• Aucun résultat trouvé

SPECTRAL DIFFUSION AND RELAXATION OF PHOTOCHEMICAL HOLES ON LOGARITHMIC TIME SCALES

N/A
N/A
Protected

Academic year: 2021

Partager "SPECTRAL DIFFUSION AND RELAXATION OF PHOTOCHEMICAL HOLES ON LOGARITHMIC TIME SCALES"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00225093

https://hal.archives-ouvertes.fr/jpa-00225093

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

SPECTRAL DIFFUSION AND RELAXATION OF

PHOTOCHEMICAL HOLES ON LOGARITHMIC

TIME SCALES

J. Friedrich, D. Haarer

To cite this version:

(2)

Colloque C7, suppl6ment au nOIO, Tome 46, octobre 1985 page C7-357

SPECTRAL DIFFUSION AND RELAXATION OF PHOTOCHEMICAL HOLES ON

LOGARITHMIC T I M E SCALES

3 . F r i e d r i c h and D. Haarer

PkysikaZisches I n s t i t u t der Universitiit Bayreutk, 0-8580 Bayreutk, F.R.G.

Abstract: Photochemical holes b u r n t i n doped organic glasses evolve o n logarithmic time scales. T h e characteristic time dependet features can b e described u s i n g t h e concepts o f spectral d i f f u s i o n . Since t h e model has n o adjustable parameter t h e results p r o v i d e detailed i n s i g h t i n t h e long time relaxation behavior o f t h e glasses.

INTRODUCTION:

Glasses a r e well described as frozen l i q u i d s w i t h a temperature dependent vis- c o s i t y as g i v e n b y t h e Vogel-Fulcher-law

rl

= no

e x p A / k ( T - T o ) ( 1 )

w i t h parameters 'lo, A, a n d T

.

T h e above equation can b e i n t e r p r e t e d w i t h i n t h e frame o f a n Arrhentus-law w i t f i a temperature dependent b a r r i e r

which t h e system has t o overcome f o r thermally activated s t r u c t u r a l relaxation processes. A t T = To t h e b a r r i e r h e i g h t s d i v e r g e formally, i n d i c a t i n g t h a t o n t h e average t h e thermally activated relaxation processes become i n f i n e t e l y slow. T cannot be defined i n a s t r a i g h t f o r w a r d fashion. Within t h e f r e e volume model O? amorphous solids it can be i n t e r p r e t e d as t h e temperature a t which t h e free volume vanishes / I / . Since in an amorphous solid t h e b a r r i e r h e i g h t s can n o t be expected t o b e u n i f o r m b u t are characterized b y a d i s t r i b u t i o n , t h e r e are s t i l l relaxation processes even a t v e r y low temperatures. T h i s demonstrates t h a t a glass does n o t reach e q u i l i b r i u m o n experimental time scales. Hence, some of i t s physical parameters a r e n o t well defined as i n t h e case o f c r y s t a l s , b u t change as a f u n c t i o n o f time. T h i s was demonstrated f i v e years ago f o r t h e specific heat / 2 / , V e r y recently, we succeded in measuring t h e time dependence o f some optical properties, l i k e t h e area a n d t h e w i d t h o f "persistent" spectral holes. The hole b u r n i n g technique has p r o v e n t o b e a p o w e r f u l tool f o r t h e investigation of t h e amorphous state 1 3 1 . T h i s i s d u e t o t h e fact that, a t low temperatures, t h e w i d t h o f a spectral hole may b e several thousand times n a r r o w e r t h a n t h e inhomogeneous width, which reflects t h e average intermolecular interaction. Hence, a p e r s i s t e n t spectral hole i s a n extremely sensitive p r o b e f o r s t r u c t u r a l ( o r so called secon- d a r y ) relaxation processes which can occur o n v e r y long time scales. I n t h i s paper we demonstrate how one can g e t detailed q u a n t i t a t i v e information o n t h e

(3)

C7-35 8 JOURNAL

DE

PHYSIQUE

s t r u c t u r a l r e l a x a t i o n dynamics o f a glass u s i n g s p e c t r a l holes as probes. We i n v e s t i g a t e d q u i n i z a r i n i n alcohol glass, whose p h o t o c h e m i s t r y has been d e s c r i b e d elsewhere 131. F o r comparison we i n v e s t i g a t e d also t h e p h o t o p h y s i c a l h o l e b u r n i n g system t e t r a c e n e i n ethanol 141.

