• Aucun résultat trouvé

INNER-SHELL PROCESSES AS PROBES OF MULTICHARGED ION NEUTRALIZATION AT SURFACES

N/A
N/A
Protected

Academic year: 2021

Partager "INNER-SHELL PROCESSES AS PROBES OF MULTICHARGED ION NEUTRALIZATION AT SURFACES"

Copied!
14
0
0

Texte intégral

(1)

HAL Id: jpa-00229325

https://hal.archives-ouvertes.fr/jpa-00229325

Submitted on 1 Jan 1989

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

INNER-SHELL PROCESSES AS PROBES OF

MULTICHARGED ION NEUTRALIZATION AT

SURFACES

F. Meyer, C. Havener, S. Overbury, K. Reed, K. Snowdon, D. Zehner

To cite this version:

(2)

JOURNAL DE PHYSIQUE

Colloque C1, suppl6ment au nOl; Tome 50, janvier 1989

INNER-SHELL PROCESSES AS PROBES OF MULTICHARGED ION NEUTRALIZATION AT SURFACES

F.W. MEYER, C.C. HAVENER, S.H. OVERBURY, K.J. REED(^), K.J. SNOW DON(^) and D.M. ZEHNER

Oak Ridge National laboratory, Oak Ridge, TN 37831-6372, U.S.A.

A b s t r a c t

-

We have measured energy d i s t r i b u t i o n s f o r e l e c t r o n s e m i t t e d d u r i n g grazing c o l l i s i o n s o f m u l t i c h a r g e d i o n s w i t h Au and Cu s i n g l e c r y s t a l s i n t h e p r o j e c t i l e energy range 20-90 keV. The measured e l e c t r o n spectra a r e c h a r a c t e r i z e d by d i s c r e t e peaks r e s u l t i n g from Auger t r a n s i t i o n s , superimposed on a broad continuum e l e c t r o n d i s t r i b u - t i o n . Auger e l e c t r o n emission from b o t h p r o j e c t i l e and t a r g e t atoms has been observed. The p r o j e c t i l e Auger e l e c t r o n s r e s u l t from t h e decay o f inner-she1 1 vacancies e i t h e r c a r r i e d i n t o t h e c o l l i s i o n o r produced b y vacancy t r a n s f e r from empty o u t e r p r o j e c t i l e l e v e l s v i a pseudocrossings o r r o t a t i o n a l c o u p l i n g o f molecular o r b i t a l s . The l a t t e r mechanism may a l s o l e a d t o t h e c r e a t i o n o f t a r g e t i n n e r - s h e l l vacancies which g i v e r i s e t o Auger e l e c t r o n emission c h a r a c t e r i s t i c o f t h e t a r g e t . An a n a l y s i s o f these Auger e l e c t r o n f e a t u r e s i s presented which i s aimed, on t h e one hand, a t e l u c i d a t i n g d e t a i l e d p r o d u c t i o n mechanisms, and, on t h e other, a t o b t a i n i n g i n f o r m a t i o n on the time s c a l e s d e s c r i b i n g t h e n e u t r a l i z a t i o n o f m u l t i c h a r g e d i o n s d u r i n g t h e i r i n t e r a c t i o n w i t h metal surfaces.

1

-

INTRODUCTION

The study o f m u l t i c h a r g e d ion-surface i n t e r a c t i o n s has received s i g n i f i c a n t a t t e n t i o n i n recent years. One reason f o r t h e increased i n t e r e s t i s t h e l a r g e n e u t r a l i z a t i o n p o t e n t i a l energy t h a t t h e mu1 t i c h a r g e d p r o j e c t i l e s c a r r y i n t o t h e c o l l is i o n . The d e t a i l e d mechanisms by which t h e d i s s i p a t i o n o f t h i s p o t e n t i a l energy a f f e c t s i o n n e u t r a l i z a t i o n , s p u t t e r i n g , or p a r t i c l e r e f l e c t i o n a r e s t i l l incompletely understood, making t h i s a f e r t i l e area o f experi- mental as w e l l as t h e o r e t i c a l i n v e s t i g a t i o n .

One way o f i n v e s t i g a t i n g t h e n e u t r a l i z a t i o n o f m u l t i c h a r g e d i o n s d u r i n g i n t e r a c t i o n s w i t h surfaces i s through t h e measurement o f e l e c t r o n s e m i t t e d d u r i n g t h e i n t e r a c t i o n . Multicharged i o n n e u t r a l i z a t i o n and e l e c t r o n emission a r e i n f a c t c l o s e l y r e l a t e d , as evidenced by the l a r g e f r a c t i o n o f t h e p o s s i b l e n e u t r a l i z a t i o n processes (see Refs. 1 and 2 f o r reviews) t h a t a l s o r e s u l t i n e l e c t r o n emission. I n o r d e r f o r complete n e u t r a l i z a t i o n (i.e., complete d i s s i p a t i o n o f t h e mu1 t i c h a r g e d i o n ' s i n i t i a l p o t e n t i a l energy) t o occur, long i n t e r a c t i o n times w i t h t h e s u r f a c e a r e required, which can be a t t a i n e d by t h e use o f very low p r o j e c t i l e k i n e t i c energies. T h i s approach has been used by de Zwart 131, Varga e t a l . /4,5/, and by Delaunay e t a l . 16-91, who have i n v e s t i g a t e d ' p o t e n t i a l " e l e c t r o n emission f o r i o n s i n c i d e n t on metal surfaces a t normal o r c l o s e t o normal angles w i t h energies as low as 6 eV. A t ORNL, measurements 110-131 o f e l e c t r o n emission have been performed f o r higher-energy multicharged

i o n s ( t y p i c a l l y lOxq keV) i n c i d e n t on metal surfaces a t g r a z i n g angles ( t y p i c a l l y 5'). By

(l)~awrence Livermore National Laboratory. Livermore. CA 94550, U.S.A.

