a s i s v e c t o r s o f t h e l a t t i c e . Moreover, a l l t i l i n g s have t h e same F o u r i e r t r a n s f o r m , up t o a phase a t each p o i n t , i n such a way t h a t t h e y a r e i d e n t i c a l f r o m a " d i f f r a c t i o n a l " p o i n t o f view.

I n f a c t , t h e c a l c u l u s o f t h e F o u r i e r t r a n s f o r m r u n s e x a c t l y as i n t h e one dimensio- n a l case. Here i s a b r i e f a c c o u n t o f t h e p r o o f : l e t v =

x

s

x

6~ ~ 6 66 be t h e measure a s s o c i a t e d t o S "Z16, where i s t h e c h a r a c t e r i s t i c f u n c t i o n o f t h e s t r i p i n 1R6. Then n = iCE z6 ( < ) 6 n ( Z ) i s t h e measure a s s o c i a t e d t o t h e t i l i n g i n E. I f t ; = ( x , x 1 ) i s t h e o r t h o g o n a l decomposition o f ~ E I R ~ i n E and E l , and i f ~ = ( k , k ' ) i s t h e c o r r e s p o n d i n g decomposition i n t h e dual space, t h e F o u r i e r t r a n s f o r m o f n i s g i v e n b y n * ( k ) =v*(k,O). Now v* = x z

*

C A EZ6 6 A , and s i n c e x S ( x , x l ) = x T R ( x L ) where xTR i s t h e c h a r a c t e r i s t i c f u n c t i o n o f t h e t r i a c o n t a h e d r o n i n E l ,

x z ( k , k ' ) = 6 ( k ) xTR ( k ' ) . F i n a l l y n * ( k ) = iAE ~ 6 6 ( k - 1 ) xTR ( - 1 ' ) where A =(1,11) i s t h e d e c o m p o s i t i o n o f X i n t h e d u a l space.

We g i v e i n F i g . 7;8 and 9, t h e computed F o u r i e r t r a n s f o r m s o f a t i l i n g , i n t h e 3 p l a n e s r e s p e c t i v e l y o r t h o g o n a l t o symmetry axes of o r d e r 5,3 and 2. These p a t t e r n s a r e a s t o n i s h i n g l y s i m i l a r t o t h e e l e c t r o n d i f f r a c t i o n images c b t a i n e d by D. Shechtman, I. Elech, D. G r a t i a s and J.W. Cahn, r e p o r t e d i n [ I 0 1

,

on r a p i d l y c o o l e d a l l o y s o f A1 and Mn.

The g e n e r a l framework p r e s e n t e d h e r e can be g e n e r a l i s e d i n many ways. F o r i n s t a n c e i f t h e c o n d i t i o n which i n s u r e s an e x a c t t i l i n g o f t h e space i s removed, more g e n e r a l q u a s i p e r i o d i c p a t t e r n s a r e o b t a i n e d .

On t h e o t h e r hand, t h e p r o j e c t i o n space and t h e s t r i p may have d i f f e r e n t o r i e n t a - t i o n s : t h e f i r s t one s p e c i f i e s t h e t i l e s w h i l e t h e second one d i c t a t e s t h e i r r e l a t i v e abundance. As i n t h e one dimension model, t h e q u a s i p e r i o d i c t i l i n g t h u s o b t a i n e d can be seen t o i n t e r p o l a t e between p e r i o d i c ones, w h i c h correspond t o r a t i o n a l o r i e n t a t i o n s o f t h e s t r i p .

N o t i c e t h a t t h e q u a s i p e r i o d i c i t y o f t h e t i 1 in g s i s independant o f t h e f a c t t h a t n e i t h e r t h e pentagonal n o r t h e i c o s a h e d r a l symmetries a r e c o m p a t i b l e w i t h p e r i o d i c o r d e r i n g .

I n f a c t t h e s e c t i o n s c o r r e s p o n d i n g t o t h e 2 - f o l d and 3 - f o l d axes, ( g i v e n i n F i g . 5 and 6 ) , show q u a s i p e r i o d i c t i l i n g s o f t h e p l a n e w h i l e these symmetries a r e o f c r y s t a l t y p e .

As a f i n a l remark, l e t us s t r e s s on t h e i d e a t h a t t h e c o n s t r u c t i o n p r e s e n t e d h e r e i n works i n any dimension and w i t h any l a t t i c e . F o r i n s t a n c e , i t i s easy t o see t h a t an o t h e r t y p e o f q u a s i p e r i o d i c t i l i n g o f t h e space w i t h i c o s a h e d r a l symmetry

? n

(9)
(10)
(11)

JOURNAL DE PHYSIQUE

REFERENCES

[I] R. Penrose, Math. I n t e l l i g e n c e r , 2, 32-37 (1979).

[ 2 ] N.G. de B r u i j n , Nederl

.

Akad. Wetensch. Proc. Ser. A43, 39-66 (1981)

[31 A.L. Mackay, Physica (Amsterdam) 114A, 65-613 (1982) and K r i s t a l l o g r a f i y a 26, 910 (1981) [Sov. Phys. C r y s t a l l o g r . 26, 5 ( 1 9 8 1 ) ]

[ 4 1 R. Mosseri and J.F. Sadoc, i n S t r u c t u r e o f n o n - c r y s t a l l i n e m a t e r i a l s 1982, London, T a y l o r and F r a n c i s , ( l 9 8 3 ) 137.

[ 5 1 P. Kramer a ~ d R. N e r i , A c t a C r y s t a l l o g r . Sec. A40, 580-587 (1984).

[61 P. Kramer, On t h e t h e o r y o f a non p e r i o d i c q u a s i l a t t i c e a s s o c i a t e w i t h t h e i c o s a h e d r a l group". P r e p r i n t TUbingen (May 1985).

[ 7 ] M. Gardner, S c i . Am., 236, no 1, 110 (1977).

[ 8 1 D. L e v i n e and P. S t e i n h a r d t , Phys. Rev. L e t . 53, 2477 (1984). [ 9 1 M. Duneau and A. Katz, Phys. Rev. L e t . 54, 2688 (1985).

1101 D. Shechtman, I. Blech, D. G r a t i a s , and J.W. Cahn, Phys. Rev. L e t . 53, 1951, (19841 [ll] R.K.P. Z i a and W.J. D a l l a s , 3 . Phys.

A ,

18, L341 (1985). [12] V. E l s e r , "The d i f r a c t i o n p a t t e r n o f p r o j e c t e d s t r u c t u r e s " , P r e p r i n t AT &

T

B e l l L a b o r a t o r i e s (1985). 1131 V. E l s e r , "An I n t r o d u c t i o n t o q u a s i c r y s t a l d i f f r a c t i o n " . P r e p r i n t AT & T Be1 1 L a b o r a t o r i e s (1985).

[ 1 4 ] C.L. Henley, " C r y s t a l s and q u a s i c r y s t a l s i n t h e a1 u m i n i u m - t r a n s i t i o n metal system". P r e p r i n t AT & T B e l l L a b o r a t o r i e s (1985).

Submitted t o J. Non C r y s t . S o l i d s .

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to