EXPERIMENTAL RESULTS

Fig.1 shows a s u r v e y s p e c t r u m o f t h e syske,m q u i n i z a r i n i n a n EtOHIMeOH ( 3 : l ) alass a t 1.3 K. T h e small d i ~ a t 19440 cm i s t h e ~ h o t o c h e m i c a l hole. w h i c h i s ghown o n a n e x p a n d e d scale 'in t h e i n s e r t . I t s time ;?volution is shown. in Figs.2 a n d 3. We f o u n d t h a t

1 ) i t s area decreases l i n e a r l y o n a l o g a r i t h m i c scale 2) i t s w i d t h increases l i n e a r l y o n a l o g a r i t h m i c scale

3) b o t h r e l a x a t i o n processes o c c u r o r d e r s o f m a g n i t u d e slower i n d e u t e r a t e d glass

4) i t s degreee o f p o l a r i z a t i o n remains c o n s t a n t

Fig.4 shows t h e p h o t o p h y s i c a l hole b u r n i n g system, t e t r a c e n e in ethanol. Again, t h e h o l e area decays l i n e a r l y o n a l o g a r i t h m i c scale a n d i t s p o l a r i z a t i o n i s c o n s t a n t t h r o u g h o u t t h e e x p e r i m e n t a l p e r i o d o f r o u g h l y 1 week.

I . I

2KXX) 20m 19MX)

~ [ c m - ' ]

Fig. 1 : S u r v e y spectrum o f q u i n i z a r i n i n alcohol glass: T h e photochemical h o l e i s shown o n a n e x p a n d e d scale. B u r n i n g time: 2 min. Fig.2: A r e a a n d d e g r e e o f polariza- t i o n o f a photochemical h o l e as a f u n c t i o n o f time. System: q u i n i z a r i n in alcohol glass.

Fig.3: Hole w i d t h as a f u n c t i o n o f time. System: q u i n i z a r i n in alcohol glass.

(4)

TLS-model o f t h e amorphous state 151:

1) T h e relaxation o f t h e hole area: From low temperature specific heat e x p e r i - ments it is well k n o w n t h a t t h e energies o f t w o level t u n n e l i n g states ( T L S ) a r e u n i f o r m l y d i s t r i b u t e d . Consistent w i t h a u n i f o r m d i s t r i b u t i o n in e n e r g y i s a u n i f o r m d i s t r i b u t i o n in b o t h parameters, which characterize a TLS, namely t h e e n e r g y asymmetry A a n d t h e t u n n e l parameterX

.

A consequence o f a u n i f o r m d i s t r i b u t i o n o f A a n d X i s a v e r y asymmetric d i s t r i b u t i o n o f t u n n e l i n g relaxation r a t e s R, r o u g h l y g i v e n by

Equ.3 is t h e s t a r t i n g p o i n t o f o u r theoretical model 161. Since t h e above d i s t r i - b u t i o n has t o b e normalized, t h e r e e x i s t t w o c u t - o f f values Rmin a n d Rmax, r e p r e s e n t i n g t h e slowest a n d t h e fastest t u n n e l i n g processes o f t h e system cons!- dered. Once Rm.,, a n d R a r e k n o w n t h e complete dynamics o f t h e TLS-system u n d e r considerafton is kn!%%. F o r t h e f i r s t time, we c o u l d estimate these parame- t e r s from hole b u r n i n g experiments. O u r arguments a r e t h e following: I n b o t h cases, q u i n i z a r i n a n d tetracene, t h e p h o t o p r o d u c t i s t r a p p e d i n some t u n n e l i n g state which is subject t o a d i s t r i b u t i o n o f relaxation rates a c c o r d i n g t o (3) r e - f l e c t i n g t h e local d i s o r d e r . A t time t one observes mainly those c e n t e r s r e l a x which a r e g o v e r n e d b y rates on t h e o r d e r R = l l t . Hence, t h e hole area is g i v e n b y i n t e g r a t i n g t h e above r a t e d i s t r i b u t i o n f r o m Rmin t o R = l l t . T h i s i n t e g r a l y i e l d s t h e number o f t u n n e l i n g c e n t e r s being, a t t ~ m e t, i n t h e p h o t o p r o d u c t state, and, t h u s , is p r o p o r t i o n a l t o t h e hole area. One d e r i v e s f o r t h e hole area A ( t ) a logarithmic decay law:

