• Aucun résultat trouvé

THERMAL MODELING OF CW LASER-CRYSTALLIZATION OF SOI

N/A
N/A
Protected

Academic year: 2021

Partager "THERMAL MODELING OF CW LASER-CRYSTALLIZATION OF SOI"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00223137

https://hal.archives-ouvertes.fr/jpa-00223137

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THERMAL MODELING OF CW LASER-CRYSTALLIZATION OF SOI

J. Hode, J. Joly

To cite this version:

J. Hode, J. Joly. THERMAL MODELING OF CW LASER-CRYSTALLIZATION OF SOI. Journal

de Physique Colloques, 1983, 44 (C5), pp.C5-343-C5-350. �10.1051/jphyscol:1983551�. �jpa-00223137�

(2)

THERMAL MODELING OF

CW

LASER-CRYSTALLIZATION OF SO1

J . M . Hode and J . P . J o l y

L. E.T. I., Commissariat a' Z 'Energie Atomique, 85X, 38041 GrenobZe Cedex, France

Rgsumk - Dans l e c a d r e d'une gtude de r e c r i s t a l l i s a t i o n de s i l i c i u m s u r i s o - l a n t p a r f a i s c e a u l a s e r c o n t i n u balayk nous prgsentons d e s modsles thermiques a n a l y t i q u e s prenant en compte l e s d i f f Q r e r ~ t s paramstres physiques ( c o n d u c t i v i t 6 thermique, r g f l e c t i v i t k , c h a l e u r l a t e n t e ) . L ' i n f l u e n c e de c e s paramstres e s t 6valuke e t comnparge aux r g s u l t a t s expkrimentaux.

A b s t r a c t - We p r e s e n t a n a l y t i c a l thermal models f o r CW l a s e r - c r y s t a l l . i z a t i o n o f SOI, t a k i n g account of v a r i o u s p h y s i c a l parameters ( t h e r m a l c o n d u c t i v i t y , r e f l e c t i v i t y , l a t e n t h e a t )

.

The i n f l u e n c e of t h e s e parameters i s e v a l u a t e d and compared t o experiment.

1NTRODUCTION : Many thermal models of CW l a s e r a n n e a l i n g o r CW l a s e r c r y s t a l l i z a t i o n have been a l r e a d y given (1-10). For good understanding of what happens d u r i n g c r y s - t a l l i z a t i o n it i s n e c e s s a r y t o develop an e l a b o r a t e model t a k i n g account of t h e i n f l u e n c e of each p h y s i c a l parameter. A s it was impossible t o t r e a t t h e e n t i r e problem, we developed s e v e r a l models t o p o i n t o u t t h r e e d i f f e r e n t e f f e c t s :

.

A s t e a d y - s t a t e one t o show t h e i n f l u e n c e of t h e change o f r e f l e c t i v i t y a t t h e m e l t i n g p o i n t .

.

Two n o n - s t a t i o n a r y s o l u t i o n s u s i n g G r e e n ' s f u n c t i o n f o r a t h r e e - l a y e r s t r u c t u r e t o t a k e account of scan speed and l a t e n t heat.

I n o u r c a l c u l a t i o n s , we used an e l l i p t i c a l beam w i t h a Gaussian i n t e n s i t y p r o f i l e I ( x , y ) = I. exp -

[[$]'+ kwl2]

0

= L

) .

r@w2

We a l s o used t h e v a r i a b l e s and t h e normalized v a r i a b l e s i n d i c a t e d i n Fig. 1 . INFLUENCE OF THE SILICON REFLECTIVITY : It i s w e l l known t h a t s i l i c o n r e f l e c t i v i t y s h o r ~ s an a b r u p t t r a n s i t i o n a t t h e m e l t i n g p o i n t (from a s o l i d s t a t e v a l u e o f Rs =

44

% t o a l i q u i d v a l u e o f R 1 = 72 ,%). Designating P a s t h e power r e q u i r e d t o o b t a i n a l i n e a r temperature r i s e OM corresponding t o t h e m e l t i n g temperature we o b t a i n OM = ~ ( l - ~ s ) / ( 2 f i k w ) ( 2 , 3 ) . I f we

i n c r e a s e P from AP a l i t t l e d i s k of r a d i u s AR w i l l melt and t h e r e f l e c t i v i t y w i l l be R 1 on t h i s d i s k . According t o appendix I1 t h e t e m p e r a t u r e a t t h e edge o f t h i s d i s k w i l l be a t t h e f i r s t o r d e r i n AR and AP :

