• Aucun résultat trouvé

THERMAL FIELD DESORPTION

N/A
N/A
Protected

Academic year: 2021

Partager "THERMAL FIELD DESORPTION"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00229900

https://hal.archives-ouvertes.fr/jpa-00229900

Submitted on 1 Jan 1989

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THERMAL FIELD DESORPTION

H. Kreuser, L. Wang

To cite this version:

H. Kreuser, L. Wang. THERMAL FIELD DESORPTION. Journal de Physique Colloques, 1989, 50

(C8), pp.C8-9-C8-14. �10.1051/jphyscol:1989802�. �jpa-00229900�

(2)

COLLOQUE DE PHYSIQUE

Colloque C8, suppl6ment au n o 11, Tome 50, novembre 1989

THERMAL FIELD DESORPTION

H.J. KREUSER and L.C. WANG

Department of P h y s i c s , D a l h o u s i e U n i v e r s i , t y H a l i f a x , N.S. B3H 3 5 5 . Canada

Abstract

-

Adiabatic p o t e n t i a l energy curves have been calculated a s a function of e l e c t r i c f i e l d s t r e n g t h f o r t h e ground s t a t e and an excited s t a t e of helium adsorbed on tungsten. Using a unitary transformation we construct t h e diabatic energy curves f o r n e u t r a l helium and its singly charged ion. We a l s o obtained the coupling term between t h e s e s t a t e s from which we c a l c u l a t e the temperature dependent ionisation probability of an adsorbed atom and t h e r e s u l t i n g ion yield.

1

-

Introduction

Thermal f i e l d desorption is the removal of field-adsorbed species from the surface of a f i e l d ion t i p which can be achieved by raising the temperature of t h e metal tip. Being an activated process, one could argue t h a t its r a t e constant should follow an Arrhenius param- e t r i z a t i o n

where Ed is the activation energy, obtained from adiabatic energy curves, and t h e prefactor v r e f l e c t s the ionization probability of the adsorbed molecule. This simple-minded approach, however, ignores a number of i n t e r e s t i n g questions, e.g. whether the desorbing species emerge a s ions or n e u t r a l s , whether postionization occurs, and what the energy d i s - t r i b u t i o n of t h e desorbing species is. To ansver such questions one has t o s e t up a kinetic theory t h a t accounts f o r energy and charge t r a n s f e r by formulating the appropriate master equation f o r t h e problem and c a l c u l a t e a l l t r a n s i t i o n probabilities from f i r s t principles.

T h i s theory was formulated r e c e n t l y / l / . In t h i s paper we w i l l present detailed c a l c u l a - tions of the kinetics of thermal f i e l d desorption of helium. In following papers we w i l l study t h e kinetics of f i e l d ionization, necessary f o r a microscopic theory of image forma- tion in the f i e l d ion microscope, and f i e l d evaporation, including the e f f e c t s of postionlza- tion.

We s t a r t our discussion of f i e l d desorption by considering a helium atom adsorbed on a f i e l d ion t i p . A s temperature is raised, it w i l l eventually g e t t h e chance t o escape from its binding potential. If i t s escape from the s u r f a c e is slow enough it w i l l g e t ionized a t the hump of the ground s t a t e energy curve and reach the d e t e c t o r a s an ion. However, i f ioniza- tion, 1.e. tunneling of an e l e c t r o n from the adatom t o the metal, is too slow, the adpartl- c l e w i l l escape a s a n e u t r a l atom with a kinetic energy t h a t has no r e l a t i o n t o the ground s t a t e energy curve. Indeed, a n e u t r a l atom i n a f i e l d past a c r i t i c a l distance no longer corresponds t o t h e ground s t a t e of t h e system but t o some excited s t a t e . I t s p o t e n t i a l energy s u r f a c e is c a l l e d diabatic.

From t h i s s h o r t discussion it should be obvious t h a t adiabatic s t a t e s a r e not the most intu- i t i v e basis t o s e t up a kinetic theoriy of f i e l d desorption and f i e l d ionization. Rather a new basis must .be constructed in which t h e motion of the gas species is e x p l i c i t l y taken i n t o account; they a r e known a s diabatic s t a t e s . Their construction from adiabatic s t a t e s

w i l l be reviewed i n t h e next section including the ldentificatlon of the coupling terms

between them. The l a t t e r then form t h e s t a r t i n g point f o r t h e c a l c u l a t i o n of t r a n s i t i o n probabilities f o r ionization which in t u r n w i l l e n t e r a master equation from which observ- a b l e s l i k e energy dependent ion yields, t h e probability f o r post-ionization e t c . can be com- puted.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1989802

(3)

Fig.1: Adiabatic (V) and d i a b a t i c (W) energy curves f o r He on W in a f i e l d of 5

v/l

(upper s e t and enlarged version In c e n t e r ) and i n 6 ~ / i (lower s e t ) .