A 1 r e l a t i o n i s g i v e n b y t h e logarithm o f t h e t o rates R1 lR,i, normalizes t h e decay f u n c t i o n a t t h e time tl. T h e slope o f t h e above linear R l = l / t l i s an experimental parameter on t h e o r d e r o f l l m i n . Hence, R

.

, can b e d i r e c t l y determined f r o m t h e measured slope. T h e d i s p e r s i o n o f r a t e s m # I l ~ m i n is huge. We g e t f o r q u i n i z a r i n i n t h e protonated a n d i n t h e d e u t e r a t e d glass, respectively, t h e values

8

[R1IRminIH = 1 0 , [R~IR,~,]~ =

For tetracene i n ethanol we found: Rl lRmin = 10".

2 ) T h e time e v o l u t i o n o f t h e 1inewidth:The time e v o l u t i o n o f t h e l i n e w i d t h occurs o n t h e same time scale as t h e decay o f t h e hole area. T o e x p l a i n t h e observed features we employ t h e concept o f s p e c t r a l d i f f u s i o n . We consider a molecule, l e f t i n t h e e d u c t state, which has, a t a time tl, a s h a r p t r a n s i t i o n f r e q u e n c y . As time evolves, t h e molecules r e l a x i n g f r o m t h e p r o d u c t t o t h e e d u c t s t a t e c r e a t e s t r a i n fields w h i c h lead t o a d i f f u s i o n o f e x c i t a t i o n energies o f t h e p r o b e molecules i n f r e q u e n c y space. As shown b y several a u t h o r s /7,8/, t h e lineshape o f t h e diffu- s i n g molecules is, u n d e r c e r t a i n conditions, Lorentzian. I t s w i d t h is p r o p o r t i o n a l t o t h e number n ( t - t l ) o f molecules h a v i n g 'flipped' w i t h i n t h e time i n t e r v a l t-tl:

(5)

C7-360 JOURNAL DE PHYSIQUE

The measured w i d t h y i s t h e sum o f a diffusional w i d t h a n d a time independent w i d t h y, which may b e t h e homogeneous width. If one suceeds in measuring separately t h e d i f f u s i o n a l w i d t h Y = Y;Yo, t h e n it i s easy t o show 191 t h a t a reduced p l o t yD(t)/yD(tl) y i e l d s a l o g a r ~ t h m i c law w i t h a slope factor determined solely b y Rmax, t h e maximum r a t e constant:

R can b e determined experimentally from t h e measured slope. I n o u r experi- mPd& 191 we estimated yo from t h e deuteration effect. A s seen in Fig.3, t h e extrapolated lines o f t h e protonated a n d deuterated sample show a cross o v e r a t a time ro o f 12 s. Clearly-r marks t h e onset o f spectral d i f f u s i o n a n d t h u s

y(

r

1

=yo

.

Equ.7 allows @ot g i v e a'n estimate o f t h e maxiqum r a t e constant. For quiRizarrn i n t h e EtOHIMeOH glass we g e t Rm = 0.025 s

.

We stress t h a t Rmax does n o t show a n y s i g n i f i c a n t dependence on deuteration.