("permanent Address : Department of Physics; University of OsnabrUck, D-4500 OsnabrUck. F.R.G.

(3)

Cl-264 JOURNAL

DE

PHYSIQUE

t h e use o f such small angles o f incidence, s i m i l a r long i n t e r a c t i o n times w i t h t h e surface can be a t t a i n e d . By v a r y i n g t h e angle o f incidence, and thereby t h e p e r p e n d i c u l a r component o f p r o j e c t i l e v e l o c i t y , t h e i n t e r a c t i o n times can be v a r i e d over a l a r g e range. Furthermore, by v a r y i n g b o t h t h e p r o j e c t i l e energy. and angle o f incidence, t h e p e n e t r a t i o n depth o f the i o n s can be varied; s p e c i f i c a l l y , t h e regime o f specular r e f l e c t i o n can be approached, i n which e s s e n t i a l l y no p e n e t r a t i o n o f t h e surface occurs. I n t h i s regime, e l e c t r o n emission above t h e s u r f a c e can be s t u d i e d i n i s o l a t i o n , i.e., w i t h o u t t h e complications a r i s i n g from e l e c t r o n emission below t h e t a r g e t surface. A t t h e h i g h e r p r o j e c t i l e energies used i n the g r a z i n g incidence measurements, i n n e r - s h e l l b i n a r y - c o l l i s i o n processes become p o s s i b l e during t h e ion-surface i n t e r a c t i o n , which can be used as probes o f t h e n e u t r a l i z a t i o n process. At t h e same time, however, i n t e r p r e t a t i o n o f t h e measured e l e c t r o n energy d i s t r i b u t i o n s becomes more d i f f i c u l t , s i n c e a t these energies I 1 k i n e t i c l 1 e l e c t r o n emission processes 1141 may make s i g n i f i c a n t c o n t r i b u t i o n s t o t h e t o t a l e l e c t r o n y i e l d . The c o n t r i b u t i o n o f " k i n e t i c u emission i s c o n f i n e d t o t h e p r o d u c t i o n o f low energy continuum e l e c t r o n s (energies <50 eV). Consequently, t h e d i s c u s s i o n below w i l l be r e s t r i c t e d t o t h e d i s c r e t e f e a t u r e s i n the measured e l e c t r o n energy d i s t r i b u t i o n s observed a t h i g h e r e l e c t r o n energies, where " k i n e t i c N

emission e f f e c t s a r e expected t o be n e g l i g i b l e . S p e c i f i c a l l y , a q u a l i t a t i v e d i s c u s s i o n o f t h e observed t a r g e t and p r o j e c t i l e Auger f e a t u r e s w i l l be presented, based on molecular o r b i - t a l (MO) energy l e v e l c a l c u l a t i o n s . I n a d d i t i o n , a comparative a n a l y s i s o f p r o j e c t i l e K-Auger f e a t u r e s w i l l be presented t o i l l u s t r a t e , again i n a q u a l i t a t i v e way, t h e use o f inner-she1 1 processes as probes o f t h e time scales over which n e u t r a l i z a t i o n o f mu1 t i c h a r g e d i o n s near surfaces occur. The d i s c u s s i o n w i l l i n p a r t be based on e l e c t r o n energy d i s t r i b u - t i o n measurements o b t a i n e d u s i n g an improved experimental apparatus, a b r i e f d e s c r i p t i o n o f which i s a l s o p r o v i d e d below.

2

-

:TARGET AND PROJECTILE INNER-SHELL EXCITATION

F i g u r e 1 shows e l e c t r o n energy d i s t r i b u t i o n s measured f o r 60 keV N* i o n s i n c i d e n t on Au and Cu s i n g l e c r y s t a l s a t 5O u s i n g a l a r g e acceptance-angle c y l i n d r i c a l m i r r o r analyzer (CMA). D e t a l l s o f t h e experimental apparatus have been p r e v i o u s l y described 111,131. The Au t a r g e t e l e c t r o n s p e c t r a f o r H - l i k e and H e - l i k e i n c i d e n t i o n s a r e c h a r a c t e r i z e d by a broad f e a t u r e around 350 eV. As has been p r e v i o u s l y discussed 111-131, t h i s f e a t u r e i s due t o p r o j e c t i l e KLL t r a n s i t i o n s which f i l l t h e K - s h e l l vacancies c a r r i e d i n t o t h e c o l l i s i o n by each i n c i d e n t i o n ( i n t h e case o f t h e H - l i k e ions), o r by those i o n s i n t h e metastable 2s2 3S s t a t e ( i n the case o f t h e H e - l i k e ions). Note t h e absence o f t h i s KLL f e a t u r e f o r t h e L i - l i k e i n c i d e n t p r o j e c t i l e s . T u r n i n g now t o t h e Cu t a r g e t e l e c t r o n energy spectra, i t i s seen t h a t even f o r t h e L i - 1 i k e i n c i d e n t p r o j e c t i l e s , which have f i l l e d K-shells, t h e p r o j e c t i l e KLL f e a t u r e i s present. T h i s o b s e r v a t i o n i s i n t e r p r e t e d as evidence f o r p r o j e c t i l e K - s h e l l e x c i t a t i o n i n t h i s c o l l i s i o n system. P r o j e c t i l e K-shell e x c i t a t i o n i s a l s o observed f o r F* i o n s i n c i d e n t on Cu 1151, as can be seen from t h e e l e c t r o n energy s p e c t r a shown i n Fig. 2. The l a t t e r spectra were a l s o obtained using a CMA e l e c t r o n spectrometer.

