• Aucun résultat trouvé

STRESSES IN COILS FOR STRONG PULSED MAGNETIC FIELDS

N/A
N/A
Protected

Academic year: 2021

Partager "STRESSES IN COILS FOR STRONG PULSED MAGNETIC FIELDS"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00223663

https://hal.archives-ouvertes.fr/jpa-00223663

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

STRESSES IN COILS FOR STRONG PULSED MAGNETIC FIELDS

F. Herlach, G. de Vos, J. Witters

To cite this version:

F. Herlach, G. de Vos, J. Witters. STRESSES IN COILS FOR STRONG PULSED MAGNETIC FIELDS. Journal de Physique Colloques, 1984, 45 (C1), pp.C1-915-C1-921.

�10.1051/jphyscol:19841187�. �jpa-00223663�

(2)

STRESSES I N C O I L S FOR STRONG PULSED MAGNETIC F I E L D S F . Herlach, G . de Vos and 3. Witters

UniversitO Leuven, Belgium

Resum@

-

Notre s o l u t i o n a n a l y t i q u e pour l e s tensions e l a s t i q u e s dans des m e s anisotropiques a @ t & etendue pour i n c l u r e l a deformation p l astique.

Cette c o n d i t i o n peut se p r o d u i r e dans des bobines 2 champ p u l s e @ l e v @ . En augmentant l e champ magnetique, l a deformation p l a s t i q u e commence

a

l 1 i n t @ r i e u r e t s'etend

a

t r a v e r s l a bobine e n t i e r e dans une gamme e t r o i t e de quelques Teslas. Dans c e t t e c o n d i t i o n , l a bobine p e u t @ t r e c o n t r a i n t e par un renforcement e x t e r i e u r l e q u e l d o i t supporter l e s tensions a d d i t i o n n e l - les. Quelques bobines o n t 6 t 6 eprouv6es jusqu'au p o i n t de r u p t u r e e t l e s r e s u l t a t s sont compares avec 1 es c a l c u l s

.

A b s t r a c t

-

Our a n a l y t i c a l s o l u t i o n f o r t h e stresses i n a n i s o t r o p i c c o i l s i s extended i n t o t h e r e g i o n o f p l a s t i c deformation. This c o n d i t i o n may occur i n pulsed f i e l d c o i l s f o r v e r y h i g h f i e l d s . With r i s i n g magnetic f i e l d , t h e p l a s t i c deformation begins a t t h e i n n e r r a d i u s and spreads over t h e e n t i r e c o i l w i t h i n a narrow range o f o n l y a few Tesla. I n t h i s c o n d i t i o n , the c o i l can s t i l l be h e l d t o g e t h e r by an e x t e r n a l reinforcement which then must support a d d i t i o n a l s t r e s s . A number of c o i l s has been t e s t e d t o t h e breaking p o i n t and t h e r e s u l t s are compared t o t h e c a l c u l a t i o n s .

I

-

INTRODUCTION

I n a previous paper, we have given an a n a l y t i c a l s o l u t i o n f o r t h e r a d i a l and tangen- t i a l stresses i n magnetic f i e l d c o i l s w i t h a n i s o t r o p i c modulus o f e l a s t i c i t y / I / . When t h i s i s used t o discuss t h e performance o f c o i l s f o r very h i g h pulsed magnetic f i e l d s , i t i s found t h a t stresses i n these c o i l s o f t e n exceed t h e l i m i t i n g value where p l a s t i c deformation occurs. We have t h e r e f o r e extended t h i s s o l u t i o n t o i n - clude p a r t i a l and complete p l a s t i c deformation.

The d i f f e r e n t i a l equations

describe t h e e l a s t i c deformation o f a c y l i n d e r w i t h d i f f e r e n t modulus o f e l a s t i c i t y i n t h e r a d i a l and t a n g e n t i a l d i r e c t i o n s . The a x i a l s t r e s s oz i s neglected.

