• Aucun résultat trouvé

CALCULATION OF THE PARTIAL STRUCTURE FACTORS IN BINARY LIQUID ALLOYS BY A THERMODYNAMICAL APPROACH

N/A
N/A
Protected

Academic year: 2021

Partager "CALCULATION OF THE PARTIAL STRUCTURE FACTORS IN BINARY LIQUID ALLOYS BY A THERMODYNAMICAL APPROACH"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220247

https://hal.archives-ouvertes.fr/jpa-00220247

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

CALCULATION OF THE PARTIAL STRUCTURE

FACTORS IN BINARY LIQUID ALLOYS BY A

THERMODYNAMICAL APPROACH

M. Favre-Bonte, J. Joud, P. Hicter, P. Desre

To cite this version:

(2)

JOURNAL DE PHYSIQW CoZZoque C8, suppZe'ment au n08, Tome 41, aoct 1980, page C8-586

CALCULATION OF THE PARTIAL STRUCTURE FACTORS I N BINARY L I Q U I D ALLOYS BY A THERMODYNAMICAL APPROACH

M. Favre-Bonte, J . C . Joud, P. H i c t e r and P . Desre

~ a b o r a t o i r e de Thermodynamique e t Physico-Chimie Me'taZZurgiques, associe' au C.N.R.S., ENSEEG, Domaine U n i v e r s i t a i r e , B.P. 44, 38401 S a i n t Martin dlHe'res, France.

INTRODUCTION : t i c a l diameters ( " s u b s t i t u t i o n a l hypothesis"), The s t r u c t u r e of t h e b i n a r y l i q u i d a l l o y s hence p=pl. From (1) and (2) equations, we o b t a i n can be h a r d l y determined experimentally. A complete t h e simple r e l a t i o n s :

i n f o r m a t i o n o f t h i s s t r u c t u r e can be reached o n l y ai j ( k ) = a M ( k ) + 4 n p r (gi (r)-gM(r))-, r2 d r (3)

0

f o r p a r t i c u l a r cases. Therefore, i t i s i n t e r e s t i n g We i n t r o d u c e : g. . ( r ) = a . .(xA,r) gM(r), where 1 J 1 J

t o determine t h e o r e t i c a l l y t h e p a r t i a l s t r u c t u r e aij(xAYr) i s a f u n c t i o n d e s c r i b i n g b o t h s i z e e f f e c t s f a c t o r s (PSF). I n general, t h e PSF obtained by t h e and chemical e f f e c t s and xA i s t h e atomic c o n c e n t r a Percus-Yerick hard sphere model are n o t s a t i s f a c t * t i o n of t h e species A. These d i f f e r e n t f u n c t i o n s r y because chemical e f f e c t s a r e n o t taken i n t o ac- a r e n o t independent and t h e f o l l o w i n g r e l a t i o n can count. We have a l r e a d y proposed a simple method be e a s i l y determined :

t o determine d i r e c t l y t h e PSF from thermodynamic (aAA(xA9r)-1) =

-

T ( ~ A M ( ~ A Y r ) - 1 ) = * ( % ( ~ A y ~ ) - 1 X 4 ) X~ A x ~ 2

p r o p e r t i e s o f t h e m i x t u r e . T h i s method c o n s i s t s i n where xM i s t h e atomic c o n c e n t r a t i o n o f t h e s o l v e n t c o r r e c t i n g t h e s t r u c t u r e f a c t o r of a s o l v e n t m a t r i x M. If t h e l i q u i d a l l o y i s disordered, aij(xA,r)=l as modified by chemical i n t e r a c t i o n s . We have used and a l l t h r e e PSF are i d e n t i c a l . For an a l l o y w i t h a s t a t i s t i c a l quasichemical treatment based on t h e s t r o n g chemical i n t e r a c t i o n s , t h e parameters aij

"surrounded atom" e n t i t y i n o r d e r t o i n t r o d u c e are d i f f e r e n t from one and can be considered as a chemical e f f e c t s . F i r s t l y , we r e c a l l t h i s formalism measure o f t h e l o c a l chemical o r d e r e f f e c t s . To a and r e p o r t the PSF evaluated f o r t h e Aq-Li and f i r s t approximation, t h e chemical e f f e c t s are res- Pb-Li systems. t r i c t e d t o f i r s t neighbours (a. . ( x A , r ) = l f o r r>a),a

1 J

i s the d i s t a n c e between f i r s t neighbours defined by 1

-

QUASICHEMICAL APPROACH.