I n order t o o b t a i n i n s i g h t i n t o t h e reasons u n d e r l y i n g t h i s i n t e r e s t i n g d i f f e r e n c e observed f o r Au and Cu t a r g e t s , a d i a b a t i c MO energy l e v e l c a l c u l a t i o n s were c a r r i e d o u t on t h e N

+

Au and N

+

Cu c o l l i s i o n systems u s i n g t h e v a r i a b l e screening model developed by E i c h l e r and W i l l e 1161. Representative r e s u l t s o f t h e c a l c u l a t i o n s f o r N4+ i o n s a r e shown i n Fig. 3. The r e l e v a n t curves, which represent t h e p u r e l y e l e c t r o n i c eigenenergies o f the N

+

Au and N

+

Cu quasimolecules, r e s p e c t i v e l y , as a f u n c t i o n o f i n t e r n u c l e a r separation, a r e l a b e l le d by t h e atomic l e v e l s t h a t they c o r r e l a t e t o i n t h e separated atom l i m i t . I n t h e f i g u r e , a s i g n i f i c a n t d i f f e r e n c e between t h e sequence o f energy l e v e l s f o r Au and Cu t a r g e t s i s imne- d i a t e l y apparent. F o r t h e N

+

Au system, t h e p o t e n t i a l curve c o r r e l a t e d t o the 1s l e v e l o f t h e p r o j e c t i l e i s separated from those c o r r e l a t i n g w i t h t h e 2s and 2p p r o j e c t i l e l e v e l s by t h e f i l l e d 4s, 4p, and 4d Au t a r g e t l e v e l s . T r a n s f e r o f an e l e c t r o n o u t o f t h e p r o j e c t i l e K-shell (i.e., p r o j e c t i l e K - s h e l l e x c i t a t i o n ) , which proceeds v i a pseudocrossings o r r o t a - t i o n a l c o u p l i n g s o f t h e i n i t i a l s t a t e and adjacent MO's i s t h e r e f o r e i n h i b i t e d , since a l l the neighboring o r b i t a l s c o r r e l a t e t o t a r g e t l e v e l s which a r e a l r e a d y f i l l e d . On t h e o t h e r hand, t r a n s f e r o f an i n i t i a l K - s h e l l vacancy t o neighboring n=4 t a r g e t l e v e l s i s f a c i l i t a t e d . As has been discussed p r e v i o u s l y 111-131, such p r o j e c t i l e - t o - t a r g e t vacancy t r a n s f e r reactions may g i v e r i s e t o t h e NNV and NVV t a r g e t Auger t r a n s i t i o n s a t 220 and 70 eV, r e s p e c t i v e l y , e v i d e n t i n t h e NG

+

Au e l e c t r o n energy spectrum shown i n Fig. 1.

(4)

ORNL-DWG 88.14817 t o 0

I

I

1

I

.

I

I

I

1

I

I

I

I

Cu

TARGET

-

-

. -

0

100 200 300 400 500 600 700

ELECTRON ENERGY

(eV)

Fig. 1

-

E l e c t r o n energy d i s t r i b u t i o n s f o r 60 kev N p r o j e c t i l e s i n c i d e n t on Au and Cu t a r g e t s a t 5".

p r o j e c t i l e - c o r r e l a t e d o r b i t a l s , and thus i n d i c a t e a s i m i l a r mechanism f o r p r o j e c t i l e K-shell e x c i t a t i o n f o r those c o l l i s i ' o n systems.

Due t o t h e l a r g e Doppler broadening ( t y p i c a l l y about 90 eV f o r t h e above p r o j e c t i l e N KLL f e a t u r e s ) r e s u l t i n g from t h e 90° o r i e n t a t i o n o f the CMA spectrometer a x i s w i t h respect t o the p r o j e c t i l e beam d i r e c t i o n , t h e r e s o l u t i o n o f t h e p r o j e c t i l e KLL f e a t u r e s i n t h e above spectra i s s i g n i f i c a n t l y degraded, making i n t e r p r e t a t i o n d i f f i c u l t . D e s p i t e t h e 1 im i t e d r e s o l u t i o n , however, a systematic d i f f e r e n c e i n peak p o s i t i o n s i s observed between t h e KLL features observed f o r H - l i k e i n c i d e n t ions, which c a r r y an i n i t i a l K-vacancy, and those observed as a r e s u l t o f K-shell e x c i t a t i o n d u r i n g t h e i n t e r a c t i o n w i t h t h e surface. I n comparing the s p e c t r a f o r F8+ and F6+ i n c i d e n t on Cu i n t h e bottom o f Fig. 2, i t i s seen t h a t t h e KLL f e a t u r e r e s u l t i n g from K-shell e x c i t a t i o n (i.e., f o r i n c i d e n t F ~ + ) , w h i l e c h a r a c t e r i z e d by a s i m i l a r f a l l - o f f toward h i g h e r energies, does n o t extend as low i n e l e c t r o n energy as t h a t observed f o r i n c i d e n t ~ 8 + . As a r e s u l t , t h e KLL "peak" a r i s i n g due t o K-shell e x c i t a t i o n appears t o l i e about 25 eV h i g h e r i n energy than t h a t observed f o r H - l i k e i n c i d e n t ions. A s i m i l a r d i f f e r e n c e i n KLL "peak" p o s i t i o n s i s observed i n t h e case o f N6+ and N4+ ions i n c i - dent on Cu (see Fig. 1). I t i s noted, on t h e o t h e r hand, t h a t t h e KLL "peak" f o r N5+ ions i n c i d e n t on Au, a l s o shown i n Fig. 1, i s n o t s h i f t e d r e l a t i v e t o t h a t observed f o r i n c i d e n t

(5)

JOURNAL

DE

PHYSIQUE

ORNL-DWG 88-15208

r

I

I-

I

I

I

I

1

i

ELECTRON ENERGY (eV)

