• Aucun résultat trouvé

SPIN DETERMINATION OF HIGHLY EXCITED NUCLEI FROM LIGHT PARTICLE EMISSION STUDIES

N/A
N/A
Protected

Academic year: 2021

Partager "SPIN DETERMINATION OF HIGHLY EXCITED NUCLEI FROM LIGHT PARTICLE EMISSION STUDIES"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: jpa-00220641

https://hal.archives-ouvertes.fr/jpa-00220641

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SPIN DETERMINATION OF HIGHLY EXCITED NUCLEI FROM LIGHT PARTICLE EMISSION

STUDIES

D. Guerreau, R. Babinet

To cite this version:

D. Guerreau, R. Babinet. SPIN DETERMINATION OF HIGHLY EXCITED NUCLEI FROM

LIGHT PARTICLE EMISSION STUDIES. Journal de Physique Colloques, 1980, 41 (C10), pp.C10-

217-C10-228. �10.1051/jphyscol:19801022�. �jpa-00220641�

(2)

JOURNAL DE PHYSIQUE CoZZoque C10, suppZ&rnent au n012, Tome 41, de'cembre 1980, page C10-217

SPIN DETERMINATION OF HIGHLY EXCITED NUCLEI FROM LIGHT PARTICLE EMISSION STUDIES

D. Guerreau and R. ~ a b i n e t *

J n s t i t u t de Physique Nucldaire, B.P. N o l , 91406 Orsay, France.

CEN Saclay, Ddpartement de Physique Nucldaire, B.P. N02, 91190 Gf-Sur-Yvette, France.

Among the d i f f e r e n t mechanisms involved i n heavy i o n r e a c t i o n s , deeply i n e l a s t i c c o l l i s i o n s have been s t u d i e d e x t e n s i v e l y t h e s e l a s t t e n y e a r s . I t i s n o t t h e aim of t h i s t a l k t o d e s c r i b e i n d e t a i l s t h e va- r i o u s f e a t u r e s of t h e s e d i s s i p a t i v e c o l l i s i o n s . Se- v e r a l reviews of a l l t h e new a s p e c t s t h a t appeared r e c e n t l y may be found i n t h e Let us r e c a l l however some of t h e o u t s t a n d i n g c h a r a c t e r i s - t i c s of t h i s p r o c e s s . One of the most s t r i k i n g f e a - t u r e s i s the r a p i d damping of the t r a n s l a t i o n a l k i - n e t i c energy a s s o c i a t e d w i t h the r e l a t i v e motion

i n t o i n t e r n a l e x c i t a t i o n energy, an i n d i c a t i o n of a l a r g e v i s c o s i t y c o n s t a n t f o r n u c l e a r m a t t e r . I t h a s been d e s c r i b e d i n term of a f r i c t i o n f o r c e a c t i n g between t h e two n u c l e i . T h i s f r i c t i o n f o r c e might a r i s e , f o r example, from t h e one body d i s s i p a t i o n mechanism i n t r o d u c e d by Blocki e t a l S 7 . I t l e a d s n a t u r a l l y t o a damping of t h e r e l a t i v e motion b u t , due t o i t s t a n g e n t i a l component, i t should a l s o show up i n a n g u l a r momentum d i s s i p a t i o n . It i s thus c l e a r t h a t one should not s t u d y s e p a r a t e l y t h e r e l a x a t i o n of t h e two b a s i c degrees of freedom a s s o c i a t e d r e s - p e c t i v e l y w i t h energy and angular momentum. They have t o be understood simultaneously and indeed we s h a l l s e e l a t e r t h a t one h a s t o know how t h e e x c i - t a t i o n energy i s shared between t h e b o fragments b e f o r e deducing any i n f o r m a t i o n on the a n g u l a r mo- mentum t r a n s f e r . More g e n e r a l l y , one can s t u d y how t h e angular momentum d i s s i p a t i o n i s r e l a t e d t o o t h e r dynamical parameter such a s t h e nucleon exchange. I t appears then t h a t deeply i n e l a s t i c c o l l i s i o n s give us the unique chance t o follow, d u r i n g t h e c o l l i s i o n time, t h e t r a n s f e r of o r b i t a l a n g u l a r momentum i n t o i n t r i n s i c s p i n s of t h e fragments.

Many experiments have been devoted t o t h i s pro- blem. Average fragment s p i n s and/or s p i n alignment have been deduced from s e q u e n t i a l f i s s i o n s t u - dies9-13, gamma r a y m u l t i p l i c i t y 14-'0 and c i r c u l a r

21-23 p o l a r i s a t i o n measurements

.

Angular momentum e s t i m a t e s from y m u l t i p l i c i t y masurements a r e however s u b j e c t t o some ambigui- t i e s . The f i r s t d i f f i c u l t y a r i s e s from t h e assump-

t i o n which has t o be made on t h e average m u l t i p o l a r i - t y of t h e observed y t r a n s i t i o n s ( E 2 , s t r e t c h e d , un- s t r e t c h e d , M1

..

.)

.

Also, one h a s t o n e g l e c t ( o r t o c a l c u l a t e ) the a n g u l a r momentum removed by l i g h t par- t i c l e s . Nambodiri e t a ~have shown very c l e a r l y . ~ ~ t h e b a s i c l i m i t a t i o n s of t h i s method. This i s i n d i c a - t e d i n F i g . ] which i s a contour diagram of average y- m u l t i p l i c i t i e s a s a f u n c t i o n of average a n g u l a r mo- mentum and masses ( t h e s e r e s u l t s come from r e c e n t measurements i n a number of f u s i o n r e a c t i o n s ) . I t ap-

I d

OO 10 20 30 40 50

AVERAGE ANGULAR MOMENTUM, h

Fig.1. Systematics of the measured mean gamma multi- p l i c i t y b+ as a function o f the average angu- Zar momenturn of one comporozd nucleus, for ua- r i o m mass numbers f r e f . 2 0 ) .

p e a r s c l e a r l y t h a t f o r l i g h t masses (M<70), My i s no more s e n s i t i v e t o t h e a n g u l a r momentum of t h e emit- t i n g system. For such l i g h t system, most of t h e an- g u l a r momentum i s indeed removed by l i g h t p a r t i c l e emission (mainly a - p a r t i c l e s ) . The &ty technique i s t h u s most a p p r o p r i a t e f o r lnedium mass systems where t h e c o m p e t i t i o n i s r e s t r i c t e d t o n e u t r o n and y-rays

.

For t h e h e a v i e s t systems, t h e b e s t method i s c l e a r l y ' t o look a t s e q u e n t i a l f i s s i o n . It has l e d t o very i n t e r e s t i n g i n f o r m a t i o n b u t t h i s i s e v i d e n t l y l i m i - t e d t o p r o d u c t s f o r which the f i s s i o n b a r r i e r i s s u f - f i c i e n t l y low. A t t h i s p o i n t , i t should be s t r e s s e d

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19801022

(3)

t h a t n e i t h e r of these two methods allows a simple de- t e r m i n a t i o n of t h e a n g u l a r momentum s h a r i n g between the two fragments.

F i n a l l y , a t h i r d method,that turned o u t t o be t h e most a c c u r a t e , a t l e a s t f o r l i g h t systems (com- p o s i t e systems w i t h masses lower than 100) i s r e l a - t e d

t o

l i g h t p a r t i c l e e m i ~ s i o n ~ ~ - ~ ~ and we s h a l l de- velop i t s s p e c i f i c advantages i n t h e n e x t s e c t i o n . This t a l k w i l l be c e n t e r e d around a complete study of the System ' ' ~ r + ' ' ~ i a t 280 MeV. We s h a l l t r y t o show, through t h a t s p e c i f i c example, t h e i n t e r e s t t h e r e i s i n s t u d y i n g l i g h t p a r t i c l e emission i n D I C and more g e n e r a l l y i n any d i s s i p a t i v e r e a c t i o n .