The t e m p e r a t u r e a t t h e c e n t e r of t h e beam will b e P ( 1 - R s ) I + -

---[

2 f i k w P 1 - R s w

d~rection

From ( 1 ) and ( 2 ) we o b t a i n

&

=

2

R 1 - RS dR (4) P 1 - R s w and from ( 1 ) and ( 3 ) we o b t a i n t h e t e m p e r a t u r e v a r i a t i o n at t h e c e n t e r o f t h e beam

F i g . 1 : our parameters

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983551

(3)

C5-344 JOURNAL DE PHYSIQUE

We can s e e t h a t when m e l t i n g o c c u r s , t h e temperature a t t h e c e n t e r of t h e bean tends t o d e c r e a s e with i n c r e a s i n g power. This i n c o n s i s t e n c y i s c l e a r l y demonstrated by t h e t h e r m a l p r o f i l e p r e s e n t e d i n f i g ( 2 , a ) . So we concluded t h a t it must e x i s t a t r a n s i t i o n r e g i o n a t t h e edge of t h e molten zone where t h e r e f l e c t i v i t y v a r i e s c o n t i n u o u s l y from R 1 t o Rs and where t h e temperature i s OM ( f i g . 2 , b ) . This r e g i o n has been d e s c r i b e d by HAWKINS and BIEGELSEN ( 1 1 ) a s composed of s o l i d l a m e l l a e i n l i q u i d s i l i c o n and i s c l e a r l y v i s i b l e on t h e micrographs of samples a f t e r SECCO ETCHING ( 12) ( f i g . 3 ) . To e v a l u a t e t h i s r e g i o n (width R2) and t h e f u l l y melted r e g i o n (width R ~ ) , we chose a polynomia.1 form o f t h e r e f l e c t i v i t y -

" i R '

+ $

Rs + ( R 1 - R S )

R2 - R 1

Which g i v e s Rs f o r R = Rg and R 1 f o r R = R1. For each v a l u e of R 1 , we must choose p, $ and R t o a s s u r e a f l a t t e m p e r a t u r e p r o f i l e f o r R , ,( R

<

R2, by minimizing

2

2

(ad? /aR) dR with r e s p e c t t o p, $ and R2 ( + i s t h e normalized temperature

$ = O/ Omax, Omax = P( 1-Rs) / ( 2 f i k w ) ) . This computer work can be done i n r e l a t i v e l y s h o r t CPU t i m e s because t h e s u r f a c e t e m p e r a t u r e d i s t r i b u t i o n corresponding t o such a r e f l e c t i v i t y i s reduced t o a s i n g l e i n t e g r a l on a f i n i t e i n t e r v a l a s demonstrated i n appendix I. These c a l c u l a t i o n s were done f o r s e v e r a l v a l u e s of R 1 and Rs l e a d i n g t o d i f f e r e n t v a l u e s of ( R 1 - R S ) / (1- R S ) which i s t h e important parameter of t h e problem. Then i t has been p o s s i b l e t o c a l c u l a t e t h e width o f t h e f u l l y melted zone v e r s u s t h e beam power f o r d i f f e r e n t v a l u e s of t h e r a d i u s and d i f f e r e n t caping l a y e r s . The r e s u l t i s shown i n f i g .

4

and shows good agreement w i t h experiment. (N.B. : A l l c a l c u l a t i o n s were done and compared t o experiment f o r Poly S i d e p o s i t e d on bulk s i l i c o n and a r e e a s i l y t r a n s p o s e d t o a SO1 s t r u c t u r e using t h e method exposed i n t h e next p a r a g r a p h ) .

DYNAMIC CASE FOR A THREE LAYER STRUCTURE : We d e r i v e d t h e Green's f u n c t i o n t o t h e h e a t e q u a t i o n f o r a t h r e e l a y e r s t r u c t u r e and apply t o a scanning Gaussian e l l i p t i - c a l beam. The r e s u l t s a r e p r e s e n t e d i n Appendix 111 and l e a d t o t y p i c a l t h e r m a l p r o f i l e s ( f i g . 5 ) and i s o t h e r m a l l i n e s ( f i g . 6 ) . The a n a l y t i c a l i n t e g r a t i o n presen- t e d i n appendix 111 h a s been c a r r i e d a s f a r a s p o s s i b l e so it i s n e c e s s a r y t o perform a numerical i n t e g r a t i o n t o c a l c u l a t e t h e temperature. This i n t e g r a t i o n r e - q u i r e s l o n g CPU t i m e s even on a powerful computer s i n c e t h e a n a l y t i c a l i n t e g r a t i o n l e a d s t o a double i n t e g r a l . So, we p r e s e n t now an approximate model assuming a one-

