• Aucun résultat trouvé

DNA sense-and-respond protein modules for mammalian cells

N/A
N/A
Protected

Academic year: 2021

Partager "DNA sense-and-respond protein modules for mammalian cells"

Copied!
42
0
0

Texte intégral

(1)

DNA sense-and-respond protein modules for mammalian cells

The MIT Faculty has made this article openly available. Please share

how this access benefits you. Your story matters.

Citation Slomovic, Shimyn and Collins, James J. “DNA Sense-and-Respond

Protein Modules for Mammalian Cells.” Nature Methods 12, no. 11 (September 21, 2015): 1085–1090. © 2015 Macmillan Publishers Limited, part of Springer Nature

As Published http://dx.doi.org/10.1038/nmeth.3585

Publisher Nature Publishing Group

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/108502

Terms of Use Article is made available in accordance with the publisher's

policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

(2)

DNA  sense-­‐and-­‐respond  protein  modules  for  mammalian  cells    

Shimyn  Slomovic1,2,3  and  James  J.  Collins1-­‐6*  

 

1.  Institute  for  Medical  Engineering  &  Science,  Massachusetts  Institute  of                Technology  (MIT),  Cambridge,  Massachusetts,  USA.  

2.  Department  of  Biological  Engineering,  MIT,  Cambridge,  Massachusetts,  USA.   3.  Synthetic  Biology  Center,  MIT,  Cambridge,  Massachusetts,  USA.  

4.  Harvard-­‐MIT  Program  in  Health  Sciences  and  Technology  

5.  Broad  Institute  of  MIT  and  Harvard,  Cambridge,  Massachusetts,  USA.  

6.  Wyss  Institute  for  Biologically  Inspired  Engineering,  Harvard  University,  Boston,   Massachusetts,  USA.  

*  email:  jimjc@mit.edu    phone:  617-­‐324-­‐6607    fax:  617-­‐253-­‐7498  

 

 

(3)

We  have  generated  synthetic  protein  components  that  can  detect  specific  DNA   sequences  and  subsequently  trigger  a  desired  intracellular  response.  These   modular  sensors  exploit  the  programmability  of  zinc  finger  DNA-­‐recognition   to  drive  the  intein-­‐mediated  splicing  of  an  artificial  trans-­‐activator  that   signals  to  a  genetic  circuit  containing  a  given  reporter  or  response  gene.    We   utilize  the  sensors  to  mediate  sequence  recognition-­‐induced  apoptosis,  as  well   as  to  detect  and  report  a  viral  infection.  This  work  establishes  a  synthetic   biology  framework  for  endowing  mammalian  cells  with  sentinel  capabilities,   providing  a  programmable  means  to  cull  infected  cells,  and  for  identifying   positively  transduced  or  transfected  cells,  isolating  recipients  of  intentional   genomic  edits,  and  increasing  the  repertoire  of  inducible  parts  in  synthetic   biology.  

     

(4)

Cys2His2  ZFs  zinc  finger  proteins  (ZFs)  have  long  been  recognized  for  their  potential  

as  artificial  DNA  binding  proteins.  Various  methods,  such  as  partially  randomized   libraries  or  single-­‐finger  modular  assembly1,2,  may  be  used  to  design  ZFs  to  bind  any  

DNA  sequence,  enabling  a  range  of  applications.  For  example,  when  attached  to  the  

Fok  I  endonucleolytic  domain,  ZF  pairs  can  facilitate  genomic  editing3.  Through  

SEquence  Enabled  Reassembly  (SEER),  ZFs  joined  to  split  b-­‐lactamase  can  function   as  in  vitro  diagnostic  tools4.    Also,  fusion  to  the  viral  trans-­‐activating  domain,  VP64,  

generated  synthetic  transcription  factors  (TFs)  that  drive  engineered  regulatory   circuits  in  yeast  or  mammalian  cells,  furthering  our  understanding  of  transcriptional   cooperativity  in  eukaryotes5,  6.  Additionally,  ZFs  fused  to  chromatin  regulators  have  

been  used  to  investigate  epigenetics,  revealing  synergistic  activation  and  spatial   regulation7.  

Commonly,  whether  utilizing  ZFs  or  other  genome  engineering  tools,  such  as   TALEs  or  CRISPR-­‐Cas,  the  tethered,  delivered  activity  acts  locally  on  the  DNA  target   itself,  e.g.,  endonucleolytic  cleavage  or  transcriptional  modulation8.  There  are  

however  instances  in  which  it  is  desirable  that  the  detection  of  a  specific  

endogenous  or  synthetic  DNA  sequence  trigger  a  tailored  response.  Responses  could   include  an  amplified  report  signal  indicating  provirus  presence,  a  chromosomal   transposition,  or  an  intentional  genomic  alteration.  Others  might  be  immune  system   recruitment  to  the  site  of  infection  or  tumor,  or  kill-­‐switch  activation  that  induces   apoptosis  to  prevent  pathogen  spread.  Accordingly,  we  sought  to  forward  engineer  a   system  that  could  utilize  the  programmable  nature  of  ZFs  for  target  detection  and   deliver  the  recognition  signal  to  an  easily  modifiable  response  circuit.  

(5)

To  bridge  the  gap  between  DNA  recognition  and  trans-­‐response,  we  used   inteins;  peptides  that  splice  their  flanking  regions,  referred  to  as  exteins9,10.  In  

pioneering  work  on  Conditional  Protein  Splicing  (CPS),  the  contiguous  

Saccharomyces  cerevisiae  SceVMA  intein  was  artificially  split,  rendering  the  separate   halves  inactive  such  that  they  require  a  condition  for  co-­‐localization  and  reassembly  

11.  After  fusing  one  member  of  the  rapamycin-­‐binding  heterodimeric  pair,  FRB-­‐

FKBP,  to  each  of  the  split  SceVMA  intein-­‐extein  halves,  rapamycin  served  as  a   condition  for  their  co-­‐localization12.  The  repertoire  of  trans-­‐splice-­‐inducing  

conditions  has  expanded  and  now  includes  temperature,  light,  and  protein  scaffold   activation13,14,15.  DNA-­‐recognition  can  also  induce  splicing,  as  shown  in  a  previous  

study  wherein  ZFs  were  fused  to  a  split  intein/luciferase  construct  and  their  binding   signal  measured  drug-­‐induced  DNA  demethylation16.  

Here,  we  sought  to  use  DNA-­‐sensing  modules  as  dimerizing  domains  (Fig.  1).   Programming  two  ZF-­‐based  sensors  to  bind  adjacently  within  the  targeted  DNA   sequence  would  allow  for  conditional  intein  co-­‐localization  and  trans-­‐splicing  of  a   response  factor  that  activates  any  gene  installed  in  a  response  circuit.  Below,  we   describe  the  engineering  of  a  modular  sequence-­‐recognition  system  capable  of   producing  a  customizable  response  signal,  and  demonstrate  its  ability  to  mediate   sequence  recognition-­‐induced  apoptosis  and  virus  detection  in  infected,  human   cells.    

