• Aucun résultat trouvé

Precision linearity studies of the ATLAS liquid argon EM calorimeter

N/A
N/A
Protected

Academic year: 2021

Partager "Precision linearity studies of the ATLAS liquid argon EM calorimeter"

Copied!
20
0
0

Texte intégral

(1)

HAL Id: in2p3-00021997

http://hal.in2p3.fr/in2p3-00021997

Submitted on 30 Jun 2004

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Precision linearity studies of the ATLAS liquid argon

EM calorimeter

G. Graziani

To cite this version:

(2)

 

  

Giacomo Graziani

(LAL, Orsay)

              

for the ATLAS LAr EM Group

XI International Conference in Calorimetry in High Energy Physics

Perugia, Italy

(3)

Electromagnetic Calorimetry for the general–purpose

ATLAS experiment at the LHC should provide a

linearity well within 1 % from the GeV to the TeV scale

and even much better in limited energy ranges

e.g. precision measurement of W mass requires a linearity

within a few 10

4

between 30 and 80 GeV

First precision linearity measurement has been

performed on a LAr Barrel Calorimeter module,

exposed to electron beam (CERN H8 test line)

Need to know the beam energy scale to a few 10

4

=⇒

calibration of the beam line between 10 and 180 GeV

Need to understand in principle the most suitable energy

reconstruction procedure

=⇒

study detector response through accurate MC (Geant4)

simulation

Need to accurately inter–calibrate the detector layers

(4)

>?

E

beam

Z

Bdl

AB CD EF D B G E CH I JK L I M JN CO

C9

B3

B4

B4

B3

B3

B4

B1

B2

B2

B1

B1

B2

C3

~27 mm/%

Target

∆P/P~1%

T4

C6

P Q QR SUT QVW X QY QZ RW Z [ S]\ ^ TQ V_ W Y ` T_ W a\ Z \b _ c_ [ Z Q a TWa S ` Q a X d e Wf Z ag Q Xh Q aV g i ej \k _ Z R R Q [ _ l X X QR m i _ _X b lZ V W a\ Z \b ag Q V lT T QZ a S l ` X QR W Z ag Q c_ [ Z Q a Xn o g Q V lT T QZ a W X c Q _ X lT QR ^ W ag

10

−4

_ V V lT _ V p l X W Z [rq s s o n s _ W Y ` T_ W a\ Z S Q T b \ T c QR Y p st u P vw _a Q c \ Z _ T b Q TQ QZ V Q c_ [ Z Q aY p c _ Q X lTW Z [ ag Qx \ _` a [ Q W Z R lV QR Y p V lT T QZ a S l W` XZ [ \ Z _ Z_ T T \^ \ `\ S c _ R Q\b ^ a \ ^ W T Q X XTa Q aV g QR _ \ ` Z [ ag QY _ Q c S _ ag n y V V lT_ V p{z Y Q a a TQ ag_ Z

10

−4

\ Z ag QT_ Z [ Q\b W Z a TQ Q X an

Hall Probe

vacuum chamber

(5)
(6)
(7)

Å v \ c Q c_ a TWQ _ ` d x _ V l l c ^ W Z R \ ^ X i XVW Z  a W _ ` ` W a\ Z _ Z R s TQ QZ h \ x V \ lZ a TQ X i Q Va n m W X X SUT Q _ R _ \ ` Z [ ag Q

ƒˆ „ c \ ` Z [ Y _ Q c ` W Z Qn e T Q c X X T_a g ` lZ [ S g \ \a Z X Q cW a a QR b _ Tb T \ c ag Q R Q a Q V \a T V_ Z Y Q \ ` X a

=⇒

QÆ S Q V _a _ a W W ` Z ag QY _ Q c QZ Q T [ p R W X a TW  Y l a W \ Z P\ a _ Q X p a \ SUT QRW V a ag Q Q Ç l W x _ ` QZ a _ c \ lZ a\b c_ a TWQ_ ` SUT \ R lVW Z [ ag Qk Q Q V a i QÆ S Q V aY ^ Q a Q QZ „n „È _ Z R „n ƒ