(4)

SCAN SPEED : 80 CM/s Scan

BEAM RADIUS : 50 PM direction

I

~ i g . 6 : I s o t h e r m a l l i n e s o b t a i n e d by t h e t h r e e - l a y e r model proposed i n Anp. I11

( . 5 Poly S i on 1 . 5

u

t h e r m a l oxide )

scan

beam radius : z5pm scan vcloslty: Bocrnls prcheatlng ;500'C

100 50 0 50 100

F i g . 7 : Isothermal lires o b t a i n e d w i t h t h e sim- p l i f i e d model

(same c o n d i t i o n s a s i n P i g . 6 )

Beam power ( W ) 0

F -

: F u l l y melted width v e r s u s beam power

Fig. 5 : Typical temperature d i s t r i b u t i o n a l o n g t h e x ax i s

( - 5 v p o l y S i on 1.5

v

t h e r m a l o x i d e ) x(pm)

INCOMING POWER : 11 W

I

(5)

C5-346 JOURNAL DE PHYSIQUE

dimensional h e a t flow i n t h e i n s u l a t i n g l a y e r and i n t h e upper s i l i c o n l a y e r . The t e m p e r a t u r e d i s t r i b u t i o n i n t h e b u l k s i l i c o n i s given by t h e model proposed by NISSIM et

(4)

and temperature i n t h e upper l a y e r s i s o b t a i n e d by i n t e g r a t i n g t h e h e a t flow. Isothermal l i n e s c a l c u l a t e d w i t h t h i s model a r e p r e s e n t e d i n F i g . 7 and can b e compared t o t h o s e p r e s e n t e d i n F i g . 6 . We can s e e a r e l a t i v e e r r o r of about 6 % f o r a beam v e l o c i t y of 80 cm/s. It can be noted t h a t t h i s e r r o r d e c r e a s e s w i t h d e c r e a s i n g v e l o c i t y . I n t h i s c a s e , it i s p o s s i b l e t o apply t h e i n v e r s e

Kirchhoff t r a n s f o r m ( 1 3 ) t o t h e b u l k s i l i c o n temperature i n o r d e r t o o b t a i n t h e a c t u a l temperature r i s e , s i n c e t h e d i f f u s i v i t y of s i l i c o n i s r e l a t i v e l y c o n s t a n t a t high t e m p e r a t u r e s . S i n c e t h e S i 0 2 t h e r m a l c o n d u c t i v i t y have l i t t l e temperature dependence t h e temperature r i s e i n t h e St02 i s o b t a i n e d by i n t e g r a t i n g t h e h e a t flow. The a c t u a l t e m p e r a t u r e r i s e i n t h e upper s i l i c o n l a y e r i s a l s o o b t a i n e d by i n t e g r a t i n g t h e h e a t flow b u t we must t a k e account of t h e temperature dependence o f t h e t h e r m a l c o n d u c t i v i t y of s i l i c o n . F i n a l l y , t h e temperature r i s e w i l l b e g i v e n by :

P 2 2 2

1 X o ) d 0 - ( a l - 2 ) e

-

x2/w2 e - ~

/p

JI,,

Y , a l l I T ~ W

INFLUENCE OF THE LATENT HEAT : As r e p o r t e d i n Appendix I11 we a p p l i e d t h e Green's f u n c t i o n c a l c u l a t e d i n t h e same appendix t o a moving s t r a i g h t c r y s t a l l i z a t i o n f r o n t . An example of t h e t e m p e r a t u r e r i s e due t o t h e l a t e n t h e a t i s p r e s e n t e d i n F i g . 8

.

It shows t h a t t h e e f f e c t of l a t e n t heat i s v e r y important and w i l l a f f e c t s t r o n g l y t h e shape of t h e t e m p e r a t u r e p r o f i l e n e a r t h e c r y s t a l l i z a t i o n f r o n t . The high v a l u e of t h e t e m p e r a t u r e r i s e w i l l cause a

g r e a t s u p e r c o o l i n g which w i l l be r e s p o n s i b l e f o r i n t e r f a c e i n s t a b i l i t y and d e n d r i t i c growth a s r e p o r t e d p r e v i o u s l y ( 1 4 ) . It must be noted t h a t t h e s o l u t i o n proposed i n Appendix I11 i s a l s o reduced t o a double i n t e g r a l and t h a t t h e numerical i n t e g r a t i o n i s v e r y l o n g . But we c a n ' t apply t h e method proposed i n t h e l a s t paragraph because t h e s i z e o f t h e h e a t source i s v e r y s h o r t s o t h a t t h e h e a t flow i s three-dimensional i n t h e i n s l u a t i n g l a y e r . P r e s e n t e f f o r t s c o n c e n t r a t e on t r e a t i n g t h e c a s e of a curved c r y s t a l l i z a - t i o n f r o n t and on adding it t o t h e t e m p e r a t u r e d i s t r i b u t i o n produced by t h e beam ( p r e s e n t e d i n t h e l a s t p a r a g r a p h ) .