The paper w i l l be d i v i d e d i n t o f o u r s e c t i o n s . The g e n e r a l motivation f o r p a r t i c l e emission s t u d i e s w i l l be given f i r s t a s w e l l a s t h e k i n d of informa-

t i o n they can presumably b r i n g t o our knowledge of heavy i o n d i s s i p a t i v e r e a c t i o n s . Then, t h e o r i g i n of

the a - p a r t i c l e s observed i n t h e A r + N i r e a c t i o n w i l l be d i s c u s s e d . I n a t h i r d p a r t , we p r e s e n t r e s u l t s on

t h e angular momentum t r a n s f e r a s deduced from o u t of p l a n e a n g u l a r d i s t r i b u t i o n s and charged p a r t i c l e mul- t i p l i c i t i e s . F i n a l l y , a s t o t h e g e n e r a l use of par- t i c l e emission p r o p e r t i e s i n o t h e r s i t u a t i o n s than DIC s t u d i e s , we conclude by g i v i n g few examples where i t may a l r e a d y be f o r s e e n t h a t such methods would be most advantageous.

1 . D i s s i p a t i v e p r o c e s s e s and l i g h t p a r t i c l e emission:

an approach t o a n g u l a r momentum.

L i g h t p a r t i c l e s e m i t t e d i n a heavy i o n c o l l i s i o n may be considered a s t e s t p a r t i c l e s to probe t h e evo- l u t i o n of the r e a c t i o n . T h e i r c h a r a c t e r i s t i c s , ener- gy and a n g u l a r d i s t r i b u t i o n , should indeed r e f l e c t t h e degree of e q u i l i b r i u m of t h e c o l l i d i n g system.

I n p r i n c i p l e , they can be e m i t t e d a t any s t a g e of, t h e r e a c t i o n . F a s t , knock-out p a r t i c l e s may a r i s e a t t h e very beginning of the c o l l i s i o n . One would t h e n e x p e c t t y p i c a l p r o p e r t i e s of a one-step d i r e c t , reac- t i o n . They can a l s o be e m i t t e d some time a f t e r w a r d s when a composite system i s c l e a r l y formed between

the two i n t e r a c t i n g n u c l e i , d u r i n g t h e approach of the thermodynamical e q u i l i b r i u m i n t h e system. This f a s t p a r t i c l e emission h a s been observed i n s e v e r a l 24'26,29-30 systems a t r a t h e r h i g h r e l a t i v e e n e r g i e s

It h a s been stiggested t h a t some h o t s p o t h a s been formed d u r i n g t h e c o l l i s i o n , which i m p l i e s t h a t h i g h temperatures a r e l o c a l i s e d i n some r e s t r i c t e d p a r t of t h e composite system. The a s s o c i a t e d p a r t i c l e emission time w i l l then be s o s h o r t t h a t emission could a c t u a l l y occur b e f o r e t h e s c i s s i o n of t h e com-

p o s i t e system. That k i n d of emission can thus r e v e a l t h e n a t u r e of t h e e a r l y s t a g e of the energy and angu- l a r momentum d i s s i p a t i o n .

Looking now a t l a r g e r i n t e r a c t i o n time, many de- grees of freedom of t h e composite system should have time t o reach e q u i l i b r i u m (N/Z r a t i o , r e l a t i v e motion, r o t a t i o n a l degrees) and f i n a l l y , t h e system d i s r u p t s i n t o two very e x c i t e d fragments which a r e going t o emit l i g h t p a r t i c l e s ( n , p , a ) and y-rays o r even t o f i s s i o n f o r very heavy p r o d u c t s . These secondary par- t i c l e s have w e l l d e f i n e d c h a r a c t e r i s t i c s r e l a t e d n o t only t o t h e e x c i t a t i o n energy b u t a l s o t o t h e a n g u l a r momentum of t h e e m i t t i n g n u c l e u s . As we a r e i n t e r e s -

t e d i n t h i s conference t o the behaviour of n u c l e i a t h i g h angular momentum, i t may seem worthwhile t o re- c a l l b r i e f l y t h e e f f e c t s of high a n g u l a r momentum on t h e d e e x c i t a t i o n s t a g e of t h e n u c l e u s .

F i r s t , i t i s w e l l known t h a t high s p i n s t a t e s w i l l f a v o r a - p a r t i c l e emission. This i s simply. be- cause they can c a r r y away a l a r g e amount of o r b i t a l angular momentum a s compared t o o t h e r l i g h t p a r t i c l e s .

Fig.2. Avemge mZues of orbital anguZar momenta re- moved by clparticles as a finct-im of the i n - t r i n s i c spin J for d o u s emitting fragments excited to 60 MeV.

F i g . 2. shows f o r example t h e o r b i t a l a n g u l a r momentum removed by a - p a r t i c l e s a s a f u n c t i o n of i n t r i n s i c s p i n of the e m i t t i n g n u c l e u s f o r t h r e e d i f f e r e n t com- pound n u c l e i a t 60 MeV e x c i t a t i o n energy ( t h e calcu- l a t i o n h a s been done u s i n g t h e a n a l y t i c a l e x p r e s s i o n s e x t r a c t e d from t h e s t a t i s t i c a l model by Catchen e t a ~ . ~ ' ) . As t h e emission w i d t h of a given channel i s p r o p o r t i o n a l t o t h e r a t i o of l e v e l d e n s i t i e s i n t h e daughter and t h e p a r e n t n u c l e u s , i t i s c l e a r t h a t f o r high s p i n s t a t e s i n t h e p a r e n t , l a r g e R v a l u e removed by a - p a r t i c l e s w i l l s t r o n g l y f a v o r t h i s channel r e l a -

(4)

t i v e l y t o the emission of o t h e r p a r t i c l e s . Thomas 3 2 and Grover and ~ i l a t ~ ~ have d i s c u s s e d e x t e n s i v e l y t h e s p i n dependence of n , p and a: emission probabi- l i t i e s . Let us j u s t show a s an example t h e r e s u l t of a GROG12 c a l c u l a t i o n f o r t h e emission p r o b a b i l i t y of n, p, a a s a f u n c t i o n of the a n g u l a r momentum of the

6 2nucleus e x c i t e d a t 5 4 MeV ( f i g . 3 ) . ~ ~ It i s c l e a r

2 9

- -

---

-

-

- -

-

-

-

- - - -

- - -

- -

- -

62

-

29"

-

GROG1 Z - flrsf Step

<

E*)= 54 MeV

I I I I

poses e x p e r i m e n t a l l y a d e t e c t i o n p l a n e , one d e f i n e s a l s o t h e d i r e c t i o n of a n g u l a r momentum i n t h e en- t r a n c e channel and of the s p i n s of t h e fragments i s s u e d from the c o l l i s i o n ( t h i s i s of course t h e i d e a l case of complete alignment of the fragments). F i n a l l y , t h e a n g u l a r d i s t r i b u t i o n of l i g h t p a r t i c l e s e m i t t e d by the a l i g n e d n u c l e i should be i s o t r o p i c i n the r e a c t i o n plane b u t should show an out-of-plane a n i s o t r o p y which i s d i r e c t l y r e l a t e d t o the a n g u l a r momentum of t h e e m i t t i n g fragments. This problem was f i r s t considered by E r i c s o n and ~ t r u t i n s k i ~ ~ twenty y e a r s ago. More re- c e n t l y , i t has been d i s c u s s e d by ~ ~ s sand Catchen i n ~ ~ ~ e t a ~ . ~ ' . I t may a l s o be n o t i c e d t h a t these p r o p e r t i e s have a l r e a d y been used i n compound s t u d i e s t o determi- ne t h e c r i t i c a l a n g u l a r momentum f o r f ~ s i o n ~ ~ - ~ ' .

The l a s t p o i n t which i s worth t o be s t r e s s e d con- c e r n s the k i n e t i c energy of t h e e m i t t e d p a r t i c l e s . C l a s s i c a l l y , when a r i g i d body i s r o t a t i n g , t h e par- t i c l e e m i t t e d from t h e s u r f a c e g e t s an e x t r a i n i t i a l v e l o c i t y Vs e q u a l t o t h e s u r f a c e v e l o c i t y of t h e nu-

where R, J and

3

a r e r e s p e c t i v e l y t h e nucleus r a d i u s , t h e a n g u l a r momentum and the moment of i n e r t i a of t h e Fig. 3 . Re Zat-ive emission probabi Zities of neutrons,

nucleus and $ i s t h e angle between t h e d i r e c t i o n of J

protons, and a - p a r t i c k s and muZtipZicity ra-

and t h e d i r e c t i o n of emission. This spin-off e f f e c t t i o %/Ma from 6 2 & frngments a t < 9 > = 5 4 MeV.

w i l l t h e n be maximum i n t h e d e t e c t i o n p l a n e perpendi- from t h i s p l o t t h a t measurement of p o r a m u l t i p l i -

c i t i e s o r even b e t t e r Mp/M, may l e a d t o a r a t h e r a c c u r a t e s p i n d e t e r m i n a t i o n . This r e q u i r e s of cour- s e e x t e n s i v e e v a p o r a t i o n c a l c u l a t i o n a s w e l l a s , i f p o s s i b l e , c a l i b r a t i o n measurements.