X

0

Y l ^ a Q V_ Z ~ a ag Q T Q V \ Z X Ta lV a QR QZ TQ [ p RW XTWa Y lW a\ Z X d _ b a TQ _ W a [ g a V l a_ [ _ W Z X a S W \ Z V \ Z _ a cW Z_ W a\ Z m z _ aW `_ X T ^ Q Q ` `T Q SUT \  R lV QR _ _a ` ` QZ TQ [ W Q^ X W ag _  s W X c _l `  a W \ Z W Z V ` lRW Z [ e T Q c n \ ` X X Q WX Z „n „É

X

0

a _ W ` X i V \ Z x \ ` l a QR^ W ag ag QT Q \ X ` lW a\ Z i SUT \  R lV _Q Y W _ X\ Z ag Q S Q _ h Y ^ Q a Q QZ j „n Ê Ë d ƒ „Ÿ Qž m _ Z R „n † ƒ Ë d ƒ É „Ÿ Qž m ag_ a g_ X a \ Y Q V \ T T Q V a QR

0

50

100

150

200

250

300

350

400

12

14

16

0

200

400

600

800

1000

1200

1400

45

47.5

50

52.5

0

200

400

600

800

1000

1200

95

100

105

Reconstructed energy

15 GeV

15 GeV

15 GeV

MC

MC with 0.08 X

0

brem.

DATA

50 GeV

50 GeV

50 GeV

100 GeV

100 GeV

100 GeV

180 GeV

180 GeV

180 GeV

(8)

Í ¬ÐÏ ¤ ¤ ¦« ¨Ñ ÏÒ ± Ó ¶ Ô ¤ ¨ « ¯ «Õ ¨ ¨ ¤ ÖØ× ¶ Ù ¤ £ Õ ¥ ÖÛÚ ¶ ² « ¢ ª ¤ £ ® … Y Ü w yT _ X c S ` W Z [ V_ \ `TW c Q a TQ^ W ag _ V  V \ T RW \ Z [ Q \ c Q Ta p j ` \ Z [ W a lR W Z _ ` X _ c S ` W Z [ X ^ W ag R Wk Q T QZ a a T _ Z X x Q T X Q X Q [ c QZ a _ a W \ Z z … T _Q X c S `TQ d … v m Ý ag T Q _Q V V \ T R W \ Z ` _ p Q T X z v o uÞ … v i  Þ q q w t i e y sß

∆ϕ = 0.0245

∆η = 0.025

37.5mm/8 = 4.69 mm

∆η = 0.0031

∆ϕ=0.0245

x4

36.8mm

x4

=147.3mm

Trigger Tower

Trigger

Tower

∆ϕ = 0.0982

∆η = 0.1

16X

0

4.3X

0

2X

0

1500 mm

470 mm

η

ϕ

η = 0

Strip towers in Sampling 1

Square towers in

Sampling 2

1.7X

0

Towers in Sampling 3

∆ϕ×∆η = 0.0245×0.05

η =

0

η =

0.687

η =

1.475

(9)
(10)

o g l X i X _ c S ` W Z [ b T_ V a W \ Z XV_ ` Q ^X W ag ag Q \ ` Z [ W a lRW Z_ ` Xg \ ^ Q T R x Q Q ` \ S c QZ a á\ T Xg \ ^ Q T X b l ` ` p V \ Z a _ W Z QR W Z ag Q _ V V \ T R W \ Z R Q a Q V \ a T i ag Q X _ c S ` W Z [ b T _ V a W \ Z Y Q V \ c Q X W Z R Q S QZ R QZ a \ Z QZ Q T [ p _ Z R \ Z ` \ Z [ W a lR W Z _ `ã lV a_ l a W \ Z X

=⇒

B C Cä Gå åæ D G K Cç B K CD å Gè ç é êD K çG BL Lë K ì CK ìD C C G å é å LD äç BL è G F CD í

0

0.002

0.004

0.006

0.008

1500

1550

1600

1650

1700

1750

1800

1850

1900

1950

0.12

0.14

0.16

0.18

0.2

1500

1550

1600

1650

1700

1750

1800

1850

1900

1950

Energy profile

depth (mm)

10 GeV

Energy profile

100 GeV

Energy profile

500 GeV

depth (mm)

sampling fraction

depth relative to maximum

(11)

Lï Cð ñ í C C EF K C í Lï í LK í ê C L C ó ô G í í ð C K G ñõ ö ÷ G B ä GëK CD K ì C G å å LD äç L B ó è L B Eùø è C Gú G E C ÷