We r e a l i z e t h a t t h i s i s a crude approximation f o r q u a n t i t a t i v e c a l c u l a t i o n s b u t on the o t h e r hand t h e m a t e r i a l parameters a r e anyhow n o t w e l l known under t h e extreme c o n d i t i o n s t o which a pulsed f i e l d c o i l i s subjected. Our c a l c u l a t i o n s a r e intended t o p r o v i d e u s e f u l g u i d e l i n e s f o r the trends t h a t determine t h e design o f a successful c o i l

.

For a c o i l w i t h constant c u r r e n t d e n s i t y , the s o l u t i o n f o r e l a s t i c deformation i s given by

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19841187

(3)

C1-916 JOURNAL

DE

PHYSIQUE

1 0 r = CIX

+

c2x2

+

c 3 x - p - I

+

c+xq-

o 4 = 2c1x

+

3c2x2

-

pc3x-P-l

+

q ~ 4 x q - 1

-

(ax

+

bx2)

w i t h

(Ba

-

Bi)(Ba

-

aBi)

Pa

- Bi) 2

a = 2 b = -

vo (a-1) 2

Po ( * - I )

and w i t h t h e f o l l o w i n g symbols and d e f i n i t i o n s : a1 i n n e r r a d i u s o f t h e s o l e n o i d

a2 o u t e r r a d i u s of t h e solenoid

a %/a1

r r a d i u s of a l a y e r i n t h e c o i l x r / a l

j c u r r e n t d e n s i t y

I 2af (a-1) B j t o t a l c u r r e n t

B magnetic i n d u c t i o n , Bi a t i n n e r radius, Ba a t o u t e r

o r r a d i a l s t r e s s (compressive = p o s i t i v e ) , uri a t i n n e r radius,

era

a t o u t e r o4 t a n g e n t i a l s t r e s s along a x i s o f w i r e

G 1 i m i t i n g s t r e s s where p l a s t i c deformation occurs P

Er r a d i a l modulus o f e l a s t i c i t y E+ t a n g e n t i a l modulus o f e l a s t i c i t y

Er/E4

v P o ~ s s o n ' s r a t i o 6 ( a x i a l l e n g t h ) (2al)

- 1 - 1

S I u n i t s a r e used w i t h uo = 4a x 1 0 - ' ~ s A m

.

Stress i s given i n k i l o b a r o r gigapascal, where 1 GPa = 10 kbar.

(4)

P l a s t i c deformation i s described by t h e von Mises equation

i n combination w i t h equ. (1) which gives the r e l a t i o n between t h e d i f f e r e n t forces a c t i n g on any p i e c e o f w i r e i n the c o i l . The combination of (1) and ( 8 ) cannot be solved a n a l y t i c a l l y because o f the n o n l i n e a r i t y .

We t h e r e f o r e have brought i t i n t o t h e form

where the a x i a l s t r e s s i s again neglected i n order t o be c o n s i s t e n t w i t h t h e approximation made f o r t h e s o l u t i o n w i t h e l a s t i c deformation. These equations can e a s i l y be i n t e g r a t e d by numerical methods, s t a r t i n g a t t h e i n n e r surface where t h e a x i a l s t r e s s can be s p e c i f i e d as i n i t i a l c o n d i t i o n ; i n most cases t h i s w i l l be zero.

I n a s o l i d c o i l w i t h r a d i a l transmission o f s t r e s s , p l a s t i c deformation w i l l always occur f i r s t a t t h e i n n e r r a d i u s . We have used a f o u r t h order Runge-Kutta i n t e g r a t i o n /2/ on a Hewlett Packard 9836 desktop computer. The t r a n s i t i o n p o i n t between t h e regions w i t h p l a s t i c and e l a s t i c deformation i s determined by a double r o o t f i n d e r method. F i r s t , t h e i n t e r s e c t i o n o f t h e two curves f o r t h e t a n g e n t i a l s t r e s s M i t h p l a s t i c and e l a s t i c deformation i s determined. Then, t h e c o e f f i c i e n t s C3 and C4

(equs. 3, 4 and 7 ) a r e m o d i f i e d t o match t h e r a d i a l stresses o f t h e two s o l u t i o n s a t t h e t r a n s i t i o n p o i n t . Now, the i n t e r s e c t i o n of t h e curves f o r t h e t a n g e n t i a l s t r e s s i s determined f o r t h e m o d i f i e d e l a s t i c s o l u t i o n and t h e procedure i s repeated u n t i l the value x t i s found where both t h e r a d i a l and t h e t a n g e n t i a l stresses a r e equal.