-

4ap g M ( r ) r dr=z

1:

2 ; z i s t h e number o f nearest neigh-

The s t r u c t u r e f a c t o r o f t h e pure l i q u i d M bours of an atom, taken equal t o 10 i n t h i s case. and t h e FABER-ZIMAN PSF o f a AM l i q u i d a l l o y w i t h Moreover any v a r i a t i o n o f a .

.

(xA,r) w i t h d i s t a n c e

1 J

A d i l u t e species are given by : r i s neglected f a r O<r<a, consequently m s i n k r 2

aM(k) = 1 + 4 7 ~ 1 (9M(r)-1),T r d r (1) ai j ( ~ A , r ) = a (xA). The parameter aAA(xA) can be

0 i j

6

s i n k r 2

a. .(k) = 1+4ap1 , ( g i j ( r ) - l ) T , r d r (i y j = A , ~ ) ( 2 )

evaluated from a s t a t i s t i c a l thermodynamic t r e a t - 1 J

where p and p ' a r e t h e average atomic d e n s i t i e s ment using t h e "surrounded atom" model. Such a treat- o f t h e l i q u i d M and t h e A-M a l l o y r e s p e c t i v e l y ; ment a l l o w s t o c a l c u l a t e t h e d e v i a t i o n AxA o f t h e g ( r ) i s t h e p a i r d i s t r i b u t i o n f u n c t i o n o f M and l o c a l composition from t h e mean value xA :

M ~ ( 1 - x A )

-

p

g . . ( r ) a r e t h e p a r t i a l p a i r d i s t r i b u t i o n f u n c t i o n s AXA

-

z

,

where

7

i s t h e average nun-

1 3

i n t h e A-M a l l o y . We assume t h a t A and M have iden- a A.

(3)

aAA(xA) can be e a s i l y expressed as a f u n c t i o n of 2

AxA. I n f a c t , t h e i n t e g r a l 4npxAIa g A A ( r ) r d r equals

0

t h e number nA o f atom A surrounding an atom A.

-

Since gAA(r)'aAA(xA)gM(r) S nA=xAzaAA(xA) = z - ~ .

F i n a l l y we o b t a i n t h e r e l a t i o n :

The FABER-ZIMAN PSF f o l l o w from ( 3 ) ( 4 ) and ( 5 ) and a r e given, i n f i r s t order, by : s i n k r 2 aAA(k) = aM(k) t M dr (6) axA a s i n k r ,2 dr aAM(k) = ay(k)

-

4 ~ -

I

gM(r) kr X~ 0 ( 7 ) s i n k r 2 aMM(k) = aMfk) + 4 n ~ x A gFl(r) dr ('1

F o r t h e systems AgLi and Pb-Li, RUPPERSBERG e t a 1 ( 2 ) ( 3 ) have determined t h e PSF from X-Ray and neutron d i f f r a c t i o n ; u s i n g (6), (7) and ( 8 ) we have c a l c u l a t e d t h e PSF f o r Ag-Li a t xAg=0.285 and f o r - Pb-Li a t xpb=0.38. I n p a r t i c u l a r t h e f i r s t peak o f a l l t h r e e measured PSF was found t o be a t t h e same p o s i t i o n . This p a r t l y j u s t i f i e s t h e s u b s t i t u - t i o n a l hypothesis f o r these a l l o y s . The values of chemical l o c a l order parameter r e s u l t i n g from t h i s treatment a r e AxAg= -0.0373 f o r Ag0.285-Li0.715

(4)

(using measurements by BECKER )and Axpb= -0.1155 f o r Pb0.38-LiD.62 (evaluated from thermodynamic values o f DEMIDOV e t a ~ ( ~ ) ) . The s t r u c t u r e f a c t o r o f t h e L i m a t r i x has been measured a t 593K by RUPPERSBERG and E G G E R ( ~ ) . I n f i g u r e 1 and 2 we can- pare c a l c u l a t e d and experimental values o f a . . (k)

.

