• Aucun résultat trouvé

Yield point in the semi-infinite solid in case of local loading

N/A
N/A
Protected

Academic year: 2021

Partager "Yield point in the semi-infinite solid in case of local loading"

Copied!
35
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Translation (National Research Council of Canada), 1950-03-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331551

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at Yield point in the semi-infinite solid in case of local loading

Hruban, K.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=1fa43d4b-6b1a-4360-a7b7-7866702dfee8 https://publications-cnrc.canada.ca/fra/voir/objet/?id=1fa43d4b-6b1a-4360-a7b7-7866702dfee8

(2)

Title:

NATIONAL RESEARCH COUNCIL O F CANADA TechnlcaP Translation TT-134

Yield point In the semi-inf f n i t e sol-Id In case of local loadlng.

( P l i e s s g ~ e n z e bef Ortllcher Belastung des Halbraumes ) ,

Author : H , Hruban.

Reference: Publicat Ion of the International A s s n c i a t Ion for Bridge and Structl~ral E(~yineerlnp: .;,

7,:

179- 214, 1943-44.

(3)

The N a t i o n a l R e s e a r c h C o u n c i l , t h r o u g h i t s D i v i s i o n o f B u i l d i n g R e s e a r c h , i s p l e a s e d t o h a v e b e e n a b l e t o a r r a n g e f o r t h e p u b l i c a t i o n o f t h i s t r a n s l a t i o n o f a n i m p o r t a n t p a p e r i n t h e f i e l d o f c i v i l e n g i n e e r i n g , The s i g n i f i c a n c e o f t h e p a p e r i s i n d i c a t e d by t h e a t t e n t i o n g i v e n t o i t by P r o f e s s o r

I,

F,

M o r r i s o n , o f t h e U n i v e r s i t y o f A l b e r t a , The p u b l i c a t i o n o f t h i s t r a n s l a t i o n r e p r e - s e n t s one way i n which t h e D i v i s i o n o f B u i l d i n g R e s e a r c h h o p e s t o work w i t h t h e e n g i n e e r i n g and a r c h i t e c t u r a l d e p a r t m e n t s o f C a n a d i a n u n i v e r s i t i e s i n t h e c o - o p e r a t i v e development o f b u i l d i n g r e s e a r c h i n Canada, March, 1950 R , F o L e g g e t , D i r e c t o r

(4)

T r a n s l a t i o n of P a r t of Paper on Y i e l d P o i n t i n t h e S e m i - I n f i n f t e S o l f d i n Case of Local Loadfng

by D r ,

KO

Hruban

Vol, 7, 1943-44

Proceedings I n t e r n a t i o n a l A s s o c i a t i o n f o r Bridge and S t r u c t u r a l Engineerfng, Summary

There a r e b u i l d i n g s which, i n t h e c o u r s e of c e n t u r i e s , a r e c o n t i n u a l l y s i n k i n g more a n d more i n t o t h e s o i l , T h i s phenomenon cannot be a t t r i b u t e d s o l e l y t o t h e c o n s o l i d a t i o n of c o h e s i v e l a y e r s ;

i t a r i s e s r a t h e r from a d i s t u r b a n c e of e q u i l f b r i u m f n t h e mass of e a r t h u n d e r n e a t h t h e b u i l d f n g , a d f s t u r b a n c e which must n o t be con- f u s e d wPth r u p t u r e , I n o r d e r t o I n v e s t i g a t e t h i s phenomenon of p l a s t f c deformatf on, t h e s t r e s s c o n d i t f o n s a r e determfned i n t h e e l a s t i c - f s o t r o p f c s e m i - I n f i n i t e s o l f d whose s u r f a c e f s l o a d e d w i t h a r i g i d body, Rigorous s o l u t i o n s can be o b t a i n e d f o r t h e two- dimensional problem wfth c e n t r a l and a l s o e c c e n t r i c t r a n s m f s s i o n of f o r c e , Based on a simple form of t h e y f e l d condf t i on of t h e l f m f t e d s h e a r i n g energy, t h e magnitude of t h e l o a d f u found a t t h e

s t a r t of permanent p l a s t f c d f splacements f o r l o a d i n g on a s t r i p (eq, 1 5 ) and on a c i r c u l a r a r e a ( m 3 ) , T h i s l i m f t e d l o a d i n g f s found t o be much s m a l l e r t h a n t h e r u p t u r f n g l o a d a s c a l c u l a t e d I n accordance wfth t h e asswnptfons h i t h e r t o made, The Paw of deforma- % I o n of e a r t h masses does not a l l o w t h e t h e o r y of e l a s t i c i t y t o be a p p l i e d d i r e c t l y t o f o u n d a t i o n l a y e r s ; n e v e r t h e l e s s , t h e c o n d i t i o n s of compatfbflf t y Pead t o conePusions whi ch make It p o s s f b l e t o

form a judgment of t h e e q u f l f b r i u m i n l o c a l l y l o a d e d l a y e r s of e a r t h o From t h a t , Pfmitfng v a l u e s of t h e p r e s s u r e on t h e s o f h a n be found i n c a s e of a l o a d e d s t r f p (eq, 27, 28) and a l o a d e d c f r e l e (eq, 29,30), where t h e c o n d i t i o n i s f u l f f l l e d t h a t no c o n t f n u a l s e t t l e m e n t s h a l l

o c c u r o The I n f l u e n c e of t h e d e p t h of t h e f o u n d a t i o n , of t h e w i d t h of s l a b s , and of t h e c o h e s i o n a r e f l l u s t r a t e d by some examples a n d numerical t a b l e s , The f f r s t p a r t of t h e paper p r e s e n t s t h e t h e o r y of s t r e s s d i s t r f b u t i o n f n t h e semf- i n f i n i t e s o l i d due t o l o c a l l o a d i n g , S e e t i o n 7 i n t r o d u c e s s 7 , The Flow C o n d i t i o n