THE DEUTERATION EFFECT

I n case o f t h e q u i n i z a r i n system it i s well known t h a t t h e hole b u r n i n g photoche- m i s t r y i s d u e t o a p r o t o n t r a n s f e r reaction, hence, a change in t h e relaxation rates o f t h e deuterated system is t o b e expected. Deuteration changes t h e tunne- l i n g m a t r i x element A which depends i n an exponential fashion on t h e mass m o f t h e t u n n e l i n g particle0

i s determined b y t h e b a r r i e r h e i g h t Vo a n d t h e t u n n e l i n g distance d 2 112

At = ( V d 2 / % ) (91

It i s clear &at, if A' i s large, a n d hence t h e r a t e constant small, deuteration may b r i n g about a change o f many o r d e r s o f magnitude. On t h e o t h e r hand, if A ' is small, t h e deuteration e f f e c t w i l l b e small a n d will b e h a r d l y noticeable in t h e logarithmic slope factor. Since t h e slope factors f o r both, t h e decay o f t h e n o r - malized hole area (Equ.4) a n d t h e absolute w i d t h (Equ.6) a r e g o v e r n e d b y R t h e slowest r a t e o f t h e total system, a l a r g e deuteration e f f e c t is expected.

Y~I?;

i s indeed observed 161. R

.

changes b y more t h a n 10 o r d e r s o f magnitude. A most i n t e r e s t i n g observatio%'?s t h e f a c t t h a t t h e isotope effect i n t h e linewidth data (Fig.3) vanish, if t h e y a r e scaled according t o Equ.7. Fig.5 shows t h a t all t h e data points o f Fig.3 l i e o n t h e same u n i f o r m plot:

Or6nizarin m EtOH

/

MeOH 3 : 1 T = 4,BK T=1,35K o Ouinizarin in c~D,DD/ CD,OD 3 : 1

T=4.21K* T=1,35Ko

.

..

(6)

e f f e c t as discussed above, w h i c h is o f negSgible i n f l u e n c e o n t h e logarithmic slope factor. From t h e measured isotope e f f e c t we can estimate t h e maximum b a r r i e r heights. Assuming t u n n e l i n g distances o n t h e o r d e r o f a few Angstroms, one calculates maximum b a r r i e r h e i g h t s on t h e o r d e r o f several thousand wave num- bers, i.e. much h i g h e r t h a n t h e thermal e n e r g y a t t h e glass t r a n s i t i o n tempera- t u r e k T g ' S u c h b a r r i e r h e i g h t s are, however, q u i t e c o n s t i s t e n t w i t h t h e Vogel- Fulcher-law (Equ.1). i n d i c a t i n g t h a t b a r r i e r formation is most l i k e l y a collective phenomenon.

POLARIZATION DIFFUSION

From t h e c o n s t a n t degree o f polarization we conclude t h a t o n t h e time scale o f t h e experiment, t h e r e is n o r e o r i e n t a t i o n o f d y e molecules l e f t in t h e g r o u n d state. T h i s r u l e s o u t t h e p o s s i b i l i t y t h a t t h e d y e molecules themselves a r e an a c t i v e p a r t o f t h e TLS-system o f t h e glass 141.

ACKNOWLEDGEMENT:

T h e a u t h o r s acknowledge a g r a n t f r o m t h e S t i f t u n g Volkswagenwerk. References :

111 G.S. C r e s t , M.H. Cohen, Advances Chern.Phys. X L V I I I , ed. b y J. Prigogine a n d S.A. Rice, J. Wiley, 1981.

121 M.T. Loeonen, R.C. Dynes, V. Naravanamurti, J.P. Garno Phys.Rev. Lett. , - 45, 457 i i 9 8 0 ) .

131 F r i e d r i c h , D. Haarer, Ang.Chem.Int.Ed.Eng1. 23, 113 (1984) 141 W. Kohler, W. B r e i n l , J. F r i e d r i c h , J.Chem.Phys.82, 2935 (1985) 151 P.W. Anderson, B.J. Halperin, C.M. Varma, PhilosTMag. 25, 1 (1972) 161 W. B r e i n l , J. F r i e d r i c h , D. Haarer, Chem. Phys.Lett. 1 0 6 ~ ~ 4 8 7 (1984) 171 J.R. Klauder, P.W. Anderson, Phys.Rev. 125, 912 (1962)

I 8 1 T.L. Reinicke, Solid State Commun. 32, 1103(1979)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to