CONCLUSION : We have p r e s e n t e d a n a l y t i c a l models i n c o r p o r a t i n g e a c h p h y s i c a l parameter of CW l a s e r c r y s t a l l i z a t i o n of SOI. (tempera- t u r e dependent t h e r m a l c o n d u c t i v i t y and s u r f a c e r e f l e c t i v i t y , l a t e n t h e a t ) . They a r e a v e r y powerful t o o l f o r good comprehension of l a s e r - i n d u c e d c y r s t a l l i z a t i o n .

8 : Temperature r i s e due t o l a t e n t

!

* .

5 p Poly S i on 1.5 p thermal o x i d e )

I front '46th : 50pm

ssen veloclly: 80 cmls

(6)

We a r e going t o d e s c r i b e a new way t o c a l c u l a t e t h e temperature d i s t r i b u t i o n under t h e same hypotheses a s Lax ( 2 ) . ( o n l y i n case of s u r f a c e a b s o r p t i o n , i . e . W = m ) 1 . Surface temperature ( Z = 0 ) : Lax's formula can be w r i t t e n a s f o l l o w s :

f m T ( R ) = JSE

k

lrn

J o ( h R) F (A) dh I ,w i t F A = JO(ARI f ( ~ ) R ~ R (I,*) I

lfrn&

iARsin0 + e-iARsin@

Using t h e r e l a t i o n s h i p J o ( XR) =

-

2 r

1

dO (1,3)

We can w r i t e ( F ( X ) i s an even f u n c t i o n )

A

T = - Iow 2.rrk

i,' doi'--iX~sin'

F(A) dA I F d e s i g n a t e s t h e F o u r i e r t r a n s f o r m of

-00

F, we o b t a i n T =

low

A F (RsinO) do (I,&)

A

Let U s now c a l c u l a t e F. Using eq. ( I , 2 ) and (1,3) we f i n d :

'0

A

S e t t i n g u = y c o t g o we o b t a i n F ( y ) = 2 f

(4-1

du ( i , 5 ) Two i n t e r e s t i n g c a s e s :

A 2 2

.

@aussian beam : f ( R ) = e-" s o t h a t F(.) = 2e y 2

1:

e-. du = fie-y

.

Truncated Gaussian beam :

f i

f ( ~ ) = 0 i f R > a F ( y ) = 0 i f y > a

-R 2 . A 2

f ( ~ ) = e 1 f R < a F ( ~ ) = &e-' e r f ( d a v ) i f y < a

2. ~ u l k temperatune : Lax's formula i s : T =

-

O w o R F( 1 ) k 0

(7)

C5-348 JOURNAL DE PHYSIQUE

-/'Iz F(A)

A

S e t t i n g G ( X ) = e e q ( 1 , b ) g i v e s T =

-

~ ( R s i n O ) dO

The f o u r i e r t r a n s f o r m of

.-IX1

i s 2 Z s o t h a t 2 2

z

+ Y

Avery l o n g i n t e g r a t i o n shows t h a t

= 1 coshB cosa

-

) y2

+ z2

o h2 - o s 2 a

[za

- s i n h 2B With cosh

a

= ( A + B ) /2 and cosa = ( A - R) / 2

2

and B =

z2 +

y2

A =

Jz2 + I R

- y,

F i n a l l y , we f i n d T ( R , Z ) =

-

1ow Ilk

APPENDIX I1 :

We apply t h e r e s u l t of Appendix I t o t h e c a s e o f an a b r u p t change of r e f l e c t i v i t y f o r R = a

.

( R 1 i f R < a , Rs i f R > a ) .

The r e f l e c t i v i t y can be w r i t t e n Rs + ( R 1 - R S ) Y ( a - R ) where Y i s t h e h e a v i s i d e f u n c t i o n .