In Fig.1 we present adiabatic and diabatic p o t e n t i a l energy curves f o r several f i e l d s t r e n g t h s . Such curves have been drawn q u a l i t a t i v e l y t o serve a s a basis of Muller's image hump mode1/6,7/, Comer's charge exchange rnode1/8,9/, and f o r discussions of charge hopping and charge draining mechanisms./lO/ According t o t h e discussion above, the difference between the adiabatic potential energy curves reaches a minimum a t the apex and is of the order of the i n t e r a c t i o n energy between the highest occupied and the lowest unoccupied orbl- t a l s . With increasing f i e l d , t h e apex w i l l move towards t h e metal surface, r e s u l t i n g in an increase in t h e i n t e r a c t i o n energy and thus i n an increase in t h e energy difference between the adiabatic energy curves. We note t h a t 8 v a r i e s rapidly from 0' t o 90' over a very s h o r t distance, 1.e. l e s s than 0.1A around t h e apex of t h e adiabatic ground s t a t e energy curve, ln- dicative of t h e narrowness of t h e ionization zone.

(4)

2

-

Adiabatic and diabatic s t a t e s

We consider an atom i n f r o n t o f a metal a distance R away from t h e topmost ion core. The hzmiltonian o f t h e s y s t e m can be w r i t t e n a s

where

T N =

-c

az/aR2

2M

i s t h e k i n e t i c energy o f t h e atomic nucleus and

i s t h e hamiltonian o f t h e e l e c t r o n s a t positions r , , r z , . . . V e includes t h e Coulomb i n t e r a c - t i o n s between t h e e l e c t r o n s , between t h e e l e c t r o n s and t h e n u c l e i , and between a l l n u c l e i ( m e t a l l i c and a t o m i c ) .

Let us f i x t h e position o f t h e adatom, t h u s s e t t i n g i t s k i n e t i c energy (3) equal t o zero.

Physically t h i s i m p l i e s t h a t t h e e l e c t r o n i c degrees o f freedom f o l l o w t h e nuclear motion i n s t a n t l y . We can t h e n diagonalize He ( i n practice, a f t e r approximating i t , e.g., by a t i g h t binding hamiltonian or using d e n s i t y f u n c t i o n a l t h e o r y ) t o obtain

where t h e c i are adiabatic many e l e c t r o n wavefunctions. The l o w e s t eigenvalue o f ( 5 ) , V o ( R ) r e p r e s e n t s t h e ground s t a t e o f t h e system and corresponds t o t h e adiabatic binding energy curve. L i f t i n g an e l e c t r o n from t h e h i g h e s t occupied l e v e l ( i n t h e ground s t a t e ) t o t h e l o w e s t unoccupied one, generates t h e energy ourve ( o r r a t h e r s u r f a c e , because R i s a t h r e e - dimensional space coordinate) o f t h e f i r s t e x c i t e d s t a t e e t c .

To t a k e t h e nuclear motion o f t h e adqtom i n t o account we now proceed t o c o n s t r u c t diabatic s t a t e s . There d e f i n i t i o n i s not unique but must be adopted t o t h e s p e c i f i c process t o be studied. In t h i s paper we r e s t r i c t o u r s e l v e s t o f i e l d desorption o f helium f o r which two diabatic s t a t e s are r e l e v a n t , namely t h o s e f o r a n e u t r a l atom and f o r a s i n g l y charged ion.

They are obtained from t h e adiabatic p o t e n t i a l energy c u r v e s , V i ( R ) i n ( 5 ) , by a unitary t r a n s f o r m a t i o n which reads e x p l i c i t l y / l /

Here W o o i s t h e potential curve f o r a n e u t r a l atom, and W++ t h a t o f an ion. The o f f - d i a g o - nal t e r m s Wo+-W+, couple t h e s e s t a t e s t o g e t h e r and a r e responsible f o r ionization or neu- t r a l i z a t i o n .