ZOO

450 500 550 600 650 700 750 800

ELECTRON ENERGY (eV)

Fig. 2

-

E l e c t r o n energy d i s t r i b u t i o n s f o r F i o n s i n c i d e n t on Cu;

Fa+

and Fs+ p r o j e c t i l e energies a r e 80 keV; energies o f F4+ and ~ 2 + i o n s a r e 52 and 26 keV, r e s p e c t i v e l y .

measured f o r an i n c i d e n t charge s t a t e beam

known

t o c a r r y t h e a p p r o p r i a t e i n i t i a l i n n e r - s h e l l vacancy, i t can be i n f e r r e d whether s i m i l a r "peaks" observed f o r lower charge s t a t e i o n s ( i n whose ground s t a t e s t h e i n n e r s h e l l o f i n t e r e s t i s f i l l e d ) a r e t h e r e s u l t o f metastables present i n t h e i n c i d e n t beam o r p r o j e c t i l e i n n e r - s h e l l e x c i t a t i o n d u r i n g t h e i n t e r a c t i o n w i t h t h e surface.

Returning t o t h e e a r l i e r d i s c u s s i o n o f t a r g e t i n n e r - s h e l l e x c i t a t i o n , i t i s noted t h a t de Zwart has a l s o observed t a r g e t Auger t r a n s i t i o n s i n 20 keV

~ r ~ + ,

+

W c o l l i s i o n s , as d i s - cussed i n h i s Ph.D. t h e s i s . He suggests t h a t i n n e r - s h e l l vacancy t r a n s f e r v i a MO pseudo- crossings may be t h e u n d e r l y i n g e x c i t a t i o n mechanism f o r t h i s c o l l i s i o n system also.

It

(6)

ORNL-OWG 88-15209

N

on Au

INTERNUCLEAR SEPARATION (ad.)

Fig. 3

-

A d i a b a t i c MO energy l e v e l c a l c u l a t i o n s f o r t h e N4+

+

Au, CU c o l l i s i o n systems; s o l i d l i n e s a r e a o r b i t a l s , dot-dashed l i n e s a r e

r

o r b i t a l s .

atomic numbers o f t h e c o l l i s i o n partners. T h i s makes N an i d e a l probe o f C surface contami- n a t i o n , w h i l e F i o n s a r e a s e n s i t i v e probe f o r s u r f a c e contamination by

0.

The s e n s i t i v i t y o f a N beam probe t o t h e presence o f C on a Au surface i s i l l u s t r a t e d i n Fig. 5, where an e l e c t r o n energy spectrum i s shown f o r N6+ i o n s i n c i d e n t on a Au s u r f a c e having a -20% mono- l a y e r coverage o f carbon. The spectrum was obtained u s i n g a LEED system i n a manner pre- v i o u s l y d e s c r i b e d

/lo/.

The area o f t h e C KVV f e a t u r e i s about 30% o f t h a t o f t h e N KLL feature. Since t h e t o t a l y i e l d o f N KLL e l e c t r o n s has p r e v i o u s l y been determined 1111 t o be on t h e o r d e r o f u n i t y , t h e a b s o l u t e y i e l d o f C KVV e l e c t r o n s i s seen t o be q u i t e h i g h (-30%). For comparison, Fig. 5 a l s o shows a 500 eV e l e c t r o n induced energy spectrum acquired f o r the same s u r f a c e c o n d i t i o n s . As can be seen, on t h e s c a l e o f t h e e l a s t i c s c a t t e r i n g peak, the C KVV peak i s n o t d i s c e r n i b l e . The p r o d u c t i o n o f "target1' Auger e l e c t r o n emission by i n n e r - s h e l l vacancy t r a n s f e r i s thus i n t h i s case considerably more e f f i c i e n t than t h a t produced by electron-impact i o n i z a t i o n .

3

-

APPARATUS IMPROVEMENTS

(7)

JOURNAL DE PHYSIQUE ORNL-DWG 87-43374 SEPARATED UNITED ATOM LIMIT C t N ATOM LIMIT I

Fig. 4

-

D i a b a t i c c o r r e l a t i o n diagram f o r t h e N

+

C c o l l i s i o n system.

section, which p r o v i d e s f o r independent, r e a l -time m o n i t o r i n g o f i n c i d e n t i o n beam current, and thus p e r m i t s more convenient n o r m a l i z a t i o n o f t h e measured e l e c t r o n energy d i s t r i b u t i o n s t o the i n c i d e n t i o n f l u x . The beam c o l l i m a t o r / m o n i t o r c o n s i s t s o f a s e r i e s o f apertures which a r e used t o l i m i t t h e divergence o f t h e beam i n c i d e n t on t h e f i n a l c o l l i m a t i o n aper- t u r e , where a small f r a c t i o n o f t h e i n c i d e n t i o n beam i s intercepted. Due t o t h e upstream c o l l i m a t i o n , t h e f r a c t i o n o f i n t e r c e p t e d t o t r a n s m i t t e d beam c u r r e n t (which i s equal t o the c u r r e n t i n c i d e n t on t h e t a r g e t c r y s t a l ) i s almost independent o f upstream beam tuning, i.e., i s s o l e l y determined by t h e c o l l i m a t o r geometry. I n p r e v i o u s v e r s i o n s o f t h e apparatus, the e l e c t r o n s p e c t r a were normalized t o t h e unbiased t a r g e t c u r r e n t , which, due t o t h e l a r g e t o t a l e l e c t r o n y i e l d s , represented m a i n l y t h e e j e c t e d e l e c t r o n f l u x and n o t i n c i d e n t i o n f l u x .