The h e a t source i s given by f ( R ) 5

( z )

w i t h f ( R ) = ( ~ - R S ) I ~ e-R

[

1 Rl-Rs ~1 -Rs (-R a

1

According t o appendix I , we f i n d T(R,Z = 0 ) :

T ( R , O ) = 2& kw

( w i t h B=

5

TT i f R

:

a and B = Arcsin

[z]

i f ~ > a ) P ( I - R S )

Two i n t e r e s t i n g v a l u e s : T(0,O) = ---

2 6 kw

[

R s

(8)

2fi kv 1 - Rs

1

APPENDIX I11 :

Green's function for a thkee-layer structure

-

applications

We applied the technique described by Burgener and Reedy ( 9 ) to the S O 1 structure (~ig. 9 ) . Using the same notations as those we derived from the Green's function (after Laplace transform).

-

G , = - 4 1 nD,

\r[e-il

IZ-Z'I +

~ ~ ' 1

+ (clrll/n2) 2 tanh +

(n,

tanh a,)

- (n2

a2)

C O S ~

(n,

z) r l

-

(an, /

n2)2]

e

-n(

OQS~('I., z') JO

(513) - 5

cosh

(n,

a,) D

I

-

2a cosh ('1, z')

G 3 =

-

' I 1

1

+

zanh

(n2

a2) With D = 1 +

a

tanh

(n,

a, ) '19

'1 2

-

+ tanh ('1 a2)

2

1. Temperature distribution

induced-?~-an_-e11i~t_ic~L~?earn

The integrations are identical to those presented by Burgener and Reedy ( 9 ) We obtain :

With HI =

(9)

C5-350 JOURNAL DE PHYSIQUE

as21 exp

t%

( * 1 + ~ 2 - ~ ) ] 1

=

2

~1 f o ~ h ( ~ ~ , ) cosh(Q2b-2)

a +

tanh (%A2) Q2

1 t.

*

t a n h ( R , ~ ~ )

~1 = 1

+ @-

t a n h ( Q l ~ , )

n2

Q2

a +

tanh (%A2)

Q2

The h e a t source i s Q = Lv 6 ( x '

-

v t ' ) i f z ' <a, and L. <y' <w Q = 0 anywhere e l s e

A f t e r i n t e g r a t i o n w e o b t a i n :

+03 71/2

K . e-iSXsinO sin( FcosO)

R e k J

]

cos (SY cos0) dO

"

7% + iV,sinO ScosO

With K1 = 1 - cash ( R I Z )

D'cosh ( 0 1 ~ , ) K Z = H z s i n h ( R , A,) K 3 = H 3 s i n h ( 0 1 lbl)

' ( 1 , "1 A , = 3 V , = K

REFERENCES w

4

( 1 ) H.E. CLINE add T.R. ANTHONY,J.A.P., Bol. 48, No 9 (3895) 1977 (2) M.

LAX,

J.A.P., Vol. 48, N O 9 (3919) I977

( 3 ) M. 1SS(, Appl. Phys. L e t t . , 33 ( 7 8 6 ) 1978

( 4 ) Y . I . EISSIM, A. LEITOILA, R.B. GOLD, J-F. GIBBONS, J.A.P., Vol. 51, No 1 (274) I980

( 5 ) J . M . HODE ,DEA Report 1980

( 6 ) S.A. KOKOROWSKI, G.L. HOLSON, L.D. MESS, Laser and E l e c t r o n Beam S o l i d I n t e r - a c t i o n s and M a t e r i a l s P r o c e s s i n g (North Holland, New-York, 1981) P. I39 ( 7 ) J.E. N O D Y and R. H. ITENDEL, J.A.P., Vol. 53, No 6 (4364) 1982

( 8 ) I . D . COLDER and R. SUE, J.A.P.

,

Vol. 53, No 11 (7545) 1982 ( 9 ) M.L. BURGETTER and R.E. REEDY, J.A.P., Vol. 53, NO 6 (4357) 1982

(10) C . I . DROWLEY, C.HU, T . I . KAMINS, Electrochemical S o c i e t y S p r i n g Meeting (Montreal, 1982) Extended A b s t r a c t No 145 p. 234

( 1 1 ) kl.G. HAWKINS, D.K. BIEGEGSEN, Appl. Phys. L e t t . , Vol. 42, No 4 1983 ( 1 2 ) SECCO drARAGONA, J . Electrochem. Soc., Vol. I 1 9 (948) I972

( 13) H.S. CARSLAW and J. C. JAEGER, Conduction of h e a t i n s o l i d s 2nd ed. (Oxford U n i v e r s i t y , London, 1949) P. 89

(14) J . M . HODE, J.P. JOLY, P . JEtTCH Paper p r e s e n t e d a t the ~ l e c t r o c h e m i c a l S o c i e t y Spring Meeting ( ~ o n t r e a l , 1982)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to