We have c a l c u l a t e d t h e t r a n s f o r m a t i o n angle 0 assuming t h a t t h e many-electron wavefunctions E i are given a s S l a t e r determinants w i t h t h e c o n s t i t u e n t s i n g l e e l e c t r o n wavefunctions, H r ; R ) , obtained from t h e ASED-MO programme (including e l e c t r i c f i e l d e f f e c t s ) / 2 - 5 1 . The r e l e v a n t excited s t a t e i s s e l e c t e d as belonging t o t h e same symmetry representation as t h e ground s t a t e , e.g. i f we model t h e gas-metal system by a t e t r a h e d r a l c l u s t e r o f metal atoms w i t h helium adsorbed on i t s apex, it has C2, symmetry. Wlth He i n

i t s

1s ground s t a t e , t h e t o t a l ground s t a t e wave f u n c t i o n ,

$,

belongs t o t h e A , representation. Because W,+ preserves t h i s symmetry, t h e r e l e v a n t excited s t a t e has a wave f u n c t i o n ,

ee,

w i t h t h i s symmetry. Because t h e atom or ion w i l l desorb along t h e s t e e p e s t f i e l d gradient, i.e. per- pendicular t o t h e s u r f a c e , we can n e g l e c t any l a t e r a l v a r i a t i o n , s o t h a t , by assumption, O=B(z) depends on t h e d i s t a n c e , z , from t h e m e t a l o n l y , and i s given by

(5)

3

-

Kinetics

To c a l c u l a t e t h e k i n e t i c s of f i e l d desorption and ..field ionization a master equation has been derived which r e a d s f o r our present problem/ll/

Here i = O , + r e f e r s t o t h e n e u t r a l and ionic s t a t e of helium. v and

u

l a b e l t h e s t a t e s i n t h e diabatic p o t e n t i a l s , Woo(z) and W++(z), among which phonon-induced t r a n s i t i o n s take place with r a t e s Ri(v,p). The tunneling r a t e s connecting n e u t r a l and ionic s t a t e s a r e given by

To+(u. v) = ?=A4

1

h~ n0,'(R) Wo+(R) n+,,(R)

1'

A(E+v-Eop, To$ (1 1) with

In (11)

row

is t h e h a l f width of t h e ( d i s c r e t e ) l e v e l p in Woo due t o phonon t r a n s i t i o n s and is given a s

To determine t h e nuclear wave functions, nOv and r ~ + ~ , i n t h e diabatic p o t e n t i a l s we have f i t t e d a Morse p o t e n t i a l t o Woo(z) adjusting its parameters a s a function of f i e l d s t r e n g t h . Likewise, we s e t W++(z) = Wc -eF(z-zc) f o r t h e d i a b a t i c curve of t h e ion. For both poten- t i a l s t h e wave functions can be given a n a l y t i c a l l y .

The ion yield can be c a l c u l a t e d from (10-13) and is given approximately by

Fig.2: Time of f l i g h t curves f o r He f i e l d desorbed from W a t 4.5V/A0.

Left curve: experiment /12/;

r i g h t curve from (14) with

200-

(83

-

'2.06 k V

U)

C 160-

He'

-

1 ns : 0.33 eV

140-

: 0.075

A

\ 120- t,

=

13559 ns

c n .

2 103-

0

peak position and height FL CnT I ME <ns, adjusted f o r comparison.

(6)

In Fig.2 we show t h e ion yield a s a time of f l i g h t curve adjusted i n position and height t o allow d i r e c t comparison with experimental d a t a by Tsong /12/. We note t h a t t h e t h e o r e t i c a l curve has an energy width of about 0.6 eV a s compared t o about 1 eV i n t h e experiment.

Considering a number of t h e o r e t i c a l approximations, discussed i n e a r l i e r papers /1-5/ and a l s o t h a t t h e experiment y i e l d s an upper l i m i t , t h e s e two e s t i m a t e s compare r a t h e r favor- ably. Thermal f i e l d desorption being an a c t i v a t e d process, we have evaluated t h e yield (14) according t o an Arrhenius parametrization (1). The r e s u l t s are presented in Fig.3 (together with t h e position of adsorption) a s a function of f i e l d s t r e n g t h . A s explained i n e a r l i e r papers /I-5/ we t a k e t h e s e l f c o n s i s t e n t f i e l d from density f u n c t i o n a l c a l c u l a t i o n s /13/

performed a t f l a t surfaces. This introduces some u n c e r t a i n t i e s i n t o t h e theory because we have t o r e p r e s e n t W, a t r a n s i t i o n metal, by an approximate rs value. To e s t i m a t e t h e r e l i a - b i l i t y of t h i s procedure we p r e s e n t t h e r e s u l t s i n Fig.3 f o r two values rs=1.5 and 2.0. The theory is d e f i n i t e l y not more a c c u r a t e than t h e spread i n d a t a points; t h i s is t h e b e s t we can do with our present, r a t h e r crude, c l u s t e r programme (based on t h e ASED-MO method). We a r e a t present writing a b e t t e r code.