' ~ e g i d e s t h i s ' e f f e c t on , t o t a l ,emission p r o b a b i l i - t y , h i g h s p i n s i n t h e e m i t t e r w i l l a l s o show up i n the s p a t i a l d i s t r i b u t i o n of t h e e v a p o r a t e d p a r t i - c l e s . To e x p l a i n these e f f e c t s , l e t us c o n s i d e r t h e p a r t i c u l a r s i t u a t i o n of deeply i n e l a s t i c c o l l i s i o n s . Assum t h a t t h e composite system i s formed f o r a s i n g l e incoming p a r t i a l wave. I n t h e l i m i t of long i n t e r a c t i o n time, because of the t a n g e n t i a l f r i c t i o n , t h e e n t i r e composite system w i l l r o t a t e r i g i d l y w i t h a s p i n J and a t t h e time of s c i s s i o n , t h e c l a s s i c a l p i c t u r e i s s i m i l a r t o t h e o n e encountered i n f i s s i o n . The two fragments w i l l be e m i t t e d p r e f e r e n t i a l l y i n a p l a n e p e r p e n d i c u l a r t o J and moreover a s the compo- s i t e system was r i g i d l y r o t a t i n g , they w i l l appear w i t h i n t r i n s i c s p i n p a r a l l e l t o J, t h a t i s perpen- d i c u l a r t o t h e d e t e c t i o n p l a n e . I n t h e same way, fragments w i l l then e v a p o r a t e p a r t i c l e s w i t h a ma- ximum l o c a t e d i n a p l a n e p e r p e n d i c u l a r t o t h e i r i n - t r i n s i c s p i n d i r e c t i o n s . A c c o r d i n g l y , when one im-

c u l a r t o J . It corresponds t o an a d d i t i o n a l energy AE e q u a l t o

where m i s t h e p a r t i c l e mass.

R e s u l t i n g a d d i t i o n a l a - p a r t i c l e e n e r g i e s as a f u n c t i o n of t h e a n g u l a r momentum of t h e e m i t t e r a r e shown i n f i g . 4 f o r t h r e e d i f f e r e n t n u c l e i (V,Cu,Br)

Fig. 4 . AdditionaZ centrifugal energies (due tb spin- o f f e f f e c t ) as

a

function o f the i n t r i n s i c spin of various emitters.

e x c i t e d a t 60 MeV. It i s c l e a r l y seen t h a t i t could be an a l t e r n a t i v e approach t o t h e angular momentum of

(5)

t h e fragments i n deeply i n e l a s t i c c o l l i s i o n s . However, whereas s p i n d e t e r m i n a t i o n s t h a t may b e o b t a i n e d from t o t a l p a r t i c l e m u l t i p l i c i t i e s ( s e e above) a r e independent on any assumption an t h e alignment of t h e D I C fragment, t h i s i s c l e a r l y n o t t h e case f o r t h e l a s t two p r o p e r t i e s ( o u t of p l a n e a n i s o t r o p y and s p a t i a l dependence of t h e average e n e r g i e s ) . In f a c t , i t i s hoped t h a t comparison be- tween t h e s e v a r i o u s methods may l e a d t o a determina- t i o n of both the average s p i n and t h e alignment of the e m i t t e r . Anyhow, f o r any of t h e s e v a r i o u s e s t i - mates t o be meaningful, i t i s c l e a r t h a t t h e l i g h t p a r t i c l e s must come from a secondary e v a p o r a t i o n p r o c e s s . This i m p l i e s t h a t one h a s f i r s t t o e x p e r i - m e n t a l l y check t h a t t h e e x c i t e d fragments a r e i n thermodynamical e q u i l i b r i u m and t h a t some p r o p e r t i e s which a r e not s p i n dependent r e f l e c t c o r r e c t l y t h i s e q u i l i b r i u m .

2. The 280 MeV ~ r + ~ ' ~ i experiment. The o r i g i n of par- t i c l e e m i s s i o n .

Many reasons p o i n t e d t o t h a t s p e c i f i c r e a c t i o n a s a good c a n d i d a t e t o look a t p a r t i c l e emission.

P a r t i c l e i n c l u s i v e e x p e r i m e n t s 4 0 7 4 1 , fragment-f rag- ment coincidence s t u d i e s 4 * and y-ray m u l t i p l i c i t y m e a ~ u r e m e n t s ~ ~ had a l r e a d y been performed on t h e same s y s tem. These p r e v i o u s experiments have i n d i c a - t e d t h e p o s s i b l e e x i s t e n c e of an i m p o r t a n t c r o s s - s e c t i o n f o r charged p a r t i c l e emission. Moreoversthe e v a p o r a t i o n r e s i d u e c r o s s - s e c t i o n uER was a l s o mea- s ~ r e d ~ ~ . It i n d i c a t e d t h e e x i s t e n c e of a r a t h e r l a r g e c r o s s - s e c t i o n f o r compound nucleus formation.

From the measurement of OER and ODIC one i s able t o d e f i n e a v e r y narrow window of i n i t i a l a n g u l a r mo- mentum t h a t l e a d s t o D I C 74hRDIG&9&. It i s of cour- s e an i d e a l case t o s t u d y the a n g u l a r momentum t r a n s - f e r , m u c h b e t t e r than i n h e a v i e r s y s t e m s w h e r e most of the p a r t i a l waves c o n t r i b u t e t o t h e deeply i n e l a s t i c channe 1.

The experimental s e t up h a s been d e s c r i b e d e l s e - wherez5. However, i t should be n o t e d t h a t i n t h e s e experiments, both i n p l a n e and o u t of p l a n e a n g u l a r d i s t r i b u t i o n s of p r o t o n s and or-particles were measu- r e d i n coincidence w i t h D I C fragments d e t e c t e d a t

'9x30' ( i n p l a n e angle)

.

As t h i s angle was much l a r g e r t h a n t h e g r a z i n g a n g l e , only the, D I C l e a d i n g t o a t o t a l energy d i s s i p a t i o n were considered.

As

i t has been p o i n t e d o u t b e f o r e , a necessary c o n d i t i o n t o apply- t h e s t a t i k t i c a l t h e o r y t o t h e de- e x c i t a t i o n of DIC fragments i s t o i d e n t i f y p r e c i s e l y t h e d i f f e r e n t emission s o u r c e s which could be f o r i n s t a n c e t h e composite system o r t h e fragment them-

s e l v e s . It i s then v e r y u s e f u l to e x p r e s s t h e e x p e r i - mental r e s u l t s i n terms of an i n v a r i a n t cross-section p l o t as a f u n c t i o n of the p a r a l l e l and t r a n s v e r s e ve- l o c i t i e s (V,,, V,)

.

The i n v a r i a n t c r o s s - s e c t i o n may be d e f i n e d by

I

where p i s t h e l i n e a r momentum of t h e l i g h t d e t e c t e d p a r t i c l e (a o r proton)

.

The i m p o r t a n t p o i n t i s t h a t

OI i s i n v a r i a n t i n a Galilean transformation s i n c e i t corresponds t o a simple t r a n s l a t i o n i n t h e

"3

s p a c e . The iso-contour l i n e s corresponding t o a s i n g l e i s o - t r o p i c s o u r c e w i l l appear, i n t h i s r e p r e s e n t a t i o n , a s c i r c l e s c e n t e r e d around the t i p of the v e l o c i t y vec- t o r c h a r a c t e r i z i n g the s o u r c e . Fig.5 shows an example of t h i s k i n d of r e p r e s e n t a t i o n f o r or-particles i n

Fig.5. Invariant cross-section plot for a-par-hkks i n coincidence with fragments of charge Z=16.

The s i z e of the dots i s an increasing ftpzction of GI. Arrcejs give the man r e c o i l for

detected fmgment fPZ=16), and i t s asswned two-body reaction compkmntury P Z cow,.

.

SoJid

oircZes correspond t o evaporation emission.