 Results  

(6)

 At  the  onset  of  this  work,  we  utilized  a  library  of  ten  tridactyl  ZFs  designed  using   Oligomerized  Pool  ENgineering  (OPEN)  and  tested  for  intracellular  binding  

(Supplementary  Fig.  1  and  Supplementary  Note  1)1,5.  To  generate  two  hexadactyl  

ZF  sensors  of  high  affinity  and  specificity,  we  first  applied  an  extended  linker  that   permits  finger  multimerization  without  excessive  DNA  strain,  and  merged  two  pairs   of  the  tridactyl  ZFs17,  18.  The  hexadactyl  ZFs  were  fused  to  VP64  and  transformed  

into  synthetic  TFs.    Reporters  were  prepared  for  each  ZF-­‐TF  encoding  GFP  

modulated  by  a  single  copy  of  the  two  original  nine  bp  sites  with  0-­‐2  unrelated  bps   between  (Supplementary  Fig.  2a).  We  transiently  co-­‐transfected  human  

embryonic  kidney  (HEK  293FT)  or  HeLa  cells  with  each  ZF-­‐TF  and  its  reporter,   assessing  intracellular  binding  by  measuring  GFP  fluorescence  via  flow  cytometry.   The  hexadactyl  ZF-­‐TFs  were  markedly  more  active  than  their  tridactyl  counterparts   (Supplementary  Fig.  2b,c).  To  assess  whether  the  hexadactyl  ZFs  could  overcome   potential  binding  inhibition  imposed  by  intein  fusion  in  a  relevant,  intracellular   context,  we  attached  the  IC  (C-­‐terminal)  or  IN  (N-­‐terminal)  intein  domains,  C-­‐

terminally  mounted  VP64,  and  retested  activation  (Fig.  2  and  Supplementary  Fig.  

3a,b).  Although  binding  of  the  hexadactyl  ZF-­‐intein  proteins  was  encumbered  by  

intein  fusion,  the  chimers  were  yet  able  to  achieve  a  much  greater  output  than  the   tridactyl-­‐intein  fusions.  We  found  that  a  2×  (GGGS)3  linker  between  the  ZF  and  

intein  domains  yielded  a  higher  level  of  GFP  activation  than  the  1×  or  3×  forms,  and   used  this  linker  thereafter  (Supplementary  Fig.  3c-­‐e).  

(7)

ZF9  (Supplementary  Fig.  1b,c)  was  chosen  as  the  eventual  split  response  factor,  as   it  performed  well  in  tested  cell  lines  and  its  operator  yielded  low  basal  expression.   GFP  was  selected  as  a  reporter  for  response  circuit  characterization.  To  improve  the   dynamic  range  of  GFP  activation,  ZF9  operators  were  multimerized  

(Supplementary  Fig.  4a).  The  output  signal  strength  increased  with  the  number  of   sites,  basal  expression  (in  ZF9-­‐TF’s  absence)  decreased  (resulting  in  a  ~300x  fold   change  using  the  6x  operator  circuit),  and  there  was  no  cross-­‐activation  of  the   response  circuit  by  direct  binding  of  the  sensor  components  (Supplementary  Fig.  

4b-­‐d).  

Split  extein  design,  construction,  and  validation  

We  hypothesized  that  an  effective  way  to  split  the  ZF9-­‐TF  extein  would  be  to   separate  its  DNA  recognition  and  trans-­‐activation  properties,  also  allowing  for  the   introduction  (and  retention)  of  a  splice-­‐junction  (SJ)  that  could  promote  splicing   without  impairing  ZF9-­‐TF’s  activity19,20.  In  the  SJ  design,  we  adopted  several  extein  

residues  that  natively  flank  both  sides  of  the  SceVMA  intein  or  from  two  previously   split  proteins  (Luciferase  and  TEV  protease),  reasoning  that  the  intein  might   successfully  ligate  the  ZFs  and  VP64  within  this  context    (Fig.  3a  and  

Supplementary  Fig.  5a)12,21.  

First,  we  ensured  that  the  retained  SJs  did  not  interfere  with  ZF9-­‐TF’s  ability   to  activate  GFP  expression  by  expressing  the  ZF-­‐TF  variants  in  their  post-­‐splice   forms  (Supplementary  Fig.  5b).  Next,  we  devised  a  cis-­‐splicing,  test  platform  to   gauge  whether  the  intein  could  splice  the  split  extein  and  produce  a  functional  TF.    

(8)

were  directly  linked  to  one  another  via  a  flexible  linker  (Fig.  3b)22.    Results  

indicated  that  all  three  variants  underwent  successful  cis-­‐splicing,  resulting  in  GFP   activation  (Fig.  3c  and  Supplementary  Fig.  5c).  To  confirm  that  cis-­‐splicing  yielded   a  product  of  anticipated  size,  protein  was  isolated  and  subjected  to  immuno  blotting.   FLAG-­‐  and  HIS-­‐tag  probing  of  the  N-­‐  and  C-­‐termini  revealed  a  product  that  co-­‐

migrated  with  the  ZF9-­‐TF  positive  control  for  each  of  the  variants  but  not  for  three   splice-­‐null  mutants,  which  displayed  greater  accumulation  of  unspliced  precursor   (Fig.  3d  and  Supplementary  Fig.  5d-­‐f)22.    Semi-­‐quantitative  analysis,  by  

comparison  of  splice-­‐product  signal  intensity  to  that  of  increasing  amounts   (volumes)  of  the  ZF9-­‐TF  positive  control,  displayed  >20%  cis-­‐splice  efficiency   (Supplementary  Fig.  5g).  

Intracellular  DNA  detection  and  trans-­‐splicing  

To  form  the  complete  sensors  we  fused  the  three  SJ  variants  of  the  split-­‐extein  with   their  hexadactyl  sensing  components.  Cells  were  transfected  with  a  plasmid  

encoding  the  sensor  pair,  a  plasmid  carrying  the  target  sequences,  and  one   containing  the  response  circuit  (Fig.  4a).  Flow  cytometry  analysis  showed   substantial  fluorescence  output  for  all  three  variants,  indicating  target  sequence   detection  (Fig.  4b  and  Supplementary  Fig.  6a).  Fluorescence  measured  in  the   absence  of  target  sequence,  the  N-­‐  or  C-­‐terminal  sensor,  or  when  a  C-­‐terminal   deletion  mutant  (lacking  the  IC  domain)  was  tested,  was  comparably  low,  suggesting  

extremely  low  levels  of  spontaneous  trans-­‐splicing,  confirming  earlier  reports  and   that  both  intact  intein  domains  are  required  in  order  to  generate  a  response  

(9)

the  greatest  activity  and  was  chosen  for  further  characterization.  Targets  containing   zero,  four,  eight,  or  twelve  bp  gaps  (nonrelated  bps)  between  the  two  18  bp  binding   sites  produced  response  signals,  with  the  contiguous  36  bp  site  displaying  the   highest  output  (Supplementary  Fig.  6c).  Increasing  amounts  (nanograms)  of  target   plasmid  resulted  in  a  dose-­‐response  effect  correlating  between  plasmid  amount  and   signal  strength  (Fig.  4c).  

Sensor  binding  strength  is  essential  to  overcome  off-­‐target  dilution  but  could   possibly  limit  the  interchange  of  the  post-­‐  and  pre-­‐splice  sensors  upon  the  DNA.  We   reasoned  that  by  moderately  lowering  affinity  but  not  specificity,  interchange  might   be  improved.  Eight  RàA  mutations  expected  to  lower  ZF  binding  affinity  were   introduced  into  the  ZF  backbones  and  output  signals  of  wildtype  and  mutant  sensor   pairs  were  compared23.  Equal-­‐molar  target  plasmids  containing  a  gradient  of  target  

sequence  instances  (0-­‐4,  8)  produced  a  correlative  effect  for  wildtype  and  mutant   sensors  but  the  output  of  the  latter  was  higher,  suggesting  improved  interchange   (Fig.    4d).  We  also  assessed  the  difference  between  a  non-­‐replicative  and  replicative   target  and  found  the  signal  to  be  substantially  higher  in  the  latter  case  

(Supplementary  Note  2  and  Supplementary  Fig.  7a,b).  To  demonstrate  the   platform’s  extensibility,  a  second  sensor  pair  was  constructed  (ZF3/ZF2  and   ZF4/ZF5)  and  co-­‐transfected  with  either  its  own  target  or  that  of  the  original   sensors.  Each  pair  detected  its  specific  sequence  while  ignoring  the  other’s,   highlighting  the  platform’s  robustness  and  orthogonality  (Fig.  4e).  