The geometry o f the p r e s e n t setup i s s c h e m a t i c a l l y i n d i c a t e d i n Fig. 6. Note t h a t angle o f incidence as w e l l as e l e c t r o n e j e c t i o n angle can now be independently varied, p r o v i d i n g g r e a t l y increased experimental f l e x i b i 1 i ty. With t h e exception o f these two improvements, t h e apparatus i s i d e n t i c a l t o t h a t p r e v i o u s l y described

/13/.

To i l l u s t r a t e the r e s o l u t i o n a t t a i n a b l e w i t h t h e new spectrometer, Fig. 6 a l s o shows a s c a t t e r e d e l e c t r o n energy spectrum f o r -500 eV e l e c t r o n s i n c i d e n t on Au a t 45".

4

-

PROJECTILE KLL DECAY MEASUREMENTS

(8)

0

100 200 300 400

500

600

ELECTRON ENERGY (eV)

ORNL-DWG 87-43357 200 400 600 L A B ENERGY ( e V )

I

I

I

I

I

I

-

e-+ A u (METAL), 5 0 0 e V

-

-

-

Fig.

5

-

Top

-

e l e c t r o n energy d i s t r i b u t i o n f o r N" i o n s i n c i d e n t a t

5"

on Au having a

20%

monolayer coverage o f carbon. The peaks around

250

eV and

350

eV a r e i d e n t i f i e d as C KVV, and N KLL peaks, r e s p e c t i v e l y . The h o r i z o n t a l b a r i n d i c a t e s t h e broadening i n t r o d u c e d by the numerical d i f f e r e n t i a t i o n o f t h e LEED transmission current. Bottovn

-

e l e c t r o n energy spectrum f o r

500

eV e - ' s i n c i d e n t normally on Au a l s o w i t h

20%

monolayer

C

coverage.

-

t h e i n c i d e n t beam. The s p e c t r a shown a l l have t h e same n o r m a l i z a t i o n , and were acquired w i t h a s e l e c t e d spectrometer-pass-energy o f

100

eV, r e s u l t i n g i n an e l e c t r o n energy-independent instrumental r e s o l u t i o n o f about 5 eV. Doppler broadening i n t h e v i c i n i t y o f t h e p r o j e c t i l e KLL peaks l o c a t e d a t

-500

eV i s about

10

eV. The t o t a l i n s t r u m e n t a l w i d t h due t o these two e f f e c t s combined i s thus small compared t o the observed w i d t h o f t h e p r o j e c t i l e KLL peaks

(-100

eV). By v a r y i n g t h e angle o f incidence, the time i n t e r v a l between t h e s t a r t o f p r o j e c - t i l e n e u t r a l i z a t i o n and pt,.:tration o f t h e s u r f a c e can be varied. Assuming t h a t n e u t r a l i z a - t i o n comnences a t t h e c r i t i c a l d i s t a n c e

1181

above t h e surface a t which t h e Coulomb b a r r i e r between p r o j e c t i l e and metal f a l l s below t h e Fermi l e v e l , equal t o about

21

a.u. f o r

07+

ions, t h e above-surface i n t e r a c t t o n times cover t h e range

1

t o

7

x

10-l5

s,

t h e s h o r t e s t time corresponding t o t h e l a r g e s t angle o f incidence

(80').

The f o l l o w i n g trends a r e noted i n the dependence o f t h e p r o j e c t i l e KLL peak on time spent above t h e surface. The s i z e o f the KLL peak decreases m o n o t o n i c a l l y w i t h decreasing i n t e r a c t i o n time, and becomes b a r e l y d i s c e r n i b l e above t h e continuum background i n t h e spectrum f o r t h e

80"

angle o f incidence. The p o s i t i o n

(9)

JOURNAL

DE

PHYSIQUE

ORNL- DWG 88-45213

400

ELECTRON ENERGY (eV)

Fig. 6

-

Top

-

schematic diagram o f t h e new experimental apparatus, showing beam c o l l i m a t i o n / m o n i t o r , i n g section; n o t e t h a t b o t h angle o f incidence and observation angle can be varied. Bottan

-

sample e' induced e l e c t r o n spectrum acquired w i t h new spectrometer, obtained a t constant pass energy o f 50 eV.

o f t h e KLL peak, however, does n o t appear t o change as a f u n c t i o n o f t h e above-surface i n t e r - a c t i o n time. These t r e n d s a r e c o n s i s t e n t w i t h t h e f o l l o w i n g p i c t u r e . A t t h e a l r e a d y defined c r i t i c a l d i s t a n c e from t h e surface, m u l t i p l e resonant n e u t r a l i z a t i o n from t h e valence band o f t h e metal occurs (on a t i m e scale o f t h e o r d e r 5 x 10-l6 s / l 9 / ) , which populates h i g h l y e x c i t e d Rydberg l e v e l s o f the i n c i d e n t i o n (e.g., n=9 f o r i n c i d e n t 07+). A cascade o f e l e c t r o n s t o lower n l e v e l s occurs as t h e m u l t i p l y e x c i t e d i o n a u t o i o n i z e s , i n p a r a l l e l , o f course, w i t h f u r t h e r resonant n e u t r a l i z a t i o n processes t o p r o g r e s s i v e l y lower n as t h e i o n continues t o approach t h e surface. As soon as a t l e a s t two e l e c t r o n s have reached t h e L- s h e l l , KLL t r a n s i t i o n s w i l l occur. I f t h e r a t e o f f i l l i n g t h e L - s h e l l i s much l e s s than the KLL r a t e f o r t h e L i - l i k e i o n , no f u r t h e r f i l l i n g o f t h e L - s h e l l i s possible, and t h e observed KLL peak should be t h a t f o r O5+. I f , on t h e o t h e r hand, t h e L - s h e l l f i l l i n g r a t e exceeds t h a t o f KLL decay, then t h e observed KLL peak should be a composite s t r u c t u r e , c o n s i s t i n g o f KLL c o n t r i b u t i o n s from a l l charge s t a t e s s5. I n t h i s p i c t u r e t h e KLL peak p o s i t i o n i s thus argued t o depend o n l y on t h e r e l a t i v e magnitudes o f two i n t r i n s i c t i m e scales c h a r a c t e r i z i n g t h e n e u t r a l i z a t i o n process, and n o t t o have a dependence on t h e e x t r i n s i c i n t e r a c t i o n time scale s e l e c t e d by a p a r t i c u l a r angle o f incidence, i n accord w i t h observation.