The procedure converges r a p i d l y and t h e t r a n s i t i o n i s smooth such t h a t t h e p o s i t i o n o f xt

IS

n o t c r i t i c a l . This i n d i c a t e s t h a t o u r s o l u t i o n w i l l be a reasonable approximation o f r e a l i t y where the t r a n s i t i o n between p l a s t i c and e l a s t i c behaviour i s n o t as sharp as we have assumed. An a l t e r n a t i v e c r i t e r i o n f o r t h e t r a n s i t i o n p o i n t between t h e two s o l u t i o n s i s g i v e n by t h e i n t e g r a l

- 2 .

31T 3 6 T 38T LOT L1 T L1.L T

F i g . 1 Radial and t a n g e n t i a l stresses F i g . 2 Radial and t a n g e n t i a l stresses f o r a c o i l w i t h a = 3 , u 6 k b , f o r t h e same c o i l as i n f i g . 1, a t e = 1, f = I a t differen! a g n e t i c h i g h e r magnetic f i e l d s .

f i e l d s .

(5)

C1-918 JOURNAL DE PHYSIQUE

F i g . 3 Radial and t a n g e n t i a l stresses f o r the same c o i l as i n f i g . 1, a t a f i e l d of 40 T and w i t h an e x t e r n a l l y a p p l i e d s t r e s s o f 1 kb.

which o n l y depends on t h e magnetic f i e l d , t h e e x t e r n a l l y a p p l i e d stresses, al and a.

This can be used f o r a cross-check.

As an example, r e s u l t s f o r a t y p i c a l small pulsed f i e l d c o i l a r e shown i n f i g s . 1 and 2. I t i s e v i d e n t how t h e t r a n s i t i o n p o i n t moves r a p i d l y from t h e i n n e r t o t h e o u t e r r a d i u s as t h e magnetic f i e l d i s increased over a range o f o n l y a few.tesla.

When t h e e n t i r e c o i l i s undergoing p l a s t i c deformation, t h e s o l u t i o n o f ( 8 ) and (1) gives t h e r a d i a l s t r e s s a t t h e o u t e r r a d i u s t h a t must be supported by an e x t e r n a l r e i n f o r c i n g c y l i n d e r t o prevent the c o i l from exploding ( f i g . 2). F i g . 3 gives an example f o r the e f f e c t o f an o u t e r reinforcement (simulated by t h e a p p l i c a t i o n o f a given r a d i a l s t r e s s ) on t h e t r a n s i t i o n p o i n t which i s s h i f t e d back towards t h e i n n e r radius.

The numerical c a l c u l a t i o n s demonstrate t h a t i n many cases of p r a c t i c a l i n t e r e s t t h e t a n g e n t i a l s t r e s s i s almost constant and equal t o the l i m i t i n g s t r e s s f o r p l a s t i c deformation. Therefore, the magnetic f i e l d where t h e e n t i r e c o i l j u s t becomes p l a s t i c a l l y deformed can be estimated from the equation

which has been d e r i v e d under t h i s assumption. T h i s assumption always overestimates t h e l i m i t i n g f i e l d .

I n f i g . 2 we show t h e e f f e c t o f i n c r e a s i n g the magnetic f i e l d much beyond t h i s l i m i t . Through t h e r e l a t i o n w i t h the r a d i a l s t r e s s (equ. 8 ) t h e r e i s an i n c r e a s i n g d e v i a t i o n o f the t a n g e n t i a l s t r e s s from t h e e l a s t i c - p l a s t i c l i m i t . F i n a l l y , t h e t a n g e n t i a l s t r e s s becomes p o s i t i v e and approaches t h e value o f t h e r a d i a l s t r e s s , i n d i c a t i n g t h a t t h e m a t e r i a l begins t o behave l i k e a l i q u i d . I n our s o l u t i o n , t h e f i n a l t r a n s i t i o n i n t o t h i s s t a t e occurs q u i t e suddenly. T h i s d i s c u s s i o n i s o f course somewhat academic because i n p r a c t i c e a c o i l w i l l f a i l l o n g before t h i s c o n d i t i o n i s approached.

