• Aucun résultat trouvé

OPTIMUM PARTITION OF POWER TO MAXIMIZE FIELD OF MAGNET SYSTEMS

N/A
N/A
Protected

Academic year: 2021

Partager "OPTIMUM PARTITION OF POWER TO MAXIMIZE FIELD OF MAGNET SYSTEMS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00223654

https://hal.archives-ouvertes.fr/jpa-00223654

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

OPTIMUM PARTITION OF POWER TO MAXIMIZE FIELD OF MAGNET SYSTEMS

R. Weggel

To cite this version:

R. Weggel. OPTIMUM PARTITION OF POWER TO MAXIMIZE FIELD OF MAGNET SYSTEMS.

Journal de Physique Colloques, 1984, 45 (C1), pp.C1-881-C1-884. �10.1051/jphyscol:19841179�. �jpa-

00223654�

(2)

OPTIMUM PARTITION OF POWER TO MAXIMIZE FIELD OF MAGNET SYSTEMS*

R . J . Weggel

Francis B i t t e r National Magnet Laboratory, Massachusetts I n s t i t u t e of Technology, Cambridge, MA 0 2 1 3 9 , U.S.A.

R6sum6

-

Pour o b t e n i r l e champ magndtique maximum p r o d u i t par un systOme de b o b i n a g e s , i l f a u t r d p a r t i r 1 ' 6 n e r g i e d i g o n i b l e de s o r t e que t o u t e s l e s bobines a i e n t l a meme e f f i c a c i t e d i f f g r e n t i e l l e . S i l a r d s i s t a n c e de chaque bobine e s t independante de l ' e n e r g i e , t o u t e s l e s bobines p r o d u i r o n t l e mike champ p a r u n i t e d16nergie. Mais s i une bobine c h a u f f e , e l l e ne p o r t e r a que (1-x)' f o i s l e courant Q t a b l i auparavant, x Q t a n t l'augmentation f r a c t i o n n a i r e de r e ' s i s t a n c e , Les systemes oit l e conducteur d o i t Q t r e de'plac6 3 cause du renforcement n d c e s s a i r e pour r e s i s t e r aux h a u t e s f o r c e s appliqu6es r e q u i e r e n t une r e ' p a r t i t i o n d ' g n e r g i e encore p l u s marqu6e.

Abstract

-

To maximize t h e magnetic f i e l d from a system of c o i l s , one should p a r t i t i o n t h e a v a i l a b l e power s o t h a t a l l c o i l s have t h e same incremental e f f i c i e n c y . I f t h e r e s i s t a n c e of every c o i l i s independent of power, t h e n a l l c o i l s should g e n e r a t e t h e same f i e l d per u n i t power. But i f a c o i l h e a t s up, it should c a r r y only (I-x)' a s much c u r r e n t a s b e f o r e , where x i s t h e f r a c t i o n a l i n c r e a s e i n r e s i s t a n c e . Systems i n which conductor must be d i s p l a c e d by reinforcement, i n o r d e r t o w i t h s t a n d high s t r e s s e s , c a l l f o r an even more marked r e a l l o c a t i o n of power.

Scope

-

Suppose t h a t one wishes t o a l l o c a t e power among a number of c o i l s of f i x e d dimensions, i n o r d e r t o maximize t h e t o t a l f i e l d generated a t some s p e c i f i e d p o i n t . To do so, each power consumption Pn should match i t s r e s p e c t i v e f i e l d c o n t r i b u t i o n Bn a t t h e given p o i n t , s o t h a t every incremental e f f i c i e n c y , En = dBn/dPn

,

w i l l

e q u a l every o t h e r . Such a system t h e n w i l l have no ''weak l i n k s , " no c o i l s of below- average e f f i c i e n c y from which t o t r a n s f e r power t o c o i l s i n which t h a t same power would g e n e r a t e more f i e l d .