(10)

Gene-­‐directed  enzyme  prodrug  therapy  (GDEPT)  involves  the  metabolism  of  a   nontoxic  prodrug  into  a  cytotoxic  form24.  One  example  is  the  NTR+CB  1954  pair,  

wherein  the  toxicity  of  CB  1954  (5-­‐(aziridin-­‐1-­‐yl)-­‐2,4-­‐dinitrobenzamide)  is   dependent  upon  its  reduction  by  the  bacterial  nitroreductase,  NTR,  which   transforms  it  into  an  agent  of  DNA  interstrand  crosslinking  and  apoptosis25.  

Diffusion  into  neighboring  cells  leads  to  increased  potency  through  a  “bystander”   effect.  This  dual-­‐component  method  was  used  to  test  the  system’s  ability  to  link   sequence  recognition  with  triggered  apoptosis.  With  GFP  replaced  by  NTR  in  the   response  circuit  and  samples  grown  in  prodrug-­‐supplemented  media,  NTR  

expression  and  the  ensuing  CB  1954  reduction  should,  in  principle,  only  occur  in  the   presence  of  the  target  sequence26.  

HEK  293FT  cells  were  plated  in  media  containing  a  range  of  prodrug   concentrations  and  transfected  (at  50%  rate,  based  on  a  control)  with  either  the   sensor  system  containing  an  “empty”  response  circuit  or  the  full  system,  in  the   presence  or  absence  of  target  sequences    (Fig.  5a  and  Supplementary  Fig.  8a).   Apoptosis  was  measured  using  flow  cytometry  after  48  h  and  72  h  via  Annexin  V-­‐ FITC  and  propidium  iodide  (PI)  staining.  Cells  with  the  empty  response  circuit  were   not  notably  affected  by  the  prodrug,  and  cells  transfected  with  the  full  system  but  no   target,  were  only  moderately  affected.  However,  target  detection  led  to  markedly   elevated  levels  of  apoptotic  cells  displaying  a  clear  trend  in  line  with  the  drug   gradient.  Microscopy  revealed  that  at  96  h,  control  populations  were  excessively   confluent  (Fig.  5b  and  Supplementary  Fig.  8b).  Conversely,  target-­‐positive  samples   at  16  or  32  (μM)  displayed  severe  or  complete  cell  death,  providing  evidence  of  

(11)

sequence-­‐recognition  and  a  bystander  effect.  To  demonstrate  a  dual-­‐output   response,  a  GFP-­‐IRES-­‐NTR  construct  was  also  generated  and  simultaneously   showed  target  reporting  and  apoptosis  (Supplementary  Fig.  8c).  

Virus  detection  in  infected  mammalian  cells  

To  test  the  system’s  capability  of  detecting  viral  infection,  we  adopted  adenovirus   type  5  (Ad5)  as  a  model27.  Virus  was  generated  with  constitutive  expression  of  blue  

fluorescent  protein  (BFP)  to  track  infected  cells.  Two  sub-­‐strains  were  prepared  in   which  target  sequences  of  sensor  pair  1  or  2  (T1,  T2)  were  embedded  into  the  viral   genome  adjacent  to  the  packaging  signal  (ψ)  (Fig.  6a).  Replication-­‐permissive  HEK   293FT  cells  were  transfected  with  either  of  the  sensor  pairs,  followed  by  infection   with  virus  containing  T1,  T2,  or  neither  target.  Results  revealed  that  both  sensor   pairs  solely  detected  virus  carrying  their  specific  targets  (Fig.  6b,c).  Finally,  the   expression,  reporting,  and  marker  elements  were  condensed  into  a  single  construct.   Only  cells  receiving  both  the  detection  system  and  virus  displayed  a  substantial  GFP   response  (Supplementary  Fig.  9).  Together,  these  studies  demonstrate  the  

feasibility  of  using  this  system  for  sequence-­‐specific  DNA  detection  in  mammalian   cells.  

Discussion  

Designable  DNA-­‐binding  proteins  have  been  developed  to  regulate  gene  expression   in  endogenous  pathways  and  insulated  exogenous  gene  networks.  Using  such   proteins,  we  have  developed  a  system  that  is  sufficiently  robust  so  as  to  facilitate   sequence  detection  within  mammalian  cells  but  also  highly  modular  in  order  to  

(12)

allow  its  application  to  a  range  of  scientific  settings,  including  synthetic  biology,   diagnostics,  and  basic  research.  Below,  we  discuss  the  system’s  underlying  features   as  well  as  possible  expansions  through  which  the  system  could  be  applied.  

The  recognition  stage  may  be  adjusted  to  detect  any  target  sequence  by   installing  the  appropriate  ZF  component.  Also,  alternative  DNA-­‐binding  

technologies  could  be  tested,  including  TALEs  or  the  CRISPR/Cas  system28.  Another  

option  would  be  the  use  of  designer  RNA-­‐binding  proteins  for  the  detection  of   pathogens  with  RNA-­‐based  genomes29.  Cells  infected  with  a  particular  pathogen,  

retaining  viral  latency  or  undergoing  carcinogenesis  could  be  culled  through  the   expression  of  pro-­‐apoptotic  proteins,  cell  death-­‐activating  surface  molecules,  or   cytokines  for  immune  system  recruitment  30,31,32,  33.    

This  system  has  the  potential  to  address  many  research  challenges.  For   example,  it  could  be  adapted  to  identify  or  rescue  only  cells  that  have  received  a   construct  during  transfection  or  transduction,  using  sensors  programmed  to  

recognize  the  vector  backbone  sequence.  Sensors  could  be  standardized,  integrated   into  stable  cell  lines,  and  paired  with  specific  delivery  vectors,  streamlining  the   delivery  process  and  preserving  packaging  space.    

Another  possible  use  of  this  platform  regards  the  CRISPR-­‐Cas  system,  which   is  commonly  utilized  to  introduce  mutations  or  replace  genomic  sequences  via   homology  directed  repair8.  An  intrinsic  part  of  such  studies  is  the  identification  and  

isolation  of  cells  containing  the  edit.  PCR  or  DNA  sequencing  can  measure  

frequencies  but  cannot  be  applied  to  live  cells.  Furthermore,  to  establish  a  clonal  cell   line  containing  the  edit,  multiple  lines  must  undergo  screening.  Instead,  cells  could  

(13)

be  equipped  with  sensors  designed  to  bind  within  the  insertion  or  deletion  site,   easily  identifying  on  a  single-­‐cell  basis  cells  that  have  undergone  the  desired  editing,   showing  gain  or  loss  of  the  report  signal.  This  approach  could  greatly  benefit  studies   of  genome  editing,  increasing  throughput  and  efficiency.    

Similarly,  this  concept  could  be  used  to  produce  clonal  cell  lines  harboring   HIV  provirus,  which  are  essential  for  studying  viral  latency.  Such  cell  lines  are   screened  through  a  tedious  process  that  involves  infection,  serial  dilution,  and  viral   activation  to  identify  clones  that  contain  the  provirus34.  Using  a  sense-­‐and-­‐respond  

system  programmed  to  recognize  the  known  proviral  sequence  and  produce  a   reporter  signal,  allowing  for  the  rapid  identification  of  positive  cells  and  their   subsequent  characterization,  could  markedly  shorten  this  process.  