I 1 1

-

COIL DESIGN AND EXPERIMENTAL RESULTS

Theedesign o f our p r e s e n t l y used wire-wound c o i l s i s shown i n f i g . 4.

Copper w i r e w i t h r e c t a n g u l a r cross s e c t i o n i s used t o o b t a i n a good f i l l i n g f a c t o r and a good transmission o f s t r e s s w i t h o u t s l i p p i n g .

The c o i l s are wound "wet" i . e . t h e epoxy impregnation i s a p p l i e d w i t h a brush d u r i n g t h e winding procedure. T h i s a l l o w s t h e use o f a f i l l e d epoxy ( S t y c a s t 2850 FT) w i t h improved heat c o n d u c t i v i t y and a c o e f f i c i e n t o f expansion matched t o t h a t o f copper.

(6)

o f t h e g l a s s f i b r e sheet covering t h e outermost l a y e r o f the c o i l , i n order t o o b t a i n t h e b e s t p o s s i b l e transmission o f r a d i a l s t r e s s , and f o r keeping t h e i n n e r r a d i u s o f t h e reinforcement as small as possible. A c r i t i c a l p o i n t i s a t t h e spot where t h e w i r e comes o u t o f the c o i l a t t h e i n n e r l a y e r ; a t t h i s place i t i s subjected t o t h e f u l l magnetic f o r c e b u t n o t supported by t h e o u t e r l a y e r s . As much as possible, t h i s w i r e i s l e a d along t h e magnetic f i e l d l i n e s , and a d d i t i o n a l reinforcement i s provided by wrapping i t w i t h g l a s s f i b r e t h r e a d and s t e e l w i r e . Another c r i t i c a l p o i n t are t h e contacts. We found AMP W-crimp

@

connections b o t h p r a c t i c a l and s u f f i c i e n t l y strong. The crimp connection i s made i n t h e c l o s e v i c i n i t y o f t h e c o i l and i s embedded i n c a s t epoxy w i t h a reinforcement by loose g l a s s f i b r e s . To t h e e y e l e t o f t h e crimp connector, a s t r o n g brass s t r i p i s b o l t e d which extends o u t of t h e epoxy and which i s d i r e c t l y connected t o t h e cables l e a d i n g t o the c a p a c i t o r bank.

f i g . 4 Design o f a standard c o i l as i t i s now i n use a t our l a b o r a t o r y w i t h a 70 kJ, 3.5 kV c a p a c i t o r bank. Copper w i r e 2 x 1 mm, s t e e l band ( y i e l d

s t r e n g t h 12.7 kb) 2 x 0.5 mm, 250 t u r n s , 16.4 mm i n n e r diameter, 52.5 mm o u t e r diameter, 56 mm l e n g t h , inductance 0.8 mH, r e s i s t a n c e 78 ma a t 77 K and 228 ma a t 300 K, peak f i e l d 42 T a t 3 kV charging voltage, 9.1 ms pulse d u r a t i o n (ha1 f p e r i o d )

.

F i g . 5 The i r r e v e r s i b l e change o f the inductance d u r i n g t h e b r e a k - i n o f two c o i l s .

o : standard c o i l as described i n f i g . 4 x : copper w i r e 1.5 x 2.6 mm, 163 turns,

16.7 mm i n n e r diameter, 43.5 mm o u t e r diameter, 56 mm l e n g t h , i n - ductance 0.244

mH,

r e s i s t a n c e 32 mn a t 77 K and 99 ma a t 300 K, peak f i e l d 40 T a t 2.5 kV charging voltage, 7.9 ms pulse d u r a t i o n

*

: c o i l exploded

(7)