I n t h e f o l l o w i n g paragraphs we d e r i v e formulas f o r f o u r p r o g r e s s i v e l y more s o p h i s t i - c a t e d models f o r incremental e f f i c i e n c y . The f i r s t two c a s e s apply t o c o i l s which a r e not s t r e s s l i m i t e d ; t h e l a s t two c o n s i d e r c o i l s i n which conductor s t r e n g t h i s i n c r e a s e d i n p r o p o r t i o n t o t h e s t r e s s which t h e c o i l i s t o experience. The f i r s t c a s e r e q u i r e s t h a t t h e c o i l r e s i s t a n c e be e s s e n t i a l l y independent of t h e l e v e l of e n e r g i z a t i o n ; t h e second c a s e allows t h e r e s i s t a n c e t o i n c r e a s e as an a r b i t r a r y f u n c t i o n of t h e power consumed, provided t h a t one knows t h e r a t e of i n c r e a s e near t h e intended o p e r a t i n g p o i n t . The t h i r d c a e p e r m i t s t h e c o i l r e s i s t a n c e t o depend n o t only on power but a l s o on s t r e s s , s o long a s t h e s t r e s s can be considered p r o p o r t i o n a l t o t h e c u r r e n t i n t h e c o i l ; according t o one technique f o r e s t i m a t i n g s t r e s s , t h i s r e q u i r e s t h a t t h e average f i e l d s e e n by t h e c o i l be independent of p e r t u r b a t i o n s from t h e optimum p a r t i t i o n of power. The f i n a l c a s e acknowledges t h a t t h e ambient f i e l d seen by any c o i l s u r e l y w i l l be i n f l u e n c e d by t h e c u r r e n t i n t h a t c o i l . It i g n o r e s t h e e f f e c t of a l l o c a t i n g power among t h e remaining c o i l s , but n o n e t h e l e s s should give a very good g u i d e l i n e t o t h e optimum a l l o c a t i o n of power i n any system, a t l e a s t s o l o n g a s c u r r e n t does not spontaneously r e d i s t r i b u t e i t s e l f under t h e i n £ luence of temperature g r a d i e n t s o r magnetoresistance.

Method

-

A l l t h e d e r i v a t i o n s i n v o l v e t h e method of Lagrange m u l t i p l i e r s , We wish t o

-

maximize t h e t o t a l f i e l d Bt from a system of N c o i l s . I f , a s p o s t u l a t e d , one f o r b i d s

* ~ u ~ ~ o r t e d by t h e National Science Foundation

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19841179

(3)

Cl-882 JOURNAL DE PHYSIQUE

spontaneous r e d i s t r i b u t i o n of c u r r e n t , t h e n t h e f i e l d c o n t r i b u t i o n Bn from each c o i l n w i l l be p r o p o r t i o n a l t o i t s c u r r e n t : I n : Bn = bn In, where bn i s t h e c o n s t a n t of p r o p o r t i o n a l i t y . S i m i l a r l y , t h e t o t a l power consumption Pt i s t h e sum of N i n d i v i d - u a l power consumptions Pn, each p r o p o r t i o n a l t o 12: Pn = Rn I:, where Rn, t h e r e s i s t a n c e of c o i l n, may be considered c o n s t a n t (Case I ) , o r t o depend on t h e c u r r e n t i n c o i l n, e i t h e r because of h e a t i n g only (Case 2), or because of t h e com- bined e f f e c t s of h e a t i n g and r e s i s t a n c e i n c r e a s e s a s s o c i a t e d with r e q u i r e d i n c r e a s e s i n conductor s t r e n g t h (Cases 3 and 4 ) .

Define a f u n c t i o n F = Pt

-

2 y Bt, where y i s t h e unknown (but c o n s t a n t ) Lagrange m u l t i p l i e r ; d i f f e r e n t i a t e F w i t h r e s p e c t t o t h e unknown c u r r e n t s In; and s e t t o zero:

N

I n a r r i v i n g a t t h e right-hand e q u a t i o n , we have r e s t r i c t e d R, t o depend only on In, s o t h a t we can focus on one c o i l a t a time, e l i m i n a t i n g t h e summation and dropping a l l s u b s c r i p t s .

Case 1

-

I n Base 1 we assume t h a t R i s independnt of I; hence dR/dI = 0, and:

-

2 R I = 2 y b; o r , e q u i v a l e n t l y , I = y b / R. (2) One's choice of y determines t h e t o t a l power consumption of t h e system. This i s t h e s o l u t i o n f o r t h e c a s e of r e s i s t a n c e independent of c u r r e n t .

Case 2

-

I n Case 2, i n which each c o i l ' s r e s i s t a n c e depends upon t h e power which i t

-

consumes, l i n e a r i z e t h e dependence by means of t h e f i r s t two terms i n t h e Taylor s e r i e s :

where Ro i s t h e zero-power i n t e r c e p t ("base r e s i s t a n c e " ) and R i s t h e s l o p e , around t h e expected o p e r a t i n g p o i n t , of t h e tangent t o t h e R-vs-P curve. P Ro t y p i c a l l y w i l l be s l i g h t l y g r e a t e r t h a n R(O), t h e c o i l r e s i s t a n c e a t z e r o power: t h e r e s i s t a n c e of a c o i l t e n d s t o r i s e e v e r more g r a d u a l l y w i t h i n c r e a s i n g power, as h e a t - t r a n s f e r c o e f f i c i e n t s improve w i t h i n c r e a s i n g bulk water temperature. For t h e same reason,

w i l l t e n d t o be l e s s t h a n t h e s l o p e of t h e s e c a n t l i n e (R

-

R(0)) / P.