 This  system  could  also  contribute  to  studies  of  chromosomal  aberrations  

leading  to  cancer  and  other  diseases.  In  some  instances,  fluorescence  in  situ  

hybridization  may  be  applied  and  in  others,  genomic  DNA  may  be  subjected  to  PCR   to  indicate  the  presence  of  chromosomal  inversions35.  However,  PCR-­‐based  

methods  cannot  be  used  to  study  real-­‐time  biology  nor  disclose  the  aberration   frequency  within  cell  populations.  Instead,  by  designing  sensors  whose  proximity   would  be  dependent  on  the  occurrence  of  a  specific  chromosomal  aberration,   researchers  could  study  the  biology  of  living  cells  and  also  measure  the  impact  of   genetic  predisposition  or  carcinogens.  

The  study  of  whole-­‐genome  3D  architecture  relies  on  high-­‐throughput   chromosomal  confirmation  capture  techniques  (3C,  4C,  5C,  Hi-­‐C)  to  map  long-­‐range   interactions36.  Stages  include  DNA  crosslinking,  digestion,  deep-­‐sequencing,  

(14)

microarrays,  and  the  computational  reconstruction  of  the  3D  structure.  With   appropriate  sensor  design,  a  proximity-­‐based  DNA  sense-­‐and-­‐respond  approach   could  confirm  the  validity  of  proposed  long-­‐range  interactions,  in  living  cells,  also   providing  insight  about  whole-­‐genome  real-­‐time  dynamics.  

The  sensors  presented  here  may  also  expand  the  limited  range  of  orthogonal   inducible  components  for  synthetic  biology  researchers,  especially  in  cell-­‐free   platforms.  Although  engineered  TFs  can  bind  any  sequence,  providing  limitless   operators,  the  lack  of  inducible  parts  constrains  the  level  of  complexity  and   tunability  synthetic  circuits  can  achieve.  Here,  each  sensor  pair  corresponds  to  its   own  binding  site,  and  numerous  pairs  can  be  generated.  In  the  form  of  short  dsDNA   duplexes,  their  binding  sites  could  be  used  as  inducers  to  control  the  reconstitution   of  orthogonal  split  ZF-­‐TFs,  yielding  highly  tunable  and  layered  gene  networks.      

ACKNOWLEDGMENTS  

We  are  grateful  to  S.  Modi  for  helpful  discussions  and  critical  reviews  of  the  

manuscript.  HEK  293FT  cells  were  donated  by  the  R.  Weiss  lab,  MIT.  This  work  was   supported  by  funding  from  the  Defense  Advanced  Research  Projects  Agency  grant   DARPA-­‐BAA-­‐11-­‐23,  Defense  Threat  Reduction  Agency  grant  HDTRA1-­‐14-­‐1-­‐0006,   and  AFOSR-­‐BRI  grant  FA9550-­‐14-­‐1-­‐0060.  

 

AUTHOR  CONTRIBUTIONS  

S.S.  and  J.J.C.  conceived  the  study,  analyzed  data  and  wrote  the  paper.  S.S.  designed   and  performed  the  experiments.  

(15)

 

COMPETING  FINANICIAL  INTERESTS  

The  authors  declare  no  competing  financial  interests.    

References  

1.   Maeder,  M.L.  et  al.  Rapid  "open-­‐source"  engineering  of  customized  zinc-­‐ finger  nucleases  for  highly  efficient  gene  modification.  Molecular  cell  31,  294-­‐ 301  (2008).  

2.   Kim,  S.,  Lee,  M.J.,  Kim,  H.,  Kang,  M.  &  Kim,  J.S.  Preassembled  zinc-­‐finger  arrays   for  rapid  construction  of  ZFNs.  Nature  methods  8,  7  (2011).  

3.   Tebas,  P.  et  al.  Gene  editing  of  CCR5  in  autologous  CD4  T  cells  of  persons   infected  with  HIV.  The  New  England  journal  of  medicine  370,  901-­‐910  (2014).   4.   Ooi,  A.T.,  Stains,  C.I.,  Ghosh,  I.  &  Segal,  D.J.  Sequence-­‐enabled  reassembly  of  

beta-­‐lactamase  (SEER-­‐LAC):  A  sensitive  method  for  the  detection  of  double-­‐ stranded  DNA.  Biochemistry  45,  3620-­‐3625  (2006).  

5.   Khalil,  A.S.  et  al.  A  synthetic  biology  framework  for  programming  eukaryotic   transcription  functions.  Cell  150,  647-­‐658  (2012).  

6.   Lohmueller,  J.J.,  Armel,  T.Z.  &  Silver,  P.A.  A  tunable  zinc  finger-­‐based  

framework  for  Boolean  logic  computation  in  mammalian  cells.  Nucleic  acids   research  40,  5180-­‐5187  (2012).  

7.   Keung,  A.J.,  Bashor,  C.J.,  Kiriakov,  S.,  Collins,  J.J.  &  Khalil,  A.S.  Using  targeted   chromatin  regulators  to  engineer  combinatorial  and  spatial  transcriptional   regulation.  Cell  158,  110-­‐120  (2014).  

8.   Gaj,  T.,  Gersbach,  C.A.  &  Barbas,  C.F.,  3rd  ZFN,  TALEN,  and  CRISPR/Cas-­‐based   methods  for  genome  engineering.  Trends  in  biotechnology  31,  397-­‐405   (2013).  

9.   Kane,  P.M.  et  al.  Protein  splicing  converts  the  yeast  TFP1  gene  product  to  the   69-­‐kD  subunit  of  the  vacuolar  H(+)-­‐adenosine  triphosphatase.  Science  250,   651-­‐657  (1990).  

10.   Hirata,  R.  et  al.  Molecular  structure  of  a  gene,  VMA1,  encoding  the  catalytic   subunit  of  H(+)-­‐translocating  adenosine  triphosphatase  from  vacuolar   membranes  of  Saccharomyces  cerevisiae.  The  Journal  of  biological  chemistry  

265,  6726-­‐6733  (1990).  

11.   Mootz,  H.D.  &  Muir,  T.W.  Protein  splicing  triggered  by  a  small  molecule.   Journal  of  the  American  Chemical  Society  124,  9044-­‐9045  (2002).  

12.   Schwartz,  E.C.,  Saez,  L.,  Young,  M.W.  &  Muir,  T.W.  Post-­‐translational  enzyme   activation  in  an  animal  via  optimized  conditional  protein  splicing.  Nature   chemical  biology  3,  50-­‐54  (2007).  

13.   Zeidler,  M.P.  et  al.  Temperature-­‐sensitive  control  of  protein  activity  by   conditionally  splicing  inteins.  Nature  biotechnology  22,  871-­‐876  (2004).  

(16)

14.   Tyszkiewicz,  A.B.  &  Muir,  T.W.  Activation  of  protein  splicing  with  light  in   yeast.  Nature  methods  5,  303-­‐305  (2008).  

15.   Selgrade,  D.F.,  Lohmueller,  J.J.,  Lienert,  F.  &  Silver,  P.A.  Protein  scaffold-­‐ activated  protein  trans-­‐splicing  in  mammalian  cells.  Journal  of  the  American   Chemical  Society  135,  7713-­‐7719  (2013).  

16.   Huang,  X.  et  al.  Sequence-­‐specific  biosensors  report  drug-­‐induced  changes  in   epigenetic  silencing  in  living  cells.  DNA  and  cell  biology  31  Suppl  1,  S2-­‐10   (2012).  