(man linear mmentwnl from the detected frag- ment (upper c i r c k l m d from i t s conplement

(Zarer c i r p l e )

.

&shed circles in&cate the experimental detection ~ s h o l d s

.

coincidence w i t h a l i g h t fragment Z=I6. Labels an t h e

+6

- -

P I - d 3 0

-

-5 -6

:

. . . . . . . . .

.. 1

a in coincidence

-.

with z = 16

(6)

a x i s r e p r e s e n t a - p a r t i c l e momentum i n u n i t of 0.1 GeV/c i n p l a c e of v e l o c i t y (p=ma.V)

.

I n any d i r e c t i o n , t h e maximum of the d i s t r i b u t i o n c o i n c i d e s w i t h what i s expected when c o n s i d e r i n g eva- p o r a t i o n from two moving s o u r c e s ( t h e two D I C f r a g - ments with average r e c o i l v e l o c i t y VZ and V

z comp. 1.

These maxima a r e symbolized by the f u l l l i n e c i r c l e s i n t h e p l o t , whereas t h e dashed l i n e c i r c l e s simply i n d i c a t e the experimental d e t e c t i o n t h r e s h o l d s . One should n o t i c e a l s o t h a t a t forward a n g l e s , when the two v e l o c i t y c i r c l e s o v e r l a p , t h e r e i s a c l e a r p i l e up of tile c r o s s - s e c t i o n l e a d i n g t o a very s t r o n g asymmetry of the a - p a r t i c l e s p e c t r a with r e s p e c t t o t h e beam a x i s . Average v e l o c i t i e s seemed t o be i n r a t h e r good agreement w i t h p r e f e r e n t i a l emission from t h e l i g h t fragment (Z=16) a t + l o o and by t h e heavy one a t -10'. Another i n t e r e s t i n g p o i n t i s t h a t , by an a p p r o p r i a t e choice of the i n p l a n e angle ( f o r example ?60°) where t o make t h e out-of-plane d i s t r i - b u t i o n , one s e l e c t s almost uniquely a s i n g l e source

( t h e l i g h t fragment a t +60° and t h e heavy one a t -60"). This i s of course a g r e a t advantage of t h e l i g h t p a r t i c l e measurements o v e r t h e o t h e r methods such as t h e y m u l t i p l i c i t y t e c h n i c s .

To check more q u a n t i t a t i v e l y t h e e v a p o r a t i v e o r i - g i n of the l i g h t p a r t i c l e , a two dimensional f i t of t h e i n v a r i a n t d i s t r i b u t i o n s has been performed. For t h i s f i t , it was assumed t h a t two i s o t r o p i c sources were c o n t r i b u t i n g t o t h e a emission. The shape of

t h e l i g h t p a r t i c l e energy spectrum was assumed t o be of a s h i f t e d Maxwell type :

P(E)dE a exp -(E-B)/T

E-B

[ I

( 4 )

where T i s the n u c l e a r temperature and B an e f f e c - t i v e t h r e s h o l d energy. This crude e q u a t i o n , which n e g l e c t s p e n e t r a b i l i t y e f f e c t s h a s been convoluted w i t h a Gaussian d i s t r i b u t i o n t o improve t h e f i t a t

low energy n e a r the t h r e s h o l d f o r a - p a r t i c l e emis- s i o n .

Recoil e f f e c t s have been taken i n t o account ex- p l i c i t e l y whdn t h e a - p a r t i c l e was e m i t t e d by t h e d e t e c t e d fragment

.

For each source, t h e r e were t h e n t h r e e parameters : t h e b a r r i e r B, t h e temperature T and t h e i n t e n s i t y .

The c o n c l u s i o n of t h i s f i t shows very c l e a r l y t h a t the d a t a can be n i c e l y e x p l a i n e d by an i s o t r o - p i c emission from t h e two f u l l y a c c e l e r a t e d f r a g - ments i n s t a t i s t i c a l e q u i l i b r i u m , w i t h one e x c e p t i o n a t forward a n g l e s where i t d e f i n i t e l y remains a n o t h e r component corresponding t o h i g h energy a - p a r t i - c l e s . Comparison w i t h experiment i s shown i n f i g . 6

f o r a - p a r t i c l e i n coincidence w i t h 2=16 a t t h r e e d i f - f e r e n t emission a n g l e s . A t -55' a pure a emission from t h e haavy undetected fragment i s observed. A t 55O i t corresponds mainly t o an a-emission from t h e d e t e c t e d fragment although i t remains a low energy c o n t r i b u t i o n from t h e complementary fragment. And f i n a l l y B - l o 0 , when t h e two components a r e s t r o n g l y mixed, a n addi- t i o n a l p r e e q u i l i b r i u m component appears w i t h a r a t h e r h i g h m a n k i n e t i c energy.

Temperatures deduced from the f i t a r e t h e same f o r t h e two complementary fragments, which i s expected i f thermodynamical e q u i l i b r i u m has been reached i n the composite system b e f o r e s c i s s i o n .

EN

(MeV) Figure 6a

-emiss~on from the

0 10 20 3 0 4 0 5 0 60

E, ( M e V ) Figure 6b

(7)

I I I I I I

Z = 16

- -

- -

-

-

p r e e q u i l ~ b r ~ u m emlsslon component

- -

- - - -

1 I

0 10 20 30 40 50 60

E m

(MeV) Figure 6c

Fig. 6 a, b,c. An ex-le o f a two dimensional f i t o f the invariant cross-section plot for Z=16.

Fitted a-spectra ( s o l i d l i n e s ) are compared t o the eqeriment (histograms) a t three d i f - ferent radial angles.

3 . The s p i n of D I C fragments deduced from out-of- p l a n e a n g u l a r d i s t r i b u t i o n s of a - p a r t i c l e s

.

A s t h e s t a t i s t i c a l o r i g i n of t h e l i g h t p a r t i c l e s has been w e l l e s t a b l i s h e d ( i f one e x c e p t s t h e v e r y

forward a n g l e s ) , we mentionned b e f o r e t h a t t h e out- of-plane d i s t r i b u t i o n s should p r e s e n t an a n i s o t r o p y t h a t c h a r a c t e r i z e s t h e angular momentum of t h e emit- t i n g fragment and i t s degree of alignment. We s h a l l j u s t r e c a l l h e r e t h e b a s i c equation34 which expres- s e s t h e p r o b a b i l i t y f o r a p a r t i c l e , with an o r b i t a l a n g u l a r momentum

R

and energy E t o be e m i t t e d by a nucleus w i t h s p i n I a t a given a n g l e 8 w i t h r e s p e c t

t o t h e d i r e c t i o n of t h i s s p i n I

J i s the z e r o t h o r d e r a s s o c i a t e d Bessel f u n c t i o n

3

and T a r e t h e moment of i n e r t i a and temperature of the r e s i d u a l n u c l e u s .

T%is e q u a t i o n may b e a p p l i e d d i r e c t l y t o out- of-plane a n i s o t r o p y i f one u s e s average v a l u e s of E and R. ~ i t e r n a t i v e l ~ i t i s p o s s i b l e t o i n t e g r a t e over a l l p o s s i b l e R-values and e n e r g i e s of t h e emit- t e d p a r t i c l e 3 6 . Using t h e s h a r p cut-off approxima- t i o n f o r t h e t r a n s m i s s i o n c o e f f i c i e n t s , t h e follow-

pR2, t h e r e l a t i v e moment of i n e r t i a of t h e p a r t i c l e a t t h e n u c l e a r s u r f a c e , e n t e r s v i a t h e e f f e c t of t h e c e n t r i f u g a l b a r r i e r on t h e t r a n s m i s s i o n c o e f f i c i e n t s . I t i s important t o keep i n mind t h a t t h i s r e l a t i o n i m p l i e s a complete alignment of t h e s p i n of t h e emit- t i n g nucleus and a f i r s t s t e p a emission.

The out-of --p lane measurements have been performed a t +60° and -60°, t h a t i s i n a region where only one fragment i s c o n t r i b u t i n g t o the emission. Some of t h e r e s u l t s a r e p l o t t e d i n f i g . 7 i n t h e r e s t frame of t h e corresponding e m i t t i n g fragment. S o l i d curves a r e l e a s t square f i t s of t h e experimental d a t a assuming W(8) a exp(-a s i n 2 8 )

.