Fig.3: Position of f i e l d - adsorbed He, zad. a c t i v a t i o n energy, Ed, and p r e f a c t o r , v, a s a funciton of f i e l d s t r e n g t h . Local f i e l d s from density func- t i o n a l c a l c u l a t i o n s with rs=l .5 (squares) and 2.0 ( t r i a n g l e s ) .

The lower panel i n Fig.3 i n d i c a t e s an i n t e r e s t i n g q u a l i t a t i v e f e a t u r e , and t h a t is, t h e dra- matic increase i n t h e p r e f a c t o r a s a function of f i e l d , more ?r l e s s i n an exponential fash- ion. We r e c a l l t h a t i n ordinary, i.e. f i e l d f r e e , thermal desorption, t h e e f f e c t i v e prefac- t o r is a product of a s t i c k i n g c o e f f i c i e n t and an a t t e m p t frequency t o desorb. In thermal f i e l d desorption, t h e r o l e of t h e s t i c k i n g c o e f f i c i e n t is replaced by t h e ionization proba- b i l i t y a t the apex of t h e adiabatic ground s t a t e energy curve. It v a r i e s from zero i n F=O t o a s a t u r a t i o n l i m i t in high f i e l d s , a s borne out by our c a l c u l a t i o n s . For He t h i s s t r o n g f i e l d dependence of t h e p r e f a c t o r has an i n t e r e s t i n g consequence. We note t h a t f o r He t h e a c t i v a t i o n energy f o r f i e l d desorption is roughly equal t o t h e depth of the d i a b a t i c curve f o r t h e n e u t r a l species. Thus thermal desorption of n e u t r a l and ionic He i n a f i e l d have t h e same desorption energy, implying t h a t t h e r a t i o of ions t o n e u t r a l s is proportional t o t h e r a t i o of t h e p r e f a c t o r s . Because t h e p r e f a c t o r f o r t h e desorption of n e u t r a l He is not a s t r o n g function of f i e l d s t r e n g t h , we predict t h a t t h e r a t i o of ion t o n e u t r a l y i e l d is an

(7)

exponential function of f i e l d s t r e n g t h . In p a r t i c u l a r , w e l l below t h e b e s t image voltage, thermal desorption w i l l only yield n e u t r a l He. To t e s t t h i s idea, an experiment should s t a r t from a w e l l defined, constant coverage of He t h a t is t o t a l l y removed by a f a s t tem- p e r a t u r e r i s e s o t h a t t h e t o t a l number of desorbed species remains constant. I f t h e detec- t o r only r e g i s t e r s ions, one should s e e t h e exponential increase i n ion yield d i r e c t l y .

References

/1/ Kreuzer, H.J., and Watanabe, K., J. de Physique

3

(1988) C6-7.

/2/ Tomanek, D., Kreuzer, H.J., and Block, J.H., Surf. Sci.

157

(1985) L315.

/3/ Nath, K., Kreuzer, H.J., and Anderson, A.B.,. Surf. Sci.

176

(1 986) 261.

/4/ Ernst, N., Drachsel, W., L i , Y., Block, J.H., and Kreuzer, H.J., Phys. Rev. L e t t .

57

(1986) 2686.

/5/ Kreuzer, H.J., and Nath, K., Surf. Sci.

183

(1987) 591.

/ 6 / ~ u l l e r , E.W., Naturwissenschaf t e n

29

(1 941 ) 533.

/7/ ~ i i l l e r , E.W., Phys. Rev.

102

(1959) 618.

/8/ Gomer, R., J. Chem. Phys.

2

(1959) 341.

/9/ Comer, R., and Swanson, L.W., J. Chem. Phys.

2

(1963) 161 3.

/ l o / Forbes, R.G., Surf. Sci.

102

(1981) 255.

/11/ Tsukada, M., and Gortel, Z.W., Phys. Rev. B

2

(1 988) 3892.

/12/ Tsong, T.T.. Surf. Sci.

177

(1986) 593.

/13/ Gies, P., and Gerhardts, R.R., Phys. Rev. B B 11986) 982.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to