17.   Kim,  J.S.  &  Pabo,  C.O.  Getting  a  handhold  on  DNA:  design  of  poly-­‐zinc  finger   proteins  with  femtomolar  dissociation  constants.  Proceedings  of  the  National   Academy  of  Sciences  of  the  United  States  of  America  95,  2812-­‐2817  (1998).   18.   Liu,  Q.,  Segal,  D.J.,  Ghiara,  J.B.  &  Barbas,  C.F.,  3rd  Design  of  polydactyl  zinc-­‐

finger  proteins  for  unique  addressing  within  complex  genomes.  Proceedings   of  the  National  Academy  of  Sciences  of  the  United  States  of  America  94,  5525-­‐ 5530  (1997).  

19.   Nogami,  S.,  Satow,  Y.,  Ohya,  Y.  &  Anraku,  Y.  Probing  novel  elements  for   protein  splicing  in  the  yeast  Vma1  protozyme:  A  study  of  replacement   mutagenesis  and  intragenic  suppression.  Genetics  147,  73-­‐85  (1997).  

20.   Ozawa,  T.,  Nishitani,  K.,  Sako,  Y.  &  Umezawa,  Y.  A  high-­‐throughput  screening   of  genes  that  encode  proteins  transported  into  the  endoplasmic  reticulum  in   mammalian  cells.  Nucleic  acids  research  33  (2005).  

21.   Sonntag,  T.  &  Mootz,  H.D.  An  intein-­‐cassette  integration  approach  used  for   the  generation  of  a  split  TEV  protease  activated  by  conditional  protein   splicing.  Mol  Biosyst  7,  2031-­‐2039  (2011).  

22.   Chong,  S.R.  &  Xu,  M.Q.  Protein  splicing  of  the  Saccharomyces  cerevisiae  VMA   intein  without  the  endonuclease  motifs.  Journal  of  Biological  Chemistry  272,   15587-­‐15590  (1997).  

23.   ElrodErickson,  M.,  Rould,  M.A.,  Nekludova,  L.  &  Pabo,  C.O.  Zif268  protein-­‐DNA   complex  refined  at  1.6  angstrom:  A  model  system  for  understanding  zinc   finger-­‐DNA  interactions.  Structure  4,  1171-­‐1180  (1996).  

24.   Cobb,  L.M.  et  al.  2,4-­‐dinitro-­‐5-­‐ethyleneiminobenzamide  (CB  1954):  a  potent   and  selective  inhibitor  of  the  growth  of  the  Walker  carcinoma  256.  

Biochemical  pharmacology  18,  1519-­‐1527  (1969).  

25.   Knox,  R.J.,  Friedlos,  F.  &  Boland,  M.P.  The  bioactivation  of  CB  1954  and  its  use   as  a  prodrug  in  antibody-­‐directed  enzyme  prodrug  therapy  (ADEPT).  Cancer   metastasis  reviews  12,  195-­‐212  (1993).  

26.   Grohmann,  M.  et  al.  A  mammalianized  synthetic  nitroreductase  gene  for  high-­‐ level  expression.  BMC  cancer  9,  301  (2009).  

27.   Lion,  T.  Adenovirus  Infections  in  Immunocompetent  and  

Immunocompromised  Patients.  Clin  Microbiol  Rev  27,  441-­‐462  (2014).   28.   Bogdanove,  A.J.  &  Voytas,  D.F.  TAL  Effectors:  Customizable  Proteins  for  DNA  

Targeting.  Science  333,  1843-­‐1846  (2011).  

29.   Filipovska,  A.  &  Rackham,  O.  Designer  RNA-­‐binding  proteins  New  tools  for   manipulating  the  transcriptome.  Rna  Biol  8,  978-­‐983  (2011).  

(17)

30.   Maxwell,  I.H.,  Maxwell,  F.  &  Glode,  L.M.  Regulated  Expression  of  a  Diphtheria-­‐ Toxin  a-­‐Chain  Gene  Transfected  into  Human-­‐Cells  -­‐  Possible  Strategy  for   Inducing  Cancer  Cell  Suicide.  Cancer  Res  46,  4660-­‐4664  (1986).  

31.   Yu,  J.,  Zhang,  L.,  Hwang,  P.M.,  Kinzler,  K.W.  &  Vogelstein,  B.  PUMA  induces  the   rapid  apoptosis  of  colorectal  cancer  cells.  Molecular  cell  7,  673-­‐682  (2001).   32.   Xie,  Z.,  Wroblewska,  L.,  Prochazka,  L.,  Weiss,  R.  &  Benenson,  Y.  Multi-­‐Input  

RNAi-­‐Based  Logic  Circuit  for  Identification  of  Specific  Cancer  Cells.  Science  

333,  1307-­‐1311  (2011).  

33.   Koch,  J.,  Steinle,  A.,  Watzl,  C.  &  Mandelboim,  O.  Activating  natural  cytotoxicity   receptors  of  natural  killer  cells  in  cancer  and  infection.  Trends  Immunol  34,   182-­‐191  (2013).  

34.   Banerjee,  C.  et  al.  BET  bromodomain  inhibition  as  a  novel  strategy  for   reactivation  of  HIV-­‐1.  J  Leukoc  Biol  92,  1147-­‐1154  (2012).  

35.   Nambiar,  M.,  Kari,  V.  &  Raghavan,  S.C.  Chromosomal  translocations  in  cancer.   Biochim  Biophys  Acta  1786,  139-­‐152  (2008).  

36.   Dekker,  J.,  Marti-­‐Renom,  M.A.  &  Mirny,  L.A.  Exploring  the  three-­‐dimensional   organization  of  genomes:  interpreting  chromatin  interaction  data.  Nat  Rev   Genet  14,  390-­‐403  (2013).  

 

 

Figure  Legends  

 

Figure  1.    A  DNA  sense-­‐and-­‐respond  system.  A  toolbox  of  parts  (left)  comprising  the  

system  and  a  schematic  (right)  of  the  detection  of  a  specific  DNA  sequence  in  the   mammalian  cell  nucleus  are  shown.  Two  modular  ZF-­‐based  sensors  are  

programmed  to  dock  adjacently  upon  target  DNA.  Each  sensor  contains  an  

artificially  split  SceVMA  intein  domain  that  is  fused  to  the  split  extein.  The  extein  is  a   ZF-­‐TF,  split  between  the  binding  and  trans-­‐activating  domains.  Target  detection   facilitates  intein  co-­‐localization  followed  by  extein  trans-­‐splicing.  The  spliced  ZF-­‐TF   activates  the  expression  of  an  interchangeable  response  gene  downstream  of  its   operator  in  the  response  circuit.  

 

Figure  2.    ZF-­‐intein  sensor  design.  Tridactyl  and  hexadactyl  (generated  by  merging  

(18)

exteins)  and  intracellular  binding  activity  was  tested.  Operators  for  hexadactyl   proteins  consisted  of  two  contiguous  nine  bp  sites  (0gap)  or  two  nine  bp  sites   interrupted  with  one  (1gap)  or  two  (2gap)  unrelated  bps,  with  GFP  as  a  reporter.   Mean  GFP  fluorescence  (blue  bars)  of  biological  duplicate  samples  is  displayed  as   overlaid  bars  and  compared  to  control  samples  in  the  absence  of  ZF-­‐TFs  (grey  bars).      