I n comparison w i t h a - p a r t i - c l e s , p r o t o n out-of-plane d i s t r i b u t i o n s a r e q u i t e f l a t . This i s i n agreement w i t h the f a c t t h a t a proton cannot remove a s much a n g u l a r momntum a s an a - p a r t i - c l e do. Experimental a a n i s o t r o p i e s have been conver- t e d i n D I C fragment s p i n s u s i n g e q u a t i o n ( 6 ) . The nu- c l e a r temperature T h a s been o b t a i n e d from t h e energy s p e c t r a (T % 2.7 MeV). The moment of i n e r t i a

3

has been taken e q u a l t o t h e r i g i d body v a l u e w i t h ro = 1.2

fm. paR2 was e v a l u a t e d f o l l o w i n g Mac Mahan &d Alexander 45 :

R e s u l t i n g v a l u e s of 1- a r e p r e s e n t e d i n f i g . 8 and compared t o t h e p r e d i c t i o n of a c l a s s i c a l s t i c k i n g model f o r two p o s s i b l e shapes of the composite system a t s c i s s i o n . The s t i c k i n g h y p o t h e s i s seems t o be a reasonable assumption a s we a r e looking a t completely damped e v e n t s . A mean i n t e r a c t i o n time of 10-'~s can be e s t i m a t e d , much l a r g e r than the angular momentum r e l a x a t i o n time f o r t h e same system which i s about 3 46. The s t i c k i n g l i m i t leads simply t o

'31 and r e f e r t o t h e moment of i n e r t i a of each sepa- r a t e fragment. A s the a n g u l a r momentum window t h a t l e a d s t o D I C i s very narrow, i t i s a good approxima- t i o n t o choose a s i n g l e average v a l u e Ioa86-6.

i n g e x p r e s s i o n can b e o b t a i n e d :

(8)

~r (280 M ~ V ) +"NI

Out of plane ongular d~str~but~ons

I

I I 1

d

90 60 30 0

Angle in movlng frame of ernibter i d e g Fig. 7 . T c i c a l o u t - o f p M rmgukzr correlations for

a ~ a r t i c i l e s plotted i n the rest frame of their respective emitters (indicated i n the figurn). Solid o m s are Zeast s q u u ~ s f i t s of the data.

Experimental r e s u l t s a r e i n c l e a r disagreement w i t h a s t i c k i n g h y p o t h e s i s between s p h e r i c a l n u c l e i I n f a c t , t h i s i s n o t s u r p r i s i n g , a s when one t r i e s t o reproduce t h e e x p e r i m e n t a l average k i n e t i c e n e r - g i e s of t h e fragments, t a k i n g i n t o account t h e Cou- lomb p o t e n t i a l and a l s o t h e c e n t r i f u g a l term, one i s l e d t o i n c l u d e deformation e f f e c t s . By matching

t h e fragment deformation (assuming e l l i p s o i d a l sha- pes) t o t h e average energy r e s u l t s and assuming again a s t i c k i n g l i m i t , one g e t s t h e second curve ( s o l i d l i n e i n fig.8) which i s i n good agreement w i t h the

Charge of heavy fragment

.

z~

4 0 35 30 25 23

I 1 I

I

4 0 ~ r ( 2 8 0 MeV) + 5 8 ~ 1

\

\ \ ~ntrinsic sp~ns or the f r a g m e n t

\ deduced from the exper,ment -

\ ( b Z L

' .

z~

'

'\

Calculated wlkh the shcktnp hypothestr

---

spheres

-

ellipsoids

-

Charge of Ilght fragment

.

ZL

K g . 8 . ExperimentaZ i n t r i n s i c spins of t h e individuaZ fragments c o n p a r e d with t h e results of c a b u -

Zatims for the sticking Limit for r i g i d bodies.

experimental d a t a b u t , may be, f o r t h e h e a v i e s t pro- d u c t s (2>37). A p o s s i b l e e x p l a n a t i o n could b e a R f r a c t i o n n a t i o n . I f one assumes t h a t t h e l a r g e s t mass a s p t r i e s come from the lowest R waves (R%?M) t h e s t i c k i n g h y p o t h e s i s f o r deformed n u c l e i would then l e a d t o 1=2& i n s t e a d of 286 f o r ~ = 3 6 6 . However, a s we have a l r e a d y s a i d , e q u a t i o n ( 6 ) which i s used t o g e t I does n o t t a k e i n t o account a p o s s i b l e d i s - alignment of t h e fragment a n g u l a r momentum. I n a way, v a l u e s deduced from e q u a t i o n (7) a r e t o be considered a s lower limits of t h e a c t u a l a n g u l a r momenta. A con- s i s t e n t i n t e r p r e t a t i o n of both t h e average k i n e t i c e n e r g i e s and t h e out-of-plane a n i s o t r o p i e s i s never- t h e l e s s a good i n d i c a t i o n of a r a t h e r s t r o n g align-.

ment

.

A b e t t e r check of t h i s should e v i d e n t l y come from an independent s p i n e s t i m a t e from t h e t o t a l a - p a r t i - c l e and p r o t o n m u l t i p l i c i t i e s which a r e n o t s e n s i t i v e t o t h e alignment b u t t h i s i s t h e s u b j e c t of the n e x t s e c t i o n .

4. The s p i n of D I C fragments deduced from p a r t i c l e m u l t i p l i c i t i e s .

A s i t h a s been p o i n t e d o u t b e f o r e i n s e c t i o n 1 ,

(9)

t h e emission p r o b a b i l i t y of a - p a r t i c l e s i s p r e d i c t e d t o i n c r e a s e very r a p i d l y w i t h i n c r e a s i n g s p i n of the e m i t t e r . As protons follow t h e o p p o s i t e t r e n d , mul- t i p l i c i t y r a t i o b$/% i s thus s t r o n g l y c o r r e l a t e d with s p i n ( s e e f i g . 3 ) . Fig.9 shows very c l e a r l y what has been observed i n two s e r i e s of experiments con- c e r n i n g " ~ r and 'I7T.e compound n u c l e i 3 8 , 3 9 , 4 9 . This

0 20 40 6 0 8 0

..

I I 1

9.0

-

OBSERVED

E"

0 7 5 ~ r 49 MsV

-

0 . 8 - v 7 % r 80

A

0 ' I 7 ~ e 107

\

z

0.6

- z

I

0.4

-

0.2

-

Fig.$. Right : MuZtipZieity r a t i o M /M caZeuZated

He H

from evaporation

thaw

for indizriduaZ i n i - t i a l spin values JCN

.

eft'

: Measured m t i o s of

' x ~ / ' H

euapomted from 7 5 ~ r j t ( m f . 3 8 ) and 1 " ~ e x ( m f . 4 9 ~ f F i g . 7 of ref.31).

p l o t , e x t r a c t e d from t h e work of Catchen e t a l . 3 1 shows the experimental m u l t i p l i c i t y r a t i o M /M as a

a P f u n c t i o n of the average s p i n value i n t h e e n t r a n c e channel ( f o r R-waves l e a d i n g t o compound n u c l e u s f o b a t i o n )

.

I n t h e r i g h t s i d e of t h e fi'gure i s shown t h e c a l c u l a t e d v a l u e of M /M deduced from 1st s t e p

a P

p a r t i c l e e m i s s i on. As the c a l c u l a t i o n corresponds t o s i n g l e s p i n s , t h e p r e d i c t e d curve a r e much s t e e p e r . This i s e x a c t l y t h e i n i t i a l condition i n D I C where very e x c i t e d fragments h a v e a r a t h e r narrow s p i n d i s - t r i b u t i o n ( a t leas't f o r l i g h t sys tems)

.

Accordingly, experimental r e s u l t s of M i l l e r e t a l S 4 ' on 7 s ~ r do n o t seem t o be d i r e c t l y u s a b l e f o r our purpose. We s h a l l need t o r e l y on a s t a t i s t i c a l model c a l c u l a - tion t o e x t r a c t a corr&spondance b e t w e e n ' s p i n s and m u l t i p l i c i t y i a t i o t h a t a p p l i e s t o our experimental s i t u a t i o n .

F o r t u n a t e l y , t h e previous 7 5 ~ r compound n u c l e u s experiment h a s l e d t o e x t e n s i v e and s u c c e s s f u l s t a - ti? t i c a l model c a l c u l a t i o n s by G i l a t and Grover 50

.