) i n t o (1) and d i f f e r e n t i a t i n g :

The s m a l l e r t h e q u a n t i t y R ~ I ~ , t h e more r a p i d w i l l be convergence i n s o l v i n g e q u a t i o n (4) i t e r a t i v e l y .

Use of ( 3 ) l e a d s t o t h e more compact e x p r e s s i o n :

where r i s t h e r e s i s t a n c e r a t i o R/Ro = ( 1

-

Rp I ~ ) -1

.

Note t h a t t h e optimum c u r r e n t p r e d i c t e d f o r a c o i l which h e a t s up i s s m a l l e r by a f a c t o r r m 2 , compared t o a c o i l of c o n s t a n t r e s i s t i v i t y .

Case 3

-

I f a t i t s intended o p e r a t i n g c u r r e n t any c o i l must w i t h s t a n d a s t r e s s g r e a t e r t h a n t h a t which can be supported s a f e l y by t h e most conductive p r a c t i c a l conductor ( i . e . , c o p p e r ) , t h e n i t s c o e f f i c i e n t Ro no longer can be considered independent of t h e s t r e s s which t h e c o i l i s t o experience; t h e c o i l should be designed w i t h a conductor which i s s t r o n g enough t o w i t h s t a n d t h e d e s i g n s t r e s s w i t h a f a c t o r of s a f e t y which e q u a l s t h a t of every o t h e r s t r e s s - l i m i t e d c o i l i n t h e system. Again l i n e a r i z e t h e dependence: Ro = Roo

+

Rs S, where S i s t h e s t r e s s i n t h e c o i l , and Roo and Rs a r e , r e s p e c t i v e l y , t h e z e r o - s t r e s s i n t e r c e p t and s l o p e , a t t h e expected o p e r a t i n g p o i n t , of t h e curve of base r e s i s t a n c e v e r s u s s t r e s s . I n Case 3 assume t h a t t h e s t r e s s i n a c o i l i s p r o p o r t i o n a l t o i t s c u r r e n t , S = s I, where s i s t h e c o n s t a n t of p r o p o r t i o n a l i t y , s o t h a t : Ro = Roo

+

Ri I, where Ri = s Rs i s t h e r a t e a t which t h e r e q u i r e d base r e s i s t a n c e i n c r e a s e s w i t h i n c r e a s i n g c u r r e n t .

(4)

Comparison w i t h (5) r e v e a l s t h a t t h i s e q u a t i o n f o r s t r e s s - l i m i t e d c o i l s p r e d i c t s an optimum c u r r e n t which i s l e s s t h a n t h a t f o r copper c o i l s by a f a c t o r R / (R

+

% R i I ) . A s i m i l a r e q u a t i o n a r i s e s i f , i n s t e a d of a l i n e a r i n c r e a s e i n r e s i s t a n c e , one assumes a l i n e a r d e c r e a s e i n conductance, t h e e c i p r o c a l of r e s i s t a n c e : Co = Coo

-

Cs S =

Coo

-

Ci I, g i v i n g R = (Coo

-

Ci I )

-F ,

where Coo i s t h e z e r o - s t r e s s i n t e r c e p t , and C, and Cia r e s p e c t i v e f y a r e t h e r a t e s of d e c r e a s e of conductance w i t h i n c r e a s i n g s t r e s s and c u r r e n t . P a r a l l e l i n g t h e s t e p s l e a d i n g t o ( 6 ) :

A l t e r n a t i v e l y , one could have d e r i v e d (7) from ( 6 ) , simply by r e p l a c i n g Ri i n (6) by dRo/dI = d / d I (Coo

-

Ci I)".

Case 4

-

The f i n a l c a s e assumes a l i n e a r i n c r e a s e i n r e s i s t a n c e o r decrease i n conductance, but recognizes t h a t t h e s t r e s s i n a c o i l depends not only on i t s c u r r e n t b u t a l s o on t h e ambient f i e l d t o which i t i s exposed. This ambient f i e l d t e n d s t o depend r a t h e r s t r o n g l y on t h e c u r r e n t i n t h e g i v e n c o i l , but l e s s s o on t h e a l l o c a - t i o n of power among t h e o t h e r c o i l s i n t h e system. I f we i g n o r e changes i n ambient f i e l d not a t t r i b u t a b l e t o t h e c o i l i t s e l f , t h e n s = so

+

si I, o r S = ( s o + s i I ) I, and hence:

where R 1 = so Rs measures t h e r a t e of i n c r e a s e i n base r e s i s t a n c e with ambient f i e l d h e l d c o n s t a n t , and R2 = si Rs measures t h e a d d i t i o n a l r e s i s t a n c e a s s o c i a t e d w i t h t h e

i n c r e a s e i n ambient f i e l d . Again f o l l o w i n g t h e s t e p s r e s u l t i n g i n ( 6 ) :

Note t h a t t h e optimum c u r r e n t p r e d i c t e d f o r s t e s s - l i m i t e d c o i l s i n f l u e n c e d by t h e i r

5

own s e l f f i e l d i s s m a l l e r , because of t h e R2 I term, t h a n t h a t f o r c o i l s not s o i n £ luenced.