(10)

ORNL DWG 88-15207

o+'

KLL AUGER PEAK

TRANSITIONS

ELECTRON ENERGY (eV)

Fig. 7

-

E l e c t r o n energy d i s t r i b u t i o n s f o r 70 keV 07+ i o n s i n c i d e n t on Au, f o r s i x d i f f e r e n t angles o f incidence. H o r i z o n t a l l i n e s under t h e 0 KLL peaks g i v e c a l c u l a t e d ranges o f KLL t r a n s i t i o n energies f o r a l l charge s t a t e s

s5+.

Table I. C a l c u l a t e d c o n f i g u r a t i o n average KLL t r a n s i t i o n energies and Auger r a t e s f o r d i f f e r e n t charge s t a t e s o f oxygen.

I n i t i a l I n i t i a l F i n a l C o n f i g u r a t i o n Average Rate Charge S t a t e C o n f i g u r a t i o n C o n f i g u r a t i o n Auger E l e c t r o n Energy (loi3 S - l )

(11)

C1-272 JOURNAL DE PHYSIQUE

a " s u p e r - f i l l e d " L - s h e l l , since i t can b i n d an e x t r a e l e c t r o n due t o t h e K-shell vacancy. The p o s s i b i l i t y o f K-Auger t r a n s i t i o n s from a ' s u p e r - f i l l e d " L - s h e l l i s one mechanism t h a t may e x p l a i n t h e e x t e n t o f t h e o b s e r v g KLL f e a t u r e t o energies above t h e KLL peak a t about 495 eV observed subsequent t o K-shell p h o t o i o n i z a t i o n o f n e u t r a l

0.

An a d d i t i o n a l mechanism f o r y i e l d i n g h i g h e r than "normal" Auger t r a n s i t i o n energies, based on i n t e r a c t i o n o f the Auger e l e c t r o n w i t h t h e image charge o f t h e ( i n c o m p l e t e l y screened) e m i t t e r has been discussed by F o l b e r t s and Morgenstern

1211.

A consequence o f t h i s i n t e r p r e t a t i o n o f t h e w i d t h o f t h e observed KLL s t r u c t u r e i s t h a t the f i l l i n g r a t e o f t h e L - s h e l l s i g n i f i c a n t l y exceeds t h e r a t e o f t h e f a s t e s t KLL t r a n s i t i o n s , as discussed e a r l i e r . R e f e r r i n g t o Table I, t h e f a s t e s t KLL decay r a t e i s c a l c u l a t e d f o r n e u t r a l

0

( w i t h t h e " s u p e r - f i l l e d " L - s h e l l ) where i t i s l a r g e r than 2 x

1014

s-l. The l i m i t - i n g r a t e being t h a t o f t h e KLL t r a n s i t i o n , i t i s t h e t i m e s c a l e d e f i n e d by t h i s r a t e t h a t must be compared t o t h e n e u t r a l i z a t i o n time a v a i l a b l e above t h e surface. I t i s seen t h a t a t

10'

angle o f incidence, t h e i n t e r a c t i o n time corresponds t o about

1.2

KLL decay l i f e t i m e s , w h i l e a t

80°,

t h e a v a i l a b l e time corresponds t o o n l y about

0.2

KLL decay l i f e t i m e s . This e x p l a i n s t h e gradual disappearance o f t h e observed KLL peaks w i t h i n c r e a s i n g angle o f i n c i - dence. To v e r i f y t h a t t h e observed KLL t r a n s i t i o n s indeed occur on t h e i n c i d e n t i o n t r a j e c - t o r y , and n o t l a t e i n t h e i n t e r a c t i o n subsequent t o t h e reemergence o f (some o f ) t h e ions from the s u r f a c e along some d i f f e r e n t d i r e c t i o n , t h e Doppler s h i f t o f t h e KLL peak was inves- t i g a t e d as a f u n c t i o n o f viewing angle. F i g u r e 8 shows t h e KLL peak f o r

07+

.incident on Au a t

10"

as observed a t t h r e e d i f f e r e n t observation angles. The w e l l - d e f i n e d Doppler s h i f t o f t h e observed KLL peaks shows c l e a r l y t h a t t h e Auger e l e c t r o n emission occurs w h i l e t h e pro- j e c t i l e i s s t i l l t r a v e l i n g along t h e i n c i d e n t beam d i r e c t i o n , i.e., p r i o r t o any d e f l e c t i o n o f t h e p r o j e c t i l e by c l o s e encounters w i t h t a r g e t atoms. A s i m i l a r conclusion was reached by de Zwart

131

i n a n a l y z i n g A r LMM t r a n s i t i o n s d u r i n g

500

eV Ar9+ c o l l i s i o n s w i t h a W surface. I n t h e l i g h t o f t h e above i n t e r p r e t a t i o n o f t h e observed KLL widths, a reason f o r t h e d i f f e r - ence, noted i n t h e p r e v i o u s section, between t h e KLL peak p o s i t i o n s observed subsequent t o K-shell e x c i t a t i o n and those observed f o r H - l i k e i n c i d e n t p r o j e c t i l e s can now be suggested. Since t h e e x c i t a t i o n process r e q u i r e s a small impact parameter b i n a r y c o l l i s i o n w i t h a t a r g e t atom, and thus occurs l a t e i n t h e multicharged i o n - s u r f a c e i n t e r a c t i o n , t h e i o n w i l l be