C1-920 JOURNAL DE PHYSIQUE

Our c a l c u l a t i o n s as w e l l as p r a c t i c a l experience have shown t h a t t h e most i m p o r t a n t s i n g l e f a c t o r f o r o b t a i n i n g t h e h i g h e s t p o s s i b l e f i e l d i s t h e mechanical s t r e n g t h o f the w i r e i t s e l f . For c o i l s t h a t generate magnetic f i e l d s w i t h a l o n g p u l s e d u r a t i o n (from several m i l l i s e c o n d s t o seconds), t h e e l e c t r i c a l performance depends c r i t i c a l l y on t h e r e s i s t i v i t y /3/. Therefore, a compromise must be made between good e l e c t r i c a l c o n d u c t i v i t y and h i g h mechanical strength; f o r t h e known m a t e r i a l s these two

p r o p e r t i e s f o l l o w opposite tendencies. I n r e c e n t years, a number o f s p e c i a l copper a l l o y s have become a v a i l a b l e t h a t combine increased mechanical s t r e n g t h w i t h reaso- nab1 e c o n d u c t i v i t y

,

examples a r e copper w i t h a1 uminium oxide ( ~ l idcop)@ o r copper- zirconium. The l a t t e r a l l o y has been used a t the I n s t i t u t e f o r S o l i d S t a t e Physics, Tokyo /4/. Another approach t o t h i s problem i s t h e use o f composites w i t h pure copper f o r c o n d u c t i v i t y and a d i f f e r e n t m a t e r i a l f o r mechanical s t r e n g t h . I n t h e USSR, c o i l s have been made w i t h superconducting w i r e as i t i s manufactured f o r making s t a b i l i z e d superconducting c o i 1 s /5/. I n t h i s a p p l i c a t i o n , t h e superconducting core i s o n l y used f o r i t s mechanical strength; i t i s n o t p r a c t i c a l t o cool a l a r g e pulsed f i e l d c o i l by l i q u i d helium. A t our l a b o r a t o r y we have developed a technique o f simultaneously winding a s t e e l band o f t h e same w i d t h on t o p o f t h e copper w i r e w i t h r e c t a n g u l a r cross s e c t i o n . This i s a good combination b u t t h e r e i s an i n s u l a t i o n problem as t h e s t e e l w i r e i s n o t f u r n i s h e d w i t h an i n s u l a t i n g coating. The s t e e l w i r e i s e l e c t r i c a l l y connected i n p a r a l l e l t o t h e copper w i r e f o r a v o i d i n g s t r o n g p o t e n t i a l d i f f e r e n c e s between adjacent s t e e l and copper w i r e s . The problem then a r i s e s a t t h e end p l a t e s . During t h e f i e l d pulse, t h e c o i l s expand r a d i a l l y b u t i n t h e a x i a l d i r e c t i o n they c o n t r a c t . As a consequence, t h e c o i l may p u l l away a x i a l l y from t h e epoxy end plugs, l e a v i n g a gap i n which a surface discharge may e a s i l y develop. We have solved t h i s problem by winding t h e c o i l between n y l o n end p l a t e s w i t h a s p i r a l groove s t r u c t u r e which i s thus rep1 ic a t e d i n t h e epoxy. A f t e r removal o f t h e nylon p l a t e s , the c o i l i s p o t t e d i n epoxy which adheres much b e t t e r t o t h i s groove s t r u c t u r e . I n a d d i t i o n , we p r o v i d e a gap f i l l e d w i t h t h i n t e f l o n sheet a t a small d i s t a n c e from t h e s i d e w a l l s o f the winding a t a p o i n t where a gap may open up w i t h o u t danger o f flashover.

The c o i l s are precooled by l i q u i d n i t r o g e n and d u r i n g t h e f i e l d p u l s e t h e y heat up t o above room temperature. We have conducted a number o f t e s t s on the response o f d i f f e r e n t i n s u l a t i n g m a t e r i a l s t o t h i s harsh treatment : Arodyn T i

@

( e s t e r i m i d e ) , Kapton f i l m and d i f f e r e n t combinations w i t h g l a s s f i bre-epoxy. I n t h i s s e r i e s o f experiments where t h e c o i l s were t e s t e d t o t h e breaking p o i n t , no s i g n i f i c a n t d i f f e r e n c e between t h e t e s t e d m a t e r i a1 s c o u l d be detected.