1 J

The prepeaks o f t h e experimental PSF aAgVAg(k) and apbapb(k) demonstrate s u b s t a n t i a l contacts of Ag and L i , o r Pb and L i , r e s p e c t i v e l y due t o s t r o n g heteroatomic ordering. They a r e s t r o n g e r than those c a l c u l a t e d , hence t h i s chemical o r d e r e f f e c t i s o n l y p a r t i a l l y found i n t h e c a l c u l a t e d PSF. On t h e o t h e r hand t h e v a l u e s o f a. .(o) deduced t o

1 J

(6) (7) and (8) are i n r e l a t i v e l y good agreement

0 2 4 6 K ~ I

F i g . 1 : L i q u i d AgoSzB5-Li

-

0.715 a t 593K.

--

(a)

a Ag.Ags ( b ) aLi-~i ( c ) a A g - ~ i

.-

(a) a A g . ~ g +

1.06sNC, (b) aLi-Li-8.81SNC, (c) aAg.Li-3.81SNC.

Fig. 2 : L i q u i d PbD.38-Li0.62

---

aij(k) a t 593K,

-

-

a. . ( k ) a t 773K : ( a ' ) a p b - p b ~ ( b ' ) aLi-Li

,

1 J

(''1 apb-Li'

w i t h those evaluated from thermodynamic data as shown i n f i g u r e 1 and 2. T h i s agreement i s expec-

(4)

C8-588 JOURNAL DE PHYSIQUE

should not be understood as the real deviation i n the s h e l l i . We obtain s i m i l a r r e l a t i o n s f o r aA&k) concentration from t h e s t a t i s t i c a l mean value j u s t

a t the nearest neighbour distance. I t represents, instead, the deviation i n concentration of the "mean 'field" type as averaged over longer distances. Obviously AxA, as defined t h i s way, cannot r e s u l t i n the correct experimental prepeak i n t e n s i t y , since t h e prepeak r e f l e c t s a superstructure due t o an alternation of layers enriched in atoms A and M respective1 y. Hence, t h i s superstructure e f f e c t should be explained by extending chemical order e f f e c t s . Therefore the quasichemi cal model wi 11 not be used f u r t h e r .

2

-

CHEMICAL ORDER DAMPING EFFECT.-

In order t o include chemical order e f f e c t s beyond the f i r s t neighbours we subdivide the space surrounding a central atom A by spherical s h e l l s and a d j u s t t h e i r thickness t o t h e minima of t h e p a i r d i s t r i b u t i o n function of t h e matrix M , outside

the t h i r d neighbours we choose, a s period, t h e thickness of t h e t h i r d layer. In t h i s way, we defi- ne, f o r each s h e l l i (i=1,2,

...

n ) , the deviation of the mean concentration xA of the species A by :

AX ( i ) = x (jl-xA. Since the radial decay function A A

of the chemical order parameter is not known we choose, ,?or the sake of mathematical simplicity, a l i n e a r law : AxA('*')= - a o i s the so cal- led chemical order damping c o e f f i c i e n t (CODC) which i s positive. The negative sign r e f l e c t s a pe- r i o d i c arrangement of the species A and M , on the

and aMM(k). For k=O, r e l a t i o n (12) becomes very simple :

where zi i s the number of atoms in the s h e l l i . Without the knowledge of o and bxA(ll in the f i r s t s h e l l , we cannot d i r e c t l y use r e l a t i o n (12). In or- der t o estimate t h e CODC and b ~ ~ ( ~ ) we use ( i n eqla- tions (12) and (13)) the experimental value of the prepeak amplitude aAA(k) and the thermodynamic l i - mit aAA(0). This treatment was applied t o the l i - quids Ag0.285-Li0. 715 and Pbo.38-Li0.62. On t a b l e I a r e reported t h e values of a and bxA(') f o r various

n

values from 4 t o 9. We l i m i t t h e analysis of 9 layers which approximately correspond t o a distance

0

of 25 A from the central atom. Further the micro- structure reflected by the o s c i l l a t i o n s of

2

r ( g .

.

( r ) - 1 ) p r a c t i c a l l y disappears(6). Moreover

1 J

since aAA(0) represents the thermodynamic l i m i t , an calculation

m u s t

include a s u f f i c i e n t l y high number of s h e l l s and consequently, r e s u l t s are given f o r

n

values greater than 4 (corresponding t o about 10

W)

only.

. .

average. The extension of t h e previous formulation a1 joys Li0.715 and Pb0.38 Li0.62 n 4 5 6 7 8 9

of the PSF f o r

n

s h e l l s can be d i r e c t l y written : Note t h a t t h e CODC and bxA(l) a r e almost independent AxA( 1)

aAA(k)=aM(k)t4a of t h e number n of s h e l l s . This r e s u l t s in the rela-

.