ORNL-DWG 88-14819

20.000

100

200

300

400

500

600

ELECTRON ENERGY (eV)

(12)

almost completely n e u t r a l i z e d a t t h e i n s t a n t o f i n n e r - s h e l l e x c i t a t i o n . The subsequent KLL t r a n s i t i o n s w i l l thus occur i n a narrower e l e c t r o n energy range, c h a r a c t e r i s t i c o f , say, n e u t r a l o r s i n g l y charged 0, than t h a t observed f o r H - l i k e i n c i d e n t ions, where KLL t r a n s i - t i o n s from a l l p o s s i b l e charge s t a t e s occur. The h i g h energy s i d e s o f t h e KLL peaks f o r the two cases, which correspond t o KLL t r a n s i t i o n s from " s u p e r - f i l l e d " L-she1 l s , thus coincide, as can be seen from t h e comparison i n Fig. 2 between F h and Fa+. The mechanism f o r obtain- i n g a " s u p e r - f i l l e d " L - s h e l l i n t h e case o f K-shell e x c i t a t i o n i s t h e e x c i t a t i o n i t s e l f , i n t h a t t h e nearest (and most l i k e l y ) u n f i l l e d o r b i t a l t o which a p r o j e c t i l e K - s h e l l e l e c t r o n can be promoted i s t h e o r b i t a l c o r r e l a t i n g t o t h e p r o j e c t i l e 2p l e v e l (see Fig. 3).

To determine t h e e x t e n t t o which t h e shape o f t h e KLL peaks i s p e r t u r b e d by e l e c t r o n emission o f t h e p r o j e c t i l e a f t e r p e n e t r a t i o n o f t h e surface, t h e measurements o f Fig. 7 were extended t o lower angles o f incidence. Results f o r N& i o n s i n c i d e n t on Au a t

l o 0 ,

3", and lo are shown i n Fig. 9. The e l e c t r o n energy s p e c t r a shown cover e l e c t r o n energies i n t h e v i c i n i t y o f t h e N KLL peak; t h e s p e c t r a were scaled t o have t h e same KLL peak height, i n order t o i l l u s t r a t e t h e r e l a t i v e c o n t r i b u t i o n o f t h e broad f e a t u r e below t h e p r o j e c t i l e KLL peak as a f u n c t i o n o f angle o f incidence. C l e a r l y , t h e r e l a t i v e importance o f t h i s f e a t u r e decreases w i t h decreasing angle o f incidence, i n d i c a t i n g t h a t i t i s n o t r e l a t e d t o p r o j e c t i l e KLL emis- s i o n o c c u r r i n g p r i o r t o p e n e t r a t i o n o f t h e surface. The t r e n d shown i n these measurements can be due t o e i t h e r t h e increased i n t e r a c t i o n t i m e above t h e s u r f a c e o b t a i n e d w i t h the s m a l l e r g r a z i n g angles ( r e s u l t i n g i n a l a r g e r KLL peak), o r t h e decreased p e n e t r a t i o n o f the p r o j e c t i l e s , o r both. The l a t t e r p o s s i b i l i t y i s i l l u s t r a t e d i n Fig. 10, where c l a s s i c a l t r a j e c t o r y Monte C a r l o c a l c u l a t i o n s u s i n g t h e MARLOWE code 1221 a r e shown f o r 60 keV N6+ ions i n c i d e n t on Au f o r two d i f f e r e n t angles o f incidence. The s i m u l a t i o n was c a r r i e d o u t using t h e ZBL screened-Coulomb i n t e r a t o m i c s c a t t e r i n g p o t e n t i a l 1231, and assuming an unrecon- s t r u c t e d metal surface. The c a l c u l a t i o n s show t h a t a t t h e present energies, t h e c o n d i t i o n of specular r e f l e c t i o n i s approached f o r -lo g r a z i n g angles o f incidence. A s i m i l a r conclusion can a l s o be reached by c a l c u l a t i n g t h e " h a l f - d i p " angle f o r p l a n a r channeling ( o f which specular r e f l e c t i o n i s t h e s u r f a c e analog) u s i n g t h e formalism presented i n t h e review by Gemnel 1241. F o r 60 keV N i o n s i n c i d e n t on Au, t h i s angle i s c a l c u l a t e d t o be 2.6O, which i s i n good agreement w i t h t h e r e s u l t obtained using t h e Monte C a r l o simulation. Further measurements a r e planned t o i n v e s t i g a t e t h i s i n t e r e s t i n g s c a t t e r i n g regime, i n which the multicharged i o n - s u r f a c e i n t e r a c t i o n can be s t u d i e d i n i s o l a t i o n w i t h o u t having t o consider t h e complications a r i s i n g from surface p e n e t r a t i o n e f f e c t s .

ORNL- DWG 88- 4 5214

2 0 0

300

400

5 0 0

ELECTRON ENERGY

(eV)

(13)

JOURNAL

DE

PHYSIQUE ORNL-DWG 88M-15210 W = 2 O 0.3 - [ I 101 AZIMUTH

-

El = 85 eV RN = 86%

-

-

-

I 0 5 1'5

t t t t t t t y t

DEPTH

(A)

Fig. 10

-

MARLOWE c a l c u l a t i o n o f mean p e n e t r a t i o n depth f o r 70 keV

0

p r o j e c t i l e s i n c i d e n t on Au at: 5' and 2'. V e r t i c a l arrows along abscissa correspond t o c r y s t a l l a t t i c e planes i n the

(110) o r i e n t a t i o n ; RN i n t h e f i g u r e r e f e r s t o p a r t i c l e r e f l e c t i o n c o e f f i c i e n t .