Each new c o i l undergoes a break-in procedure c o n s i s t i n g i n a sequence o f pulses w i t h i n c r e a s i n g v o l t a g e o f t h e c a p a c i t o r bank. A f t e r each pulse, t h e r e s i s t a n c e and inductance o f the c o i l a r e measured. While t h e r e s i s t a n c e mainly serves t o m o n i t o r t h e temperature o f t h e c o i l , t h e inductance gives a s e n s i t i v e i n d i c a t i o n o f any permanent change i n t h e shape of t h e c o i l . If a change i n t h e inductance i s observed, another p u l s e i s given a t t h e same v o l t a g e u n t i l t h e inductance i s s t a b l e a t the new value. Inductance data from such b r e a k - i n runs a r e given i n f i g . 5. The behaviour follows indeed t h e trends i n d i c a t e d by the c a l c u l a t i o n s . The observed onset o f p l a s t i c deformation corresponds t o a l i m i t i n g s t r e s s o f 2 kb f o r t h e copper c o i l w i t h a = 2.6 and t o 5 kb f o r t h e c o i l w i t h i n t e r n a l s t e e l reinforcement and a = 3.2. The observed peak f i e l d i n d i c a t e s t h e e f f e c t i v e n e s s o f work hardening and o f t h e e x t e r n a l reinforcement. It i s a m a t t e r o f personal judgment t o stop t h e break-in procedure a t a p o i n t where t h e c o i l i s w e l l c o n d i t i o n e d b u t n o t y e t damaged t o t h e p o i n t t h a t may l a t e r r e s u l t i n a sudden f a i l u r e o f the i n s u l a t i o n .

We had p o i n t e d o u t e a r l i e r t h a t an o u t e r reinforcement f o r an e l a s t i c c o i l would have t o be prestressed i n o r d e r t o be r e a l l y e f f e c t i v e . This i s n o t necessary when t h e c o i l undergoes some p l a s t i c deformation. I n t h i s case t h e c o i l i t s e l f remains i n a prestressed c o n d i t i o n a f t e r t h e a p p l i e d magnetic s t r e s s i s removed. T h i s accounts f o r t h e s u p e r i o r performance o f pulsed f i e l d c o i l s t h a t have undergone p l a s t i c de- f o r m a t i o n d u r i n g a c o n d i t i o n i n g process. I f p r o p e r l y made and t r e a t e d , such c o i l s can g i v e r e l i a b l e performance f o r many f i e l d pulses t h a t are o n l y s l i g h t l y below t h e peak f i e l d used i n t h e c o n d i t i o n i n g process.

(8)

We should l i k e t o t h a n k M r . R. Vens f o r h i s c o n t r i b u t i o n s t o t h e experimental work, and Mr. W. Wetekam from F & G, Arolsen (Germany) f o r p r o v i d i n g samples of copper w i r e w i t h d i f f e r e n t i n s u l a t i n g m a t e r i a l s .

REFERENCES

1 3 . W i t t e r s and F. Herlach, J. Phys. D : Appl. Phys. 16, 255 (1983) 2 Handbook o f Mathematical Functions, eds. M. AbramowiE and I.A. Stegun

(Dover New York 1965) 3 F. Herlach, p. 34 i n r e f . /6/

4 N. Miura, 6 . Kido, H. Miyajima, K. Nakao and S. Chikazumi, p. 64 i n r e f . /6/

5 V . I . Ozhogin, K.G. Gurtovoj and A.S. L a g u t i n i n High F i e l d Magnetism, ed. M. Date (North-Holland Amsterdam 1983) p. 267

6 S. Chikazumi and N. Miura, eds., Physics i n High Magnetic F i e l d s

(Springer Series i n S o l i d - S t a t e Sciences 24, Springer-Verlag B e r l i n Heidelberg New York 1981)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to