Figure  3.    Split  extein  and  splice-­‐junction  (SJ)  design  and  cis-­‐splice  validation.  (a)  

Schematic:  Extein  residues  from  split  luciferase  introduced  into  ZF9-­‐TF  between  its   ZF  and  VP64  domains  form  splice  junctions  (SJ).  Successful  extein  ligation  would   result  in  the  ZF9-­‐TF-­‐V2  version  (see  also  Supplementary  Fig.  5).  (b)  Schematic:   Split  extein  cis-­‐splicing  was  tested  in  a  condition-­‐free  manner  by  tethering  the   divided  intein  domains  to  one  another  with  a  flexible  linker,  applied  to  three  extein   variants  (CIS  V1-­‐3),  and  measured  through  GFP  trans-­‐activation  by  the  splice   product,  shown  in  (c)  and  Supplementary  Fig.  5c.  Biological  duplicate  samples  are   displayed  as  overlaid  bars.  (d)  A  α-­‐HIS-­‐probed  immuno  blot  of  proteins  extracted   from  HEK  293FT  cells  expressing  the  three  variants  and  splice-­‐null,  double  mutants   (CIS-­‐V1-­‐3m),  (see  also  Supplementary  Fig.  5d,e,f,g  for  mutation  schematic,  

uncropped  blot  version  of  (d),  α-­‐FLAG  probing,  and  quantification).    Lane  1  is  a  ZF9-­‐ TF-­‐V2  size  control  distinguishing  between  unspliced  precursor  and  splice  product.   Total  protein  was  normalized  with  α-­‐Tubulin.  

 

Figure  4.    Intracellular  DNA  sense-­‐and-­‐respond.  (a)  The  three  components  of  the  

(19)

plasmid  carrying  0-­‐8  instances  of  the  36  bp  target  sequence,  (iii)  response  circuit   modulated  by  spliced  ZF9-­‐TF.  (b)  Transfection  of  three  sensor  pair  variants  (V1,  2,   3)  with  (blue)  and  without  (grey)  target  plasmid  (see  also  Supplementary  Fig.  

6a,b).  (c)  Increasing  amounts  (ng)  of  transfected  target  plasmid  yield  a  dose-­‐

response  output.  N-­‐terminal  sensor  is  absent  in  column  1.  (d)  Signal  comparison   between  wildtype  (wt)  and  mutant  sensors  using  a  series  of  target  plasmids  

containing  0-­‐4,  8  target  instances.  (e)  Orthogonality  testing  for  two  sensor  pairs  and   their  target  plasmids  (T1,  T2).  Mean  GFP  fluorescence  of  biological  triplicate  

samples  (for  b,c,e)  and  duplicate  samples  (for  d)  are  displayed  as  overlaid  bars.    

 

Figure  5.    Sequence  recognition-­‐induced  apoptosis.  (a)  Schematic:  target  sequence  

recognition  leads  to  NTR  expression,  CB  1954  reduction,  and  apoptosis.  

Transfection  (50%  rate,  see  Supplementary  Fig.  8a,  right)  of  sensor  system  with   target  (blue),  without  target  (grey),  or  in  the  absence  of  the  NTR  response  circuit   (orange).  Media  contained  [CB  1954]  (0-­‐32  μM).  Samples  collected  after  72  h,   stained  with  Annexin  V,  and  measured  via  flow  cytometry.  Numbers  represent  %  of   cells  staining  positive  for  Annexin  V  (apoptosis),  (see  also  Supplementary  Fig.  8a   for  48  h  measurement).  Biological  duplicate  samples  are  displayed  as  overlaid  bars   of  matching  color.  (b)  Phase-­‐contrast  microscopy  96  h  post-­‐treatment  for  cell   population  viability  (see  also  Supplementary  Fig.  8b  for  full  prodrug  range).  Scale   bar  is  50  μM.  

(20)

Figure  6.  Adenovirus  detection  and  reporting.  (a)  Schematic:  Instances  of  targets  1  

or  2  (T1,  T2)  (or  no  target)  inserted  into  the  Ad5  genome  downstream  of  the  

packaging  signal  (ψ).  Constitutive  BFP  expression  serves  as  a  viral  infection  marker.   The  detection  system  (mCherry  as  a  transfection  marker),  based  on  sensor  pair  1  or   2,  is  present  in  the  cell  nucleus  prior  to  infection.  Cells  were  infected  with  virus   containing  T1,  T2,  or  no  target  (Vir  (–T)).  Sequence-­‐specific  detection  was  measured   through  GFP  trans-­‐activation.  (b)  HEK  293FT  cells  were  transfected  and  infected  as   described  above.  Mean  GFP  fluorescence  in  mCherry+/BFP+  cells  of  biological  

duplicate  samples  is  displayed  as  overlaid  bars.  (c)  Epifluorescence  microscopy  of   cells  subjected  to  transfection  à  infection  (mCherry  =  transfection,  BFP  =  infection,   and  GFP  =  detection).  Scale  bar  is  50  μM.  

 

ONLINE  METHODS  

 

OPEN  ZF  library  and  split  SceVMA  intein.  

The  10  tridactyl  ZFs  used  in  this  study  were  developed  using  OPEN,  as  previously   described5  (See  also  Supplementary  Note  1  and  Supplementary  Table  2).  In  all  

screening,  VP64  was  C-­‐terminally  fused.  The  SceVMA  intein  was  simultaneously   amplified  and  divided  from  gDNA  purified  from  Saccharomyces  cerevisiae,  as  

previously  described11.  IN  and  IC  consist  of  residues  1-­‐184  and  390-­‐454,  respectively,  

in  the  full  SceVMA  sequence.  Glycine/serine  insolating  linkers  were  introduced  by   gBlock  synthesis  (Integrated  DNA  Technologies  (IDT)).  

(21)

General  cloning  procedures.                                                                                                                                                                                                                    

Standard  cloning  procedures  were  applied  (see  also  Supplementary  Note  3).  All   PCR  amplification  stages  used  Phusion  polymerase  (NEB),  according  to  the  

manufacturer’s  protocol.  All  restriction  enzymes  used  throughout  this  study  were   Type  II,  NEB  enzymes.  Alkaline  phosphatase  (CIP)  was  used  to  prevent  linear   plasmid  re-­‐ligation  to  reduce  background  (except  during  the  ligation  of  annealed   oligos,  described  below).  Bacterial  selection  of  NEB  10-­‐beta  electro-­‐competent  cells   during  cloning  was  performed  on  1%  LB-­‐agar  plates  with  120  ug/mL  ampicillin  or   50  ug/mL  kanamycin.  

 

Bacterial  strains,  over-­‐expression,  and  EMSA  

For  cloning,  10-­‐beta  electrocompetent  E.  coli  (NEB)  cells  were  used,  and  for  protein   over-­‐expression,  MG1655  Pro  was  used.  ZF-­‐intein  fusion  proteins  were  expressed   using  the  pZE21  plasmid,  allowing  for  kanamycin  selection  and  induction  with  100   ng/ml  anhydrotetracycline  (aTc).  ZF5-­‐IC  and  IN-­‐ZF5  fusion  proteins  were  N-­‐

terminally  FLAG-­‐tagged,  extracted  with  B-­‐Per  II  (Thermo  Scientific),  purified  with  α-­‐ FLAG  M2  affinity  gel,  and  eluted  with  FLAG  peptide  (Sigma  Aldrich).  Purified  protein   was  subjected  to  EMSA  using  biotinylated  ZF5  DNA  duplex  (IDT),  a  streptavidin-­‐ HRP  conjugate  (Thermo  Scientific,  21130),  chemiluminescent  substrate  (Bio-­‐Rad),   and  read  with  a  Gel  Logic  system  (Carestream  Mol.  Imaging).  