I f one assumes i n c r e a s i n g s t r e s s t o imply d e c r e a s i n g conductance, t h e n Co = Coo

-

C1 I

-

C2 I ~ , which l e a d s t o :

One can e x p r e s s (10) i n terms of c o e f f i c i e n t s r e l a t i n g cur e n t and c o n d u c t i v i t y ,

5

i n s t e a d of conductance: Co = (Co / co) (coo

-

c1 I

-

c 2 I ), where c o i s t h e "base c o n d u c t i v i t y " a t t h e o p e r a t i n g p o i n t , coo i s i t s z e r o - s t r e s s i n t e r c e p t , and cl and c2 a r e t h e f i r s t and second c o e f f i c i e n t s i n i t s power s e r i e s expansion w i t h r e s p e c t t o c u r r e n t . ThenCl = Co c l / c o and C2 = Co c 2 / c o y s o t h a t e q u a t i o n (10) becomes:

Motivation

-

Our i n t e r e s t i n t h e a l l o c a t i o n of power t o maximize f i e l d i n a magnet i n c l u d i n g s t r e s s - l i m i t e d c o i l s i s motivated p r i m a r i l y by t h e system sketched i n Fig.

1. This i s a high-performance r a d i a l l y - c o o l e d i n s e r t t o a hybrid system whose o u t e r element i s a superconducting c o i l which g e n e r a t e s a s u b s t a n t i a l background f i e l d i n which t h e i n s e r t operates. A t t h e F r a n c i s B i t t e r National Magnet Laboratory, t h e

superconductor p r e s e n t l y g e n e r a t e s 7.0 t o 7.5 t e s l a s ; t h e i n s e r t i t s e l f g e n e r a t e s up t o 23 T a t 9 M?. An even more ambitious systerd which we have designed and a r e con- s t r u c t i n g f o r t h e U n i v e r s i t y of Nijmegen i s t o i n c o r p o r a t e a superconducting c o i l g e n e r a t i n g up t o 11 T ; t h e i n s e r t i s t o g e n e r a t e a t l e a s t 21 T a t 9 IW, f o r a t o t a l c e n t r a l f i e l d of 32 T , i n a 33 mm 0 room temperature bore.

Each i n s e r t i s cooled by r a d i a l grooves only 0.25 mm deep e t c h e d i n t o a broad f a c e of a l t e r n a t e p l a t e s . Because each passage removes s o l i t t l e conductor, one can

(5)

Cl-884 JOURNAL DE PHYSIQUE

a f f o r d t o employ a g r e a t many of them, t h e r e b y providing an abundance of c o o l i n g s u r f a c e . The magnet t h e r e f o r e i s not l i m i t e d s o much by h e a t f l u x as i s a t y p i c a l a x i a l l y - c o o l e d magnet. E f f i c i e n c y i s allowed t o be t h e governing c o n s i d e r a t i o n . Examples

-

We have d i v i d e d t h e two-coil system shown i n Fig. 1 i n t o seven zones (and t h e i r m i r r o r images), t h e i n n e r c o i l i n t o f o u r , and t h e o u t e r c o i l i n t o t h r e e , zones of e q u a l length. Using t h e formulas j u s t descibed, we have p a r t i t i o n e d 9 I44 of power s o t h a t a l l c o i l s have t h e same incremental e f f i c i e n c y , a s descibed by Eqn. (11) i f t h e - c o i l i s s t r e s s l i m i t e d , and Eqn. (5) i f i t i s not. F i g u r e s (2a) and (2b) p l o t t h e r e s u l t i n g "secant e f f i c i e n c i e s " (Bn/ Pn) of each zone, a s a f u n c t i o n of t h e background f i e l d Ba g e n e r a t e d by a surrounding c o i l . The spread i n e f f i c i e n c i e s between t h e seven zones g i v e s an i n d i c a t i o n of t h e pronounced e f f e c t s of h e a t i n g and s t r e s s i n a f f e c t i n g t h e incremental e f f i c i e n c y of any high-performance c o i l . The new formulas should g r e a t l y f a c i l i t a t e t h e d e s i g n of Gaume c o i l s of e x c e p t i o n a l e f f i c i e n c y .

ORIGIN

+

AXIS

F i g u r e 1: Cross S e c t i o n of Two-Coil, Seven-Zone Radially-Cooled I n s e r t Magnet

F i g u r e s 2a & b: Secant E f f i c i e n c y Bn / Pn of Each Zone, Above, vs. Ambient F i e l d Ba

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to