This allows us' t o know h a t h e r p r e c i s e l y t h e parame- t e r s t o be used i n t h e Br region, which corresponds

t o t h e h e a v i e s t D I C fragments i n t h e A r + N i r e a c t i o n . Consequently, s t a t i s t i c a l model parameters (mainly l e v e l d e n s i t i e s , moment of i n e r t i a and s h e l l e f f e c t s due t o the v i c i n i t y of t h e 28 p closed s h e l l ) have n o t been taken a s f r e e parameters i n the c a l c u l a t i o n b u t f i x e d a t t h e v a l u e s determined by G i l a t . The only r e a l f r e e parameter was t h e i n i t i a l s p i n of the emit- t e r .

The i n i t i a l d i s t r i b u t i o n i n e x c i t a t i o n ' energy of t h e primary fragments has been deduced from s i n g l e and coincidence wasurements of t h e D I C fragments. It has been assumed t h a t , f o r a given product, t h e r a t i o of the two f i r s t moments were the same f o r both the k i n e t i c energy and the e x c i t a t i o n energy d i s t r i b u t i o n s

( i . e . i n t h i s case <E%/FWHM = 3.75). The i n i t i a l con- d i t i o n s of e x c i t a t i o n energy and a n g u l a r momentum a r e shown i n f i g . 1 0 f o r t h e 7 5 ~ r product i n t h e (E*,J) p l a n e . On t h e same p l o t , appear t h e i s o p r o b a b i l i t y contours f o r a-emission. I t i s c l e a r l y seen t h a t a s m a l l e r r o r i n t h e width of the E R d i s t r i b u t i o n does n o t a f f e c t t h e a emission. Another remark concerns

t h e p l a c e of t h e a emission along t h e e v a p o r a t i o n c h a i n . This i s an important p o i n t as i n the out-of- p l a n e a n a l y s i s , i t was i m p l i c i t e l y assumed t h a t a emission t a k e s p l a c e a t t h e f i r s t s t e p . C a l c u l a t i o n s i n t h e 2=30-36 r e g i o n show t h a t f i r s t chance a emis- s i o n c o n t r i b u t e s f o r more t h a n 40% of t h e t o t a l a c r o s s - s e c t i o n . Adding t h e n a and 2na channels (which b a r e l y change t h e a n g u l a r momentum of t h e e m i t t e r b e f o r e

a

e m i s s i o n ) , t h i s f i g u r e i n c r e a s e s t o about 65% (and t o 80% w i t h p a ) . This j u s t i f i e s sowwhat our p r e v i o u s assumption i n s e c t i o n 3.

Pig. 10. ~ n i t i a 2 'conditions o f e z d t a t i o n e n e m (PWHM) and a n g u h momentum for

7 5 ~ r

frag- ments i n t h (#,J) pZ-. OY1 the s- plot appear the isoprobabi Zity contours for a- emission.

(10)

Complete c a l c u l a t i o n s , i n c l u d i n g a l l the p o s s i - b l e d e e x c i t a t i o n channels, have been performed f o r t h r e e n u c l e i only (2123, 29 and 35). For a l l o t h e r charges, and t o save computer time, only p a r t i a l c a l - c u l a t i o n s have been made ( i n c l u d i n g a, xna, p a and pna channe 1 s )

.

The r e s u l t i n g c r o s s - s e c t i o n s were t h e n e m p i r i c a l l y c o r r e c t e d f o r t h e m i s s i n g y i e l d on t h e b a s e of t h e t h r e e complete c a l c u l a t i o n s . I n f i g . l 1 emission p r o b a b i l i t i e s f o r each p a r t i c l e and e m i s s i o n

fig.21. Re lative emission probabi l i t i e s of neutrons, protons and a - p a r t i c k s from 7 5fragments ~ ~

( f i r s t s t e p calculation). Dots corraspond t o calmluted ratios %/Ma deduced from conpkte calculation as the dashed mu?* i s related t o the same caZcuZation for the f i r s t step.

width r a t i o M /M a r e p l o t t e d as a f u n c t i o n of J f o r P a

7 5 ~ r ( 1 s t s t e p c a l c u l a t i o n )

.

Dots correspond t o c a l - c u l a t e d r a t i o M /M deduced from complete c a l c u l a -

P a

t i o n s . I t i s c l e a r l y seen t h a t t h e f i r s t s t e p g i v e s a l r e a d y a v e r y good p i c t u r e of the d e e x c i t a t i o n

..

A

l a s t remark should b e made on t h e primary mass d i s - t r i b u t i o n f o r e a c h charge. Although t h e c a l c u l a t i o n corresponds t o the most probable mass r a t i o , t h a t i s t h e one which minimizes t h e p o t e n t i a l energy of t h e system f o r a given charge asynrmetry (N/Z e q u i l i b r a - t i o n ) , i t does take i n t o account the d i f f e r e n t p a r t i - c l e emission width of t h e two neighbouring i s o t o p e s .

A good t e s t of t h i s type of c a l c u l a t i o n i s t h a t i t should n o t only reproduce p and a m u l t i p l i c i t i e s b u t a l s o t h e e x p e r i m e n t a l energy s p e c t r a . Fig.12

shows t h e r e s u l t i n g c a l c u l a t e d a-spectrum , f o r Z=29 (complete c a l c u l a t i o n ) . .The agreement with t h e expe- r i m e n t a l one (histogram) i s f a i r l y good. Unfortunate- l y , t h e shape of t h e energy spectrum i s n o t s e n s i t i v e enough t o t h e average a n g u l a r momentum t o determine it t h i s way. T h i s i s seen i n f i g . 1 3 where t h e e x p e r i -

E&

(MeV) Fig.12. a-particles emitted by Cu f r a p n t s . A good

agreement i s obtained between the experimen- t a l spect& (histogram) and the calculated one ( s o l i d curve).

0 10 2 0 30

E

(MeV)

Fig.13. a p a x t i c k s emitted by B r fragments. A c m a - rison i s made beetween

the

eseperimentaZ spec- trum (histogram) and resulting .caZcuZated spectra d t h various angular momenta of the emitt2ng nucleus.

mental a-spectrum f o r Z=35 i s compared t o complete c a l c u l a t i o n s w i t h t h r e e d i f f e r e n t s p i n s of t h e e m i t t e r (J=15,21,24fi)

.

These t h r e e v a l u e s give a l l a reasona- b l y good agreement w i t h t h e experiment. However a much b e t t e r s t a t i s t i c s might have allowed a p o s s i b l e

(11)

s p i n d e t e r m i n a t i o n from t h e shape of t h e energy spec- t r a .

Much more p r e c i s e i n f o r m a t i o n should be o b t a i n e d from the p a r t i c l e m u l t i p l i c i t i e s . For example, i t i s seen from f i g . 1 1 t h a t i n the r e g i o n of i n t e r e s t ( J =

1 6 - 3 6 ) , a m u l t i p l i c i t y i n c r e a s e s by about 13% e v e r y

2fi

and t h a t a t t h e same time M /M d e c r e a s e s by 20%.

P a

Using t h e s p i n d e t e r m i n a t i o n o b t a i n e d from t h e out- of-plane a n i s o t r o p y , we have computed both t h e pro- ton and t h e a - p a r t i c l e m u l t i p l i c i t i e s f o r a l l heavy e m i t t e r s . The r e s u l t s a r e d i s p l a y e d i n f i g . 1 4 and compared t o t h e experiment.

a -

particles

0 2 0 2 5 3 0 35

erni t ter

Fig.14. CaZcuZated ( s o l i d c w s e s ) and experimentaZ p cuzd a-pa&cZe rnuZtipZicities as

a

f m c C i m of the cha;rge o f , *he emitting n u c k u s

.