=⇒

D çC í äæ Gè ä C ô C B ä B C å C Lë G å å LD äç BL í Gò ô è ç B E ë D GåK ç BL BL Cð B CK ä C ô K ìû ó CK ç í ò K G Cä ë D Lò è BL E ç K æ äç B Gè í ì Lï CD ê GD F å B CK CD ÷ ø ø ø ê æ K ô D G åK ç å Gè è F C B CD EF ç B ä C ô C B ä C B K ü ü

ACCORDION

event depth (X

0

)

(12)

ý Š Œ –œ ˜ — Š  Ž –—“ ™ Š –“ ” ċ þ ì C B C CD EF è LK í æ ô í K D C Gò K ì C G å å LD äç BL ç í CK ç í ò K G Cä Cð C B K ê F Cð C B K ê F K ì C õ D C é í Gò ô è CD ÿB C å B G B ä Cò ô ç çD å Gè è F G  ò G E ç å  ï ç C E ì K K ì K G ò Gú C í K ì C æë è è ä K C CåK LD ç è B C GD ñ G B ä ò Gú C Kí ì C D Cå L B í K D æ åK Cä C B é CD EF ç B ä C ô C B ä C B K L B è L B E ø  æ åK æ K G ç L B í K G K ì C í Gò C K ç ò CH

E ∝ (5.6 E

P S

+ E

ACCORD

)

æ B ë LDK æ B G K Cè F ñ K ì ç í ï C ç E ì K C B ì BG å C í í Gò ô è ç B E  æ åK æ G é K ç BL ç í B K ì C õ ö

=⇒

D C í æLè K ç BL ç í ä C E D Gä Cä

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0

1

2

3

4

5

6

7

8

REAL DATA

Nonlinearity vs PS weight

Resolution vs PS weight

PSweight

(13)

a Q _ xa Q Q V \ X a lV a Q [ p _ X

E =

E

P S

f

s

e,P S

+

E

ACCORD

f

s

e,ACCORD

+

Fleakage

=⇒

SUT Q X TQx Q X ag QW `Z _ Q TW a p Y p R ~ Q ZW W a\ Z _ Z R [ W x Q X c lV g Y Q a a TQ T Q \X ` lW a\ Z u Q V \ Z X a T lV a W \ Z Y QV \ c Q X X S QVW ~ V b \ T Q ` Q V a T \ Z X

f

s

e,ACCORD

_ Z R ` \ Z [ n ` Q _ h_ [ Q b T _ V a W \ Z

F

leakage

V_ Z Y Q S _ T _ c Q a TW  QR \ Z ` p _ _X b l Z V a W \ Z \b ag Q x Q QZ a R Q S ag q _ Z R

η

T Q \ X ` l a W \ Z S Q T b \ T c_ Z V Q XR Q S QZ R V TW a W V_ ` ` p \ Z g \^

f

s

e,P S

W X S _ T_ c Q TWa  QR _ Z R g \^ ag Q S _ WX xX Q _c a Q  TW _ Y ` ^ Q a Q QZ … _v Z R v o uÞ … v d

„n †

X

0

m W X_ a h QZ W Z \ a _ V V \ lZ a  SUT Q X QZ _a S SUT \ _ V g z Xg_ T Q ag Q c_ a TWQ _ ` Y ^ Q a Q QZ

f

e,P S

s

_ Z R

f

e,ACCORD

s

_ Z R S _ T_ c Q TWa  QY \ ag _ _X b lZ V W a\ Z \b q i t _ Z R

η

l Z R Q T R x Q Q ` \ S c QZ a d a \ W c S T \ x Q T Q \ X ` l a W \ Z m z l S X Ta _ Q c QZ TQ [ p Y Q a a TQ R Q XV TW Y QR Y p

a+bE

P S

_ S S ` p _ R | g \ V V \ T T QV W a\ Zb \ T ag Q S _ WX xX Q _c a TWQ _ ` d

E

P S

E

ST RIP S

m

10 GeV

50 GeV

100 GeV

500 GeV

900 GeV

event depth (X

0

)

fraction of long. leakage

10

-3

10

-2

(14)
(15)
(16)