P x A

t i v e l y small value of a'which rapidly damps the c h e n

x t

[J+'

s i n kr 2

i =l g r dr mica1 order and implies t h a t the contribution of the

Table I : Values of CODC and b x A ( l l f o r the l i q u i d

where ai and ai,r a r e the inner and

outer

r a d i i ,

of

i n t e g r a l s from t h e f i f t h shell Can be neglected. I t

Ag0.285 Li0,.715

(5)

t h e absolute values o f

~ x ~ ( ' ) = - 0 . 1 4 4 , ~ b ~ . ~ ~ - ~ i 0.62 bxA(ll= -0.22) a r e much g r e a t e r than those deduced from t h e quasi-

p l i e s f o r aAM(k) and aMM(k) which i n c o n t r a s t t o aAA(k) have n o t been adjusted.

chemical model

.

BLETRY' s geometrical hard sphere model ( 7 ) , when appl l e d t o Ag0.285-Li0.115 leads t o a A x A ( l ) of =

-

0.17 which i s c l o s e t o t h e one we estimated above. This agreement supports our model, i n p a r t i c u l a r t h e estimated a which show t h a t about 80 % o f t h e chemical o r d e r i s l o c a l i z e d t o t h e f i r s t she1 1. The chemical o r d e r can be neglec- t e d a t i n t e r a t o m i c d i s t a n c e s g r e a t e r than 4. From

AX^(')

and CODC, we have c a l c u l a t e d t h e PSF. a. . ( k ) 1 J are p l o t t e d i n f i g u r e 3 and 4.

7 -

-

-

I

Fig. 4 : L i q u i d Pb0.38-Li0.62 ( a ' ) a p b - p b ~ ( b ' )

-

aLi-Lj

'

(''1 a p b - ~ i CONCLUSIONS : F o r a d i l u t e s u b s t i t u t i o n a l a l l o y w i t h s t r o n g heteroatomic i n t e r a c t i o n s , t h e knowled- 0 2 4 6 Ki-I

Fig. 3 : L i q u i d Ag0,285-Li0.715 (a) aAgaAg, (b)

-

a ~ i - ~ i ' ('1 aAg-Li

The t h r e e c a l c u l a t e d PSF a r e s 1 i g h t j y o u t o f phase w i t h the experimental values. T h i s displacement i s probably due t o t h e departure from t h e p e r f e c t s&s- t i t u t i o n a l behaviour o f these a1 l o y s . I n f a c t from t h e d i f f r a c t i o n measurements, RUPPERSBERG e t a1 have found t h a t t h e d i s t a n c e between u n l i k e n e a r e s t neighbours i s s m a l l e r t h a n t h e mean corresponding distances o f t h e pure components. The shape o f a l l t h e PSF i s f a i r l y w e l l represented. T h i s even ape

ge o f thermodynamic p r o p e r t i e s o f t h e m i x t u r e as w e l l as t h e s t r u c t u r e f a c t o r of t h e m a t r i x a l l o w s t o c a l c u l a t e t h e PSF u s i n g a thermodynamical appro- ach. We have shown t h a t an extension of chemical o r d e r beyond f i r s t neighbours p e r m i t s t o expl sin e s s e n t i a l experimental featuresof t h e PSF. The pro- posed approach i s s e l f -consi s t e n t concerning expe- r i m e n t a l PSF

,

thermodynamic ropert ti es and a geome- t r i c a l model

.

REFERENCES :

(11 \ - I P. LATY. J.C. JOUD, J.C. MTHIEU, P. DESRE.

-.

~ h i l ' .. ..

Mag. B,-38, 1 (1978).

(2) H.

REITEK

H.

RUPPERSBERGj; kl. SPEICHER, 3 r d I n t . Conf. on L i a u i d iuletals, 1313 l B r i s t o l 1976). (4) W. BE;KER,'T~~S~ s U n i v e r s l t l t d e r Saarl ander

-

SaarbrLicken.

(5) A. I. DEMIDOV

,

A.G. MORACHEVSKII

,

L.N. GERASRENKO S o v i e t Electrochim., 9, 813'

f

1974).

(6) M.C. BELLISSENT-FUNEL: P. DESRE, Phi 1

.,

Mag., 36, 1063 (1977).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to