(22)

Plasmid  construction,  oligo  annealing  and  ligation  (oligo  drop)  

The  reporter  constructs  and  synthetic  response  circuit  were  based  on  pGL4.26   (Promega).  Luciferase  was  replaced  with  EGFP.  pVITRO1/MCS/Neo  (InvivoGen)   was  used  to  express  ZF-­‐TFs  and  sensor  chimers  in  human  cells.  pBW121  served  as  a   co-­‐transfection  marker  with  mCherry  driven  by  pCAG.  It  also  functioned  as  a  target-­‐ carrier  plasmid  (with  and  w/o  SV40  Ori).  All  instances  in  which  ZF  operator  

sequences  and  sensor  target  sequences  were  ligated  into  reporter  plasmid  or  target-­‐ carrying  plasmid,  respectively,  were  performed  via  “oligo  drop”:  single-­‐stranded   DNA  oligos  were  designed  to  contain  post-­‐cut  overhangs  once  annealed  with  their   complimentary  strand,  compatible  with  ligation  into  a  linearized  plasmid.  

Lyophilized  oligos  were  resuspended  in  annealing  buffer  (10mM  Tris-­‐HCl,  pH  7.5,   50mM  NaCl),  equal  volumes  of  sense  and  anti-­‐sense  were  mixed  at  100°,  cooled  to   24°  over  60  min,  diluted  and  ligated  into  linearized  plasmid.  Tandem  repeats  of   operator  or  target  sequences  were  directionally  cloned  in  cycles,  using  oligos   designed  to  contain  a  full  5’  cut  site  within  which  would  replace  the  abolished  (by   design)  5’  ligation  site  at  cloning  cycle.  

 

Cell  culture,  cell  lines,  and  transfection.    

The  three  cell  lines  used  in  this  study  are  HeLa  (ATCC  CCL2),  HEK  293FT  (donated   by  the  Weiss  lab,  MIT),  and  293AD  (Cell  Biolabs).  HeLa  and  HEK  293FT  were   selected  for  their  convenience  as  transformed  cell  lines  (also  HEK  293FT  expresses   the  SV40  large  T-­‐antigen  allowing  transient  replication  of  plasmids  containing  the  

(23)

SV40  ori).  293AD  has  enhanced  adhering  qualities  for  Ad5  production.  Cells  were   not  tested  for  mycoplasma  contamination  or  authenticated.  Cells  were  cultured  in   4.5  g/L  glucose,  L-­‐glutamine  DMEM  (Corning)  supplemented  with  10%  FBS,   penicillin  100  I.U./mL,  and  streptomycin  100  μg/mL.  The  standard  transfection   protocol  was  as  follows,  briefly:  100-­‐200K  cells  were  plated  in  12-­‐well  format  and   transfected  24h  later  with  1-­‐1.5  ug  combined  DNA  using  polyethylenimine  (PEI)  as  a   transfection  reagent.  48h  post-­‐transfection,  cells  were  examined  using  a  Nikon   Eclipse  Ti  epifluorescence  microscope,  trypsinized,  and  prepared  for  flow  cytometry   analysis.    

 

Mammalian  protein  extraction  and  immunoblots.                                                                                                              

48h  post-­‐transfection,  total  protein  was  extracted  using  RIPA  (Thermo  Scientific)   from  HEK  293FT  cells  expressing  cis-­‐splice  test  proteins  or  ZF9-­‐TF,  tagged  with   FLAG  or  3xHIS  at  the  N-­‐  or  C-­‐  terminus,  respectively.  Protein  was  loaded  on  a  Mini-­‐ PROTEAN  TGX  gel,  transferred  to  a  0.45  μm  nitrocellulose  membrane  using  a  Trans-­‐ Blot  SD  cell  and  normalized  via  α-­‐Tubulin  (abcam).  Membranes  were  probed  with   either  α-­‐FLAG-­‐M2  (Sigma  Aldrich,  F3165)  or  α-­‐HIS  (GenScript,  A00174-­‐40)  primary   antibodies  and  secondary  HRP-­‐conjugated  antibodies  (Bio-­‐Rad,  #1721011  and   #1706515),  and  imaged  with  a  Gel  Logic  system  (Carestream  Mol.  Imaging).  

 

Sequence  recognition-­‐induced  apoptosis  via  CB  1954/NTR.  CB  1954  (Sigma  

(24)

described  above  and  supplemented  with  0-­‐32  [μM]  prodrug.  After  48h  or  72h,  cells   were  collected,  including  growth  media,  and  subjected  to  Annexin  V-­‐FITC  and  PI   staining  according  to  manufacturer’s  instructions  (BD  Biosciences),  followed  by   flow  cytometry.  Cells  were  also  analyzed  via  light  microscopy  at  96h.  

 

Adenovirus  preparation,  titration,  and  infection.  Ad5  was  prepared  using  the  

RAPAd  CMV  adenoviral  expression  system  (Cell  Biolabs).  Briefly,  TagBFP  was   cloned  downstream  of  a  CMV  promoter  as  an  infection  marker.    Target  sequence  (0-­‐ 8  copies)  for  sensor  pair  1  or  2  was  ligated  into  the  viral  genome  adjacent  to  the  Ad5   ψ.  Crude  viral  extract  was  prepared  via  co-­‐transfection  of  the  linearized  viral  

plasmids  into  a  293AD  line  (Cell  Biolabs),  and  after  collection,  was  amplified  in  the   same  cells  and  titrated  through  serial  dilution  and  plaque  counting.  For  

transfection/infection  experiments,  HEK  293FT  cells  were  transfected  with  the   sensor  system  as  described  above  and  after  24h,  infected  with  virus  at  an  MOI  of  5.   48h  later,  cells  were  trypsonized,  fixed  and  subjected  to  flow  cytometry  analysis.  

 

Flow  cytometry  and  data  analysis.  All  transfections  were  measured  with  a  BD  

FACSAria  II  flow  cytometer  (BD  Biosciences).  Transfection/infections  were   measured  using  a  BD  Fortessa  High  Throughput  Sampler.  Means  of  fluorescence   distributions  were  calculated  with  FlowJo.  In  transfections,  GFP  arbitrary  units  were   collected  from  cells  gated  to  mCherry  and  in  transfection/infection  experiments,   gated  to  mCherry  and  BFP  fluorescence.  All  experiments  were  repeated  multiple   times  and  data  are  displayed  either  as  an  average  of  biological  triplicates  or  

(25)

duplicates  with  standard  deviation,  or  as  fold  change  with  error  propagation   calculations.  Due  to  experimental  variation,  while  data  trends  may  be  compared   between  experiments,  absolute  values  should  be  compared  within  single  

experiments.    

(26)

 

Supplementary  Notes  

 

Note  1.  Tridactyl  ZF  screening.  

 At  the  onset  of  this  work,  we  utilized  ten  tridactyl  ZFs  designed  using  OPEN  (Oligomerized   Pool  ENgineering)  and  screened  with  bacterial  2-­‐hybrid  methods.  In  order  to  select  two   members  to  serve  as  DNA  sensors  and  another  to  function  as  the  split  extein,  the  ZFs  were   fused  to  VP64  and  transformed  into  synthetic  TFs  (Supplementary  Fig.  1a).    Reporters   were  prepared  for  each  ZF-­‐TF  encoding  GFP  modulated  by  a  single  copy  of  the  respective   nine  bp  binding  site.  We  transiently  co-­‐transfected  human  embryonic  kidney  (HEK  293FT)   or  HeLa  cells  with  each  ZF-­‐TF  and  its  reporter,  assessing  intracellular  binding  by  

measuring  GFP  fluorescence  via  flow  cytometry  (Supplementary  Fig.  1b,c).  While  a   number  of  ZF-­‐TFs  showed  marked  activation,  several  displayed  fluorescence  only   moderately  higher  than  their  negative  controls.  Also,  a  purified  tridactyl  IN-­‐ZF  fusion  

protein  subjected  to  a  gel  retardation  assay  could  not  bind  its  operator  to  any  detectable   measure  (Supplementary  Fig.  1d).  Therefore,  hexadactyl  ZF  proteins  were  constructed;   to  both  acquire  higher  affinity  and  overcome  binding  hindrance  imposed  by  fusion  to  the   intein  domains,  as  described  in  the  main  text  (Fig.  2).  