x L T V H \ P I HI O JI LT OY P K yz {| }~ € ‚ ƒ„ € ~ …‡† ‚ ˆ ƒ‰Š † „ † | ‹ }Œ Ž „ † † … € ‚ ~ ˆ ‘ ‰’ “  † | ‚ ”  “ Ž ‚ … Ž • | ‚– †„ † ~ Œ ‚ € ~ ‰ ~˜—  ~ ‚ † „ € Œ ‚ † ‚ ˆ ” ™ Œ ‰ š› œ  ‰ ‹ †ˆ„ Š |† ~ ‚ † † Œ ƒ„ ‰ ~ ‚ ƒ ƒ € ‚„ ‹ Œ € ‰‚ ~ ‰ž„  |† ‚ ” … € ~ ‚ € ž Œ † „ „ †Ÿ ~ ~ ‚ … ƒ € ‚„ ‹ Œ € ‰‚ ~ ™ „ ‰ |†ƒ „ ” † “ Œ Ž† † ~ †„ … }  † €¡  ˆ „ ” |† ’ Œ ‚ Ž Œ Ž† Œ ’ ‰ … € ~ ‚ ˆ ‚ ~ Œ Ž † … € ‚ ~ ˆ ’ ‚ Œ ƒ Ž „ † … ‚ ‰ ~ 

E

M I DDLE

cell

∼ 20

¢ †£ • € … „ † † Œ } ™ ‚ ƒ €   } ’ ‚ Œ Ž ~ ‚ ¤

10

3

All channels layer MIDDLE

HIGH gain region

MEDIUM gain region

E

free gain

(GeV)

(17)

­ ®¯° ®± ²´³ ®µ ¯ ³ µ °¶ ·¸ ·¹ ­ º° · ® ·» ¸ ¼ ½ ®¾ µ° ·¿ » ®À µ ¯° ¿ ·¹ ­ °¶ · » ° · ·° ½ ®¿ ° ¿ ¹ µ ¯ º ·¿ ¯ · ² ¿ ~Á® · ¹ µ Á ¹ ¼ ¯ ³ ¯Â ² ¹ ¿ ¹ ­ ° · ¿ ³Ã · ·Ä | ­ Ä ¶ ¯ ®À ·¿ ² ¿ ~Á® · À ³°¶ ¿ ·¹ Á · Á · ½ ° ¿ ®µ ¯ Å ¹ µ » ¹ ² ² Á ¼ ¹

χ

2

½ ¾° Â

χ

2

=

1

N − 3

layer=1,3

cells

(E

i

/E

layer

− f

l

(∆η, ∆φ))

2

σ

2

f

l

(∆η, ∆φ)

À ¶ ·¿ ·

E

i

/E

layer

³ ¯ °¶ · ± ¿ ¹ ° ½ ³ ®µ ®± Á ¹ ¼ ·¿ ·µ ·¿ Æ ¼ ³ µ ½ · Á Á

i

=⇒

½¾° ®µ Á ¼ » · ² · µ » ¯ ®µ ¯ ¶ ®À ·¿ ¯ ¶ ¹ ² · Å µ ® ° ®µ ¹¸ ¯ ® Á ¾° · ·µ ·¿ Æ ³ · ¯ ½ Á ·¹ ¿ ¯ ¾ ² ² ¿ ·¯ ¯ ³ ®µ ®± ²´³ ®µ ¯ ¶À ·µÁ ® ®ÇÉÈ ³ µ Æ ¹° °¶ °· ° ®Á ¹ ·µ ·¿ Æ ¼ ¹ µ »Ê Ë µ· ·¿ Æ ¼

0

500

1000

0

1

2

3

4

5

6

7

8

9

10

10

10

2

10

3

20

40

60

80

100

120

140

160

180

transverse profile χ

2

Raw cluster energy

GeV

(18)
(19)

Ò ² ¿Á ·³ ­ ³ µ ¹ ¿ ¼ Ó ä O I LT YO P K Ò µ ®¿ ­Á ¹ ³Ã · » ° Ï ® Ð Ð Ù · Ú Ó

Beam Energy (GeV)

Linearity (Erec/Ebeam)

systematic error on linearity

uncorrelated syst. error on measurements

0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01

20

40

60

80

100

120

140

160

180

x NL H J \ P O HI

Real Data

MC

Beam Energy (GeV)

(20)

Références

Documents relatifs

The genetic impact of restocking Mediterranean brown trout populations with hatchery stocks was investigated in the Orb River drainage (France), using genetic data from

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

This EM calorimeter is a sampling calorimeter where absorbers are made of lead and liquid argon is the ionising medium { thus the detector will be placed in a cryostat..