The agreement i s reasonable i n t h e region 2 ~ 2 8 - 36 b u t i s n o t s o good f o r lower Z . T h i s l a s t case i s

A p o s s i b l e e x p l a n a t i o n could be an o v e r e s t i m a t e of t h e moment of i n e r t i a of t h e r e s i d u a l nucleus i n e q u a t i o n (7), a s some a - p a r t i c l e s may come from a n a o r p a channel. However, c o n s i d e r i n g the model uncer- t a i n t i e s , i t i s probably b e t t e r n o t t o t a k e t h e above d i f f e r e n c e t o o s e r i o u s l y . I n f a c t b o t h methods g i v e very s i m i l a r r e s u l t s and t h i s i s a c l e a r s i g n a t u r e of a s t r o n g alignment of t h e a n g u l a r momentum t r a n s f e r r e d i n t h i s r e a c t i o n . I d e n t i c a l conclusions have been rea- ched i n h e a v i e r systems u s i n g s e q u e n t i a l f i s s i o n me- thod12. This i s a l s o the r e s u l t t h a t t h e o r e t i c a l in- v e s t i g a t i o n of angular momentum d i s s i p a t i o n on t h e b a s i s of Fokker Planck e q u a t i o n l e a d s t o 46,5 1

F i n a l l y , t h i s experiment may be compared t o a y- m u l t i p l i c i t y measurement on t h e same system by Bock e t a1.43. This i s done i n f i g . 1 5 and i t shows t h a t p a r t i c l e r e s u l t s a r e l y i n g w e l l above t h e y - m u l t i p l i - c i t y d a t a . The d i f f e r e n c e corresponds t o a n g u l a r mo- mentum removed by t h e l i g h t p a r t i c l e s , which has n o t been taken , i n t o account i n t h e y - m u l t i p l i c i t y measu- rements. I t i s w e l l accounted f o r by the s t a t i s t i c a l model u s i n g t h e e x p e r i m e n t a l p a r t i c l e m u l t i p l i c i t i e s .

Sum of the tragment splns deduced

from out. of. plane anlsotropies 1

i

\\ St~cklng hypothesis :

---

spheres

-

ellipsoids

\

\

\

\ \ \

\

\

\ \ -

---__

(and 100 96 stretched E2 transitions)

most probably r e l a t e d t o our choice of the s t a t i s t i - c a l model parameters. We have indeed a good c o n f i -

4 0 ~ r ( 2 8 0 M ~ V ) + 5 8 ~ ~ dence i n t h e p a r a m t e r s f o r t h e high Z region b u t

t h e r e i s no s p e c i a l reason why t h e y should a l s o work " o 2 0

i n t h e r e g i o n 2=20-25 where the i n f l u e n c e of t h e 20 Charge of light fragment , 2'

p ,shqll h a s t o b e taken i n t o account p r o p e r l y . I f we Ng.15. Sum of the spins of the t u o conpZementary then r e s t r i c t the comparison t o t h e r e g i o n Z=28-36, fragments as deduced porn the a c t - o f - p h we can * n e v e r t h e l e s s n o t i c e t h a t , on average, the pre- data conpamd with those deduced from y- d i c t e d a - p a r t i c l e m u l t i p l i c i t i e s a r e a b i t t o o h i g h m l t i p Z i & t y m a s m e m n t s of m f . 43.

whereas t h e o p p o s i t e t r e n d is found f o r the p r o t o n s . T h i s c o u l d e a s i l y be c o r r e c t e d f o r by, d e c r e a s i n g slowly t h e i n i t i a l s p i n of the fragments. P a r t i c l e m u l t i p i i c i t y e s t i m a t e w i l l then tend t o be '2 o r 36

units lower than the anisotropy one.

(12)

5 . Conclusion.

Charged p a r t i c l e s t u d i e s i n coincidence w i t h deeply i n e l a s t i c fragments appear t o be a very power- f u l t o o l f o r s t u d y i n g energy d i s s i p a t i o n a s w e l l a s a n g u l a r momentum t r a n s f e r . Combining t h e d i f f e r e n t emission p r o p e r t i e s ( a n g u l a r d i s t r i b u t i o n s , energy s p e c t r a , p a r t i c l e m u l t i p l i c i t i e s ) , i t h a s been pos- s i b l e t o measure r a t h e r p r e c i s e l y t h e a n g u l a r momen- tum t r a n s f e r . A good a g r e e w n t w i t h t h e s t i c k i n g l i m i t h a s been o b t a i n e d . Pbreover, the degree of a l i g n m n t of t h e D I C fragments was found t o be very s t r o n g .

A t l e a s t , f o r l i g h t systems, l i g h t charged p a r

-

t i c l e masurement should be p r e f e r r e d t o t h e y- technique a s they a r e more d i r e c t l y connected w i t h t h e fragment i n i t i a l s p i n of t h e e m i t t e r . Moreover, t h i s method i s t h e only one t h a t g i v e s a p r e c i s e measurement of the i n d i v i d u a l s p i n of b o t h comple- mentary fragments.

S y s t e m a t i c s t u d i e s a r e s t i l l needed t o i n c r e a s e o u r knowledge of DIC. For example, t h e r e a r e s t i l l very few experiments on t h e time e v o l u t i o n of angu- l a r momentum d i s s i p a t i o n a s might be o b t a i n e d by s t u d y i n g a l s o t h e f l u c t u a t i o n s a n d / o r t h e energy d i s s i p a t i o n .

More g e n e r a l l y , we t r i e d i n t h i s paper t o show through a s p e c i f i c experiment how powerful1 t h e use of charged p a r t i c l e emission can be t o s t u d y any d i s s i p a t i o n mechanism. Indeed, a l l what has been des- c r i b e d i n t h i s paper on s p i n d e t e r m i n a t i o n may be a p p l i e d t o any nucleus i n s t a t i s t i c a l e q u i l i b r i u m . From t h i s p o i n t of view, i t i s s u r p r i s i n g t h a t only very few such experiments have been perfonoed i n

compound nucleus s t u d i e s where p r o t o n s and a - p a r t i - c l e s t o g e t h e r w i t h

y- coincidence^^^

could b e of a g r e a t h e l p t o know v e r y p r e c i s e l y t h e e n t r y s t a t e s .

I n t h e same s p i r i t , p a r t i c l e p a r t i c l e angular c o r r e l a t i o n s can a l s o be very s e n s i t i v e t o t h e angu- l a r momentum of t h e emitter53, and i t seems p o s s i b l e t o s e l e c t t h i s way, continuum s t a t e s with h i g h angu- l a r momenta. As a l a s t example, l e t us c o n s i d e r t h e problem of t h e p o s s i b l e e x i s t e n c e of a R-window i n f u s i o n r e a c t i o n s . TDHF c a l ~ u l a t i o n s ~ ~ p r e d i c t an i n - c r e a s e of t h e R minimum and a narrowing of t h e -.9 window i t s e l f w i t h i n c r e a s i n g energy. This i s a ty-

~ i c a l case where an e x c i t a t i o n f u n c t i o n of p a r t i c l e m u l t i p l i c i t i e s might very simply g i v e t h e answer a s

t o t h e e x i s t e n c e of such 11 l i m i t a t i o n .

F i n a l l y , coming back t o D I C r e a c t i o n s , i t i s worth t o s t r e s s again t h a t , f o r l i g h t systems, a ra-

t h e r narrow window of a n g u l a r momenta c o n t r i b u t e s t o

t h i s process a s opposed t o f u s i o n r e a c t i o n s where t h e compound nucleus i s formed w i t h a v e r y wide a n g u l a r momentum d i s t r i b u t i o n . T h i s should be k e p t i n mind i n high s p i n s t a t e s t u d i e s a s i t should be p o s s i b l e t o

t a k e advantage of t h i s s i t u a t i o n where t h e e n t r a n c e channel i s w e l l d e f i n e d w i t h r e s p e c t t o the a n g u l a r momen tum

.

References.

I J . G a l i n , European Conference on Nuclear Physics w i t h heavy i o n s (Caen 1976) J. Physique

21,

C5

( 1976)

2 L.G.Moretto and R.Schmitt, European Conference on Nuclear P h y s i c s w i t h heavy i o n s (Caen 1976) J . Physique 2 , 1 0 9 (1976)

3 ~ . ~ . ~ c h r E d e r and J.Huizenga, Ann. Rev. Nucl.

Science

2,

465 (1977)

4 D.K.Scott, Berkeley P r e p r i n t LBL 7727

5 M.Lefort and C.Ng^o, Ann. Physique ( P a r i s )

2,

5 (1978)

.

6 R.Babinet, DeuxiSme Colloque Franco-Japonais de Physique Nuclgaire avec des i o n s l o u r d s , G i f t Y v e t t e

( 1979) Comp t e s Rendus p .42 1

.

7 J .B .Blocki, Y . B ~ n e h , J .R.Nix, J .Randrup, M.Robe1, A.J.Sierk and W.J.Swiatecki, Ann. Phys. 113 (1978) 8 L.G.Wozniak, R.P.Schmitt, P . ~ l > s s e l , R.C.Jared,

G.Bizard, L.G.Moretto, Phys. Rev. Lett.