 

Note  2.  Non-­‐replicative  vs.  replicative  target.  

A  replicating  target-­‐carrying  plasmid  may  more  accurately  represent  an  active  viral   infection  compared  to  a  non-­‐replicative  target  plasmid.  Therefore,  to  assess  whether  the   system  could  distinguish  between  these  two  options,  the  Simian  vacuolating  virus  40  

(27)

origin  of  replication  (SV40  ori)  was  inserted  into  the  target  plasmid  and  tested  in  HEK   293FT  cells  (capable  of  replicating  DNA  containing  this  sequence).  Epifluorescence   microscopy  revealed  successful  target  recognition  as  GFP-­‐positive  cells  were  visible  only   in  the  presence  of  the  target  and  even  markedly  more  so,  in  that  of  its  replicative  form   (Supplementary  Fig.  7).  

 

Note  3.  Plasmids,  oligos,  and  component  sequences  

Plasmid   sequences   have   been   deposited   to   addgene.com   and   accession   numbers   have   been  provided  in  Supplementary  Table  1.  Additional  sequences  of  individual  components,   e.g.  -­‐  ZFs  and  their  operator  sites,  SceVMA  intein  domains  and  the  primers  used  to  amplify   them,   linker   sequences   merging   tridactyl     ZFs   to   create   hexadactyl   sensors,   Glycine/Serine-­‐rich  insulating  linkers  distancing  the  intein  domains  from  the  ZF  domains,   target  sites  of  all  gap  sizes  for  both  sensor  pairs,  localization  and  immuno  blot  tags,  genes   encoding   fluorescent   proteins,   gBlocks   used   to   create   a   second   sensor   pair,   gBlocks   to   introduce   RàA   mutations   into   ZFs,   splice   junction   linkers-­‐   can   be   found   in   the   Supplementary  Tables  2-­‐4.    

 

Note  4.  Equipment  and  settings.  

Images  of  blots  shown  in  Fig.  3  and  Supplementary  Fig.  1,5,  were  acquired  using   the  Gel  Logic  6000  Pro  system  (Carestream  Mol.  Imaging)  with  the  manufacturer’s  image   acquisition  software  (Carestream  MI)  for  chemiluminescent  imaging.  Microscopy  images   in  Fig.   5,6  and  Supplementary   Fig.   4,7,8   were  acquired  with  the  following  equipment:   Nikon   Eclipse   Ti   epifluorescence   microscope,   Nikon   Intensilight   C-­‐HGFIE,   Sutter  

(28)

Instrument  Smartshutter  controller,  Photometrics  CoolSnap  HQ2,  Nikon  TI-­‐PS  100W,  Prior  

ProScan   II.   DAPI,   TxRED,   FGP(R)BP,   ANALY   filters.   A   Plan   Fluor   10×/0.30   objective   was   used  for  all  images,  at  a  pixel  dimension  of  1392×1040  and  resolution  of  72  pixels/inch.   Images  were  analyzed  using  the  manufacturer’s  NIS-­‐Elements  software.          

 

Supplementary  Tables  

 

Supplementary  Table  1  

Name   Description   Resistance   Marker   Addgene  accession   number  

pVITRO1-­‐SS-­‐132   ZF1-­‐TF  +  mCherry   kan   G418   68729   pVITRO1-­‐SS-­‐115   ZF2-­‐TF  +  mCherry   kan   G418   68730   pVITRO1-­‐SS-­‐126   ZF3-­‐TF  +  mCherry   kan   G418   68731   pVITRO1-­‐SS-­‐117   ZF4-­‐TF  +  mCherry   kan   G418   68732   pVITRO1-­‐SS-­‐127   ZF5-­‐TF  +  mCherry   kan   G418   68733   pVITRO1-­‐SS-­‐128   ZF6-­‐TF  +  mCherry   kan   G418   68734   pVITRO1-­‐SS-­‐130   ZF7-­‐TF  +  mCherry   kan   G418   68735   pVITRO1-­‐SS-­‐131   ZF8-­‐TF  +  mCherry   kan   G418   68736   pVITRO1-­‐SS-­‐113   ZF9-­‐TF  +  mCherry   kan   G418   68737   pVITRO1-­‐SS-­‐129   ZF10-­‐TF  +  mCherry   kan   G418   68738   pGL4.26-­‐SS-­‐140   ZF1  Op  -­‐  GFP   Amp   Hygro   68739   pGL4.26-­‐SS-­‐79   ZF2  Op  -­‐  GFP   Amp   Hygro   68740   pGL4.26-­‐SS-­‐134   ZF3  Op  -­‐  GFP   Amp   Hygro   68741   pGL4.26-­‐SS-­‐80   ZF4  Op  -­‐  GFP   Amp   Hygro   68742   pGL4.26-­‐SS-­‐135   ZF5  Op  -­‐  GFP   Amp   Hygro   68743   pGL4.26-­‐SS-­‐136   ZF6  Op  -­‐  GFP   Amp   Hygro   68744   pGL4.26-­‐SS-­‐138   ZF7  Op  -­‐  GFP   Amp   Hygro   68745   pGL4.26-­‐SS-­‐139   ZF8  Op  -­‐  GFP   Amp   Hygro   68746   pGL4.26-­‐SS-­‐78   ZF9  Op  -­‐  GFP   Amp   Hygro   68747   pGL4.26-­‐SS-­‐137   ZF10  Op  -­‐  GFP   Amp   Hygro   68748   pVITRO1-­‐SS-­‐148   ZF8/ZF7-­‐TF  +  mCherry   kan   G418   68749   pVITRO1-­‐SS-­‐149   ZF6/ZF10-­‐TF  +  mCherry   kan   G418   68750   pGL4.26-­‐SS-­‐160   ZF10-­‐ZF6  Op  0gap  -­‐  GFP   Amp   Hygro   68751  

Figure

Table    1:    Plasmids    deposited    at    addgene    are    listed    according    to    name,    brief    description,    bacterial   selection   marker,   mammalian   selection   marker,   and   accession   code

Références

Documents relatifs

À partir du rapport d’autoévaluation, chaque gestion- naire responsable du suivi d’une norme a produit un plan d’amélioration de la qualité à partir d’une grille structu-

[r]

L’Institut d’informatique de gestion à Sierre a déjà développé dans le cadre du projet WE- MAP une application qui permet d’évaluer les points d’intérêt, en anglais

To delineate Dicer localization in rDNA more precisely, we performed chromatin immunoprecipitation (ChIP) analysis in HEK293 cells with the anti-Dicer D349 antibody and used

Séance plénlère dans la vénérable salle du Grand Conseil. p '"pâtissiets-qlaciezs Ils étaient 200, venus de tpute la Suisse. Et le congrès a duré trois jours. Il a

Nous avons ainsi montré que les deux types de matériaux, ivoire d’éléphant et os de vache, les plus susceptibles d’être utilisés pour la fabrication des éventails que

To achieve this, the ‘‘MIR’’ submarines (Shirshov Institute of Oceanology, USSR Academy of Sciences) and the research boat ‘‘La Licorne’’ (Institute F.-A. Forel, University

Elle ne sait où poser les yeux, que regarder, elle a envie de ne rien rater, de tout prendre, chaque poisson, chaque corail, et de tout stocker dans sa mémoire.. Elle prend