5

-

SUMMARY

A q u a l i t a t i v e d i s c u s s i o n has been presented o f i n n e r - s h e l l vacancy p r o d u c t i o n mechanisms r e l e v a n t t o c o l l i s i o n s o f m u l t i c h a r g e d N, 0, and F ions i n c i d e n t on c l e a n Au and Cu surfaces as w e l l as those having fractional-monolayer coverages o f C and/or 0. The d i s c u s s i o n was based on c a l c u l a t e d a d i a b a t i c MO energy l e v e l s , which g i v e an i n s i g h t i n t o t h e p o s s i b l e path- ways along which i n n e r - s h e l l e x c i t a t i o n may occur, and i n t o t h e s e n s i t i v i t y o f these pathways t o t h e c o l l i s i o n p a r t n e r s making up t h e quasimolecule. A comparison was made o f p r o j e c t i l e KLL peaks r e s u l t i n g from t h e f i l l i n g o f K-shell vacancies c a r r i e d i n t o t h e c o l l i s i o n , and those observed subsequent t o p r o j e c t i l e e x c i t a t i o n . A n a l y s i s o f t h e former provides i n f o r - mation about t h e r a t e o f f i l l i n g o f t h e L - s h e l l d u r i n g t h e n e u t r a l i z a t i o n process, w h i l e ana-

l y s i s o f t h e l a t t e r g i v e s i n f o r m a t i o n on t h e degree o f f i l l i n g o f t h e L - s h e l l a t the conclusion o f t h e n e u t r a l i z a t i o n o c c u r r i n g above t h e surface. A c h a r a c t e r i s t i c s i g n a t u r e o f K-shell e x c i t a t i o n apparent i n t h e measured e l e c t r o n energy spectra was discussed. This c h a r a c t e r i s t i c can be used t o d i s t i n g u i s h i n n e r - s h e l l t r a n s i t i o n s o c c u r r i n g i n metastable i o n s from those o c c u r r i n g subsequent t o i n n e r - s h e l l e x c i t a t i o n o c c u r r i n g d u r i n g the c o l l i - sion.

(14)

REFERENCES

Ill P. Varga, I n v i t e d Papers o f t h e 14th I n t e r n a t i o n a l Conference on E l e c t r o n i c and Atanfc

Physics, e d i t e d by H. B. Gilbody e t a l . (North-Holland, Amsterdam, 1988), p. 793. 121 H. J. Andrae, Proceedings o f the NATO Sunner School on "Fundaments 1 Processes o f A t m i c

Dynamics" (Maratea, I t a l y , 21 September

-

2 October, 1987), e d i t e d by J. S. Briggs (Plenum Press, 1988).

I 3 1 S. T. de Zwart, Nucl. Instrum. Methods 823 (1987) 239. I 4 1 P. Varga, W. Hofer, and H. Winter, S u r f x c i . 117 (1982) 142.

I 5 1 P. Varga, W. Hofer, and H. Winter, Scanning E l e c t r o n Microsc. 1 (1982) 967.

161 M. Delaunay, M. Fehringer, R. G e l l e r , D. H i t z , P. Varga, and HT Winter, Phys. Rev.

835

(1987) 4232.

171 M. Delaunay, M. Fehringer, R. G e l l e r , P. Varga, and H. Winter, Europhys. L e t t .

4

(1987) 377.

I 8 1 M. Delaunay, R. G e l l e r , J. Debernardi, P. Ludwig, and P. S o r t a i s , Surf. Sci.

197

(1988) L273.

191 M. Delaunay, C. Benazeth, N. Benazeth, R. G e l l e r , and C. Mayoral, Surf. Sci.

195

(1988) 455.

1101 D. M. Zehner, S. H. Overbury, C. C. Havener, F. W. Meyer, and W. Heiland, Surf. Sci.

178

(1986) 359.

1111 F. W. Meyer, C. C. Havener, K. J. Snowdon, S. H. Overbury, D. M. Zehner, and W. Heiland, Phys. Rev.

A35

(1987) 3176.

1121 F. W. Meyer, C. C. Havener, K. J. Snowdon, S. H. Overbury, D. M. Zehner, W. Heiland, and H. Hemne, Nucl. Instrum. Methods

823

(1987) 234.

I 1 3 1 K. J. Snowdon, C. C. Havener, F. W. Meyer, S. H. Overbury, D. M. Zehner, and W. Heiland, Phys. Rev.

@

(1988) 2294.

1141 E. J. Sternglass, Phys. Rev. (1954) 1.

I 1 5 1 C. C. Havener, K. J. Reed, K. J. Snowdon, N. S t o l t e r f o h t , D. M. Zehner, and F. W. Meyer, t o be p u b l i s h e d i n Physical Review A.

1161 J. E i c h l e r and U. W i l l e , Phys. Rev. (1975) 1973.

1171 e.g., D. Schneider and N. S t o l t e r f o h t , Phys. Rev.

@

(1979) 55. 1181 K. J. Snowdon, Nucl. Instrum. Methods B34 (1988) 309.

1191 P. Appel, Nucl. Instrum. Methods

823

(1987) 242.

1201 R. 0. Cowan, The Theory o f Atmnic S t r u c t u r e and Spectra ( U n i v e r s i t y o f C a l i f o r n i a Press, Berkeley, 1981).

I 2 1 1 L. F o l b e r t s and R. Morgenstern, t h i s conference proceedings. I 2 2 1 M. T. Robinson and I. M. Torrens, Phys. Rev. B9 (1974) 5008.

1231 J. F. Z i e g l e r , J. P. Biersack, and U. L i t t m a r k , Proceedings o f the U.S.

-

Japan Seminar on Charged-Particle Penetration Phenmena, Honolulu, Hawaii, Jan. 25-29, 1982, ORNL r e p o r t CONF-820131, p. 88.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to