60,

1436 (1978)

.

9 P .Dyer, J

.

J .Pui gh, R .Vandenb os ch, T .D .Thomas, M.S.Zisman, Phys. Rev. L e t t .

2,

392 (1978) 10 M.Rajagopalan, L.Kowalski, D.Logan, M.ECaplan,

J.M.Alexander, M.S.Zisman, J.M.Miller, Phys. Rev.

C19, 54 (1979).

-

11 H.J.Specht, I n t . Conf. on Nucl. I n t e r a c t i o n s , Canberra ( A u s t r a l i a ) (1978)

.

12 D .V.Harrach, P . ~ l i s s e l , Y .Civelokoglei

,

R.Manner and H.J.Specht, Phys. Rev. L e t t .

2,

1728 (1979).

13 C.Le Brun, J .F.Lecolley, F.Lefebvres, L'Haridon, J . P . P a t r y , J.C.Steckmeyer and R.Chechik, Contribu- t i o n t o t h i s Conference.

14 C.Gersche1, M.A.Deleplanque, H . I s h i h a r a , c.~g^o, U.Perrin, J . P B t e r , B .Tamain, ~ . V a l e n t i n , D.Paya, Y .Sugiyama, M.Berlanger, F ,Hanappe, Nucl

.

Phys

.

A317, 473 (1979)

-

15 A . O l m i , H.Sann, D.Pelte, Y .Eyal, A.Gobbi, W.Koh1, U.Lynen, G.Rudolf, H . S t e l z e r , R.Bock, Phys. Rev.

L e t t .

fi,

688 (1978).

16 R .Albrech t

,

W .~iinweber, G .Graw, H .Ho, S .G .S teddman, J.P.Wum, Phys. Rev. L e t t .

2,

1400 (1975).

17 K .V .Ribber, R.Ledoux, S .G.Steadman, F-Videback, C.Young, C.Flaum, Phys. Rev. L e t t .

38,

334 (1977).

(13)

P . G l i s s e l , R.S .Simon, R.M.Diawnd, R.C.Jared, 40 1 . Y .Lee, L.G.Moretto, J.O.Newton, R.Schmitt',

F.S.Stephens, Phys. Rev. L e t t .

38,

331 (1977).

M.M.Aleonard, G . J .Wozniak, P .Glassel, 4 1

M.A.Deleplanque, R.M.Diamond, L.G.Moretto, P.P.Schmitt, F.J.Stephens, Phys. Rev. L e t t .

g,

622 (1978). 42

M.N.Nambodiri,, J.B.Natowitz, P.Kasi Raj, R.Eggers, L.Adler, P.Gonthier, C.Cerruti and

S.Simon, Phys. Rev.

E,

982 (1979). 43

M.Ishihara,. K.Janaka, T.Kommuri, K.Matsuska, M.Sano, Phys. L e t t .

E,

281 (1978).

W.Trautmann, J.de Boer, W.Diinweber, G.Graw,

R .Kopp, C .L aute rb ach, H .Pucht

,

U .Lynen, Phys

.

44

Rev. L e t t .

39,

1062 (1977).

W .Trautman, W .Dahme, W . ~ ' h w e b e r , W .Hering,

C

.

Lauterbach, H .Puchta, W .~'&n and J .P .Wurm, 45 Contribution t o t h i s conference.

H.Ho, R.Albrecht,

w

.~iinweber, G.Graw, 46

S .G.Steadman, J.P.Wum, D.Disdier, V.Rauch and 47 F.Schiebling, Z . Phys.

E ,

235 (1977).

R.Babinet, B .Cauvin, J .Girard, J.M.Ale&ander, T .H.Chiang: J.Galin, B.Gatty, D.Guerreau and

X.Tarrago, Z . Phys

.

( i n p r e s s ) ' 8

J.W.Harris, T.M.Cormier, D.F.Gusamon, L.L.Lee, R,M.Mc Grath, J.P.Wurm, Phys. Rev. Lett.

2,

1460 (1977).

J.M.Miller, G.L.Catchen, D.Logan, M.Rajagopolan, 49 J.M.Alexander, M.Kaplan and M.S .Zisman, Phys.

Rev. L e t t .

60,

100 (1978). 50

D.Logan, M.Rajagopolan, M.S .Zisman, J.M.Alexander, 5 1 M.Kaplan and L .Kowalski, t o be published.

A.Gamp, J.C.Jacmart, N.Poff6, A.Doubre, 5 2

J,C.Roynette, J.Wilczynski, Phys. L e t t .

2,

215

(1978).

C.Gersche1, N.Perrin, L.Valentin, H.Tricoire and 53 B .Ader, c o n t r i b u t i o n t o t h i s conference.

G.L.Catchen, M.Kaplan, J.M.Alexander and 54

~ . F . R i v e t , Phys. Rev.

G,

940 (1980).

T.D.Thomas, Nucl. Phys.

53,

558, 577 (1964).

J.R.Grover and J . G i l a t , Phys. Rev.

157,

802, 814, 823 (1967).

T,Ericson and V.Strutinski, Nucl. Phys.

g,

284

(1958). .

~ . ~ . h r e t t o , Nucl, Phys.

e,

211 (1975).

~.Lj6ssing, p r e p r i n t 1978.

p .Wurm, i n v i t e d t a l k , t h i s conference.

J.Galin, B.Gatty, D.Guerreau, C.Rousset,

U.Schlot thauer-Voos a d X.Tarrago, Phys

.

Rev.

2,

113, 1126 (1974) and

G,

638 (1974).

D.&erreau, These d l E t a t , Orsay (1974) unpublished.

B.Gatty, D.Guerreau, M.Lefort, X.Tarrago, J.Galin, B.Cauvin, J.Girard, H.Nifenecker, Nucl. Phys.

A253, 511 (1975).

-

J .Galin, B .Gatty, D.Guerreau, M.Lefort

,

X.Tarrago, R.Babinet

,

B .Cauvin, J .Girard and H .Nifenecker, 2. Phys.

=,

347 (1976)

.

R.Babinet, B.Cauvin, J.Girard, H.Nifenecker, B.Gatty, D.Guerreau, M.Lefort and X.Tarrago, Nucl.

Phys.

m,

160 (1978).

R.Bock, B.Fischer, A.Gobbi, K.Hildenbrand, W.Kohl, U.Lynen, 1 .Rode, H.Stelzer, G .Auger, J .Galin, J .M.Lagrange, R.Albrecht and B .B .Back, Masurian School on Nuclear Physics, Mikolaiki (1976) Poland H.Gauvin, D.Guerreau, Y.Le Beyec, M.Lefort,

F . P l a s i 1 and X.Tarrago, Phys. L e t t .

*,

163

(1975)

M.A.Mc Mahan and J.M.Alexander, Phys. Rev. ( i n p r e s s )

G.Wolschin, Nucl. Phys

.

146 (1979)

.

C-Gerschel, M.A.Deleplanque, M.Ishihara, C .Ng^o, N.Perrin, J .PLter, B .Tamain, L .Valentin, D .Payay Y .Sugiyama, M.Berlanger and F.Hanappe, Nucl

.

Phys.

E ,

473 (1979).

M.M.Aleonard, G .J .Wozniak, P .Glgssel, M-A-Deleplanque, R.M.Diamond, L.G.Moretto, R.P .Schmitt and F.Stephens, Phys. Rev. Lett.

40,

622 (1978)

R.G.Reedy, M.J . F l u s s , G:F.Herzog, L.Kowalski. and J .M.Miller, Phys. Rev.

188,

1771 (1969).

J . G i l a t and R.Grover, Phys. Rev.

2,

734 (1971).

S .Ayik, G.Wolschin and W .N&enberg, 2. 'Physik

.

A286, 271 (1978).

-

J.T.Simpson, P.Ojjom, I.Esce, G.B.Hagemann, B .Herskind and M.Neimann, Nucl

.

Phys

.

362

(1977).

T.Kuang-Hsi, ~.D;ssing, C.Gaarde and J.L.Larsen, Nucl. Phys.

G,

189 (1979).

P .Bonche, K.Jr Davies, B .Flanders, H.Flocard, B .Grammaticos

,

S .E .Koonin, S .J .Krieger and M.S .Weiss, Phys. Rev.

g,

641 (1979).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to