Very l i t t l e f s known up t o now r e g a r d f n g t h e behavfour of v a r i o u s m a t e r i a l s a t t h e f l o w - l f m i t ( y f e l d - p o f n t ) w i t h t r f - a i x i a l p r e s s u r e wfth p r i n c f p a l s t r e s s e s of d f f f e r e n t magnftudes, Most of t h e compression a p p a r a t u s e s hf t h e r t o desfgned, can i n v e s t f g a t e

(5)

merely e i t h e r a plane deformation condition or an a x i a l symmetrfc s t r e s s condition, The researches of recent y e a r s on t h e mechanics of p l a s t i c behaviour of mild s t e e l , show, however, t h e i n c o r r e c t - ness of t h e Mohr hypothesis according t o which t h e mean p r i n c i p a l

s t r e s s e x e r t s no influence on the yield-point,

The same conclusions a r i s e from researches which Kjellman I has c a r r i e d out with sand i n a s p e c i a l l y constructed compression apparatus,

If one revfews previous work, one a r r f v e s a t t h e idea, f i r s t expressed by Ruber, and l a t e r more e x a c t l y formulated by s e v e r a l

o t h e r r e s e a r c h workers, t h a t the a b i l i t y of m a t e r i a l s t o behave e l a s t i c a l l y i s l i m i t e d by the f a c t t h a t t h e produced work of de- f o m a t f o n cannot exceed a l i m i t f n g value, Thfs ffrnitfng value appears t o be dependent on t h e accupulated energy I n the m a t e r i a l throughout i t s h i s t o r y o The deformation work r e f e r r e d t o f s pro- p o r t i o n a l t o the sum o f t h e squares of t h e p r i n c i p a l s t r e s s e s ; the accumulated energy i s a f u n c t i o n of t h e p r f n c i p a l normal

s t r e s s e s , i n the components of which, however, the workfng s t r e s s e s of t h e whole of t h e s o l i d substance of the mass a r e t o be included

( t h u s taking i n t o account the i n t r i n s i c pressure and secondary s t r e s s e s ) , I f we designate these t o t a l p r i n c i p a l s t r e s s e s by

6

I~

a g ~ .

6 1 1 1 9 wherein a g a i n 61 s f g n f f f e s the smallest and

6

111 t e l a r g e s t pressure s t r e s s , then t h e flow conditf on can

i n g e n e r a l be wrf t t e n down i n the form

For p r a c t f c a l computations, a simple form of the f u n c t i o n f

w i l l be chosen and t h e constants e n t e r i n g i n t o f t w i l l be so

determined t h a t t h e y correspond a s w e l l a s possfble wfth experience i n t h e chosen s t r e s s range,

We w i l l be content here wfth the sfmplest form of t h i s f u n c t f o n which leads, with plane deformatfon conditions, t o l f n e a r con-

dftf on equatf ons, We assume t h a t i n t h e loaded materfal, b e s i d e s the s t r e s s e s according t o Sectfons 4 and 6,3 only a h y d r o s t a t i c s t r e s s condlti on p r e v a i l s with all-around p r e s ~ u r e 6 ~ , whi ch i s

1

W,

Kjellman, Proc, of I n t e r , Conf, on S o i l Mechanics, 1936, Vol, 11, page 16,

*

Equations i n the t r a n s l a t i o n have been renumbered.

f These s e c t i o n s precede the t r a n s l a t e d s e c t i o n s i n t h e o r i g i n a l t e x t ,

(6)

produced by a combfnation of molecular f o r c e s , previous loading, f n t r i n s f c s t r e s s e s and secondary i n f l u e n c e s , The p r i n c i p a l s t r e s s e s of t h e e l a s t i c c o n d i t i o n s caused by the l o a d i n g wf

lP

.,

Then t h e t o t a l p r i n c i p a l s t r e s s e s i n the amount to8

The d f f f e r e n c e s on t h e l e f t s i d e of e q u a t i o n ( 1 ) (26 i n the paper) a r e (

cI

-

o I I ) =

6

-

629

e t c . and t h e right-hand s i d e becomes a f u n c t f o n of

60s

e f s

,52s CY3. We assume t h a t the r o o t of t h f s f u n c t i o n can be developed i n a power s e r i e s accord-

i n g t o t h e average p r i n c i p a l s t r e s s

6

1

+

6 2

+

5 3 9 of which we

3

r e t a f n only t h e f i r s t two terms, The r e s u l t can be w r f t t e n a s followsg

T h i s i s one simple form of t h e flow c o n d i t i o n f o r i s o t r o p i c m a t e r i a l s , which s t a n d s i n agreement with t h e p r i n c i p l e of l f mfted work of deformation, The c o e f f i c i e n t k and t h e s t r e s s 6 s f g n f f y m a t e r i a l c o n s t a n t s ; k i s conditfoned by t h e i n n e r f r i c t i o n and 0

by t h e i n t e r n a l s t r e s s e s , Three groups of m a t e r i a l s can be df s- t f n g u f s h e d according t o & i c h of t h e s e two v a l u e s i n f l u e n c e t h e p r o p e r t i e s of t h e m a t e r i a l t h e most,

Group I M a t e r i a l s without i n t e r n a l f r i c t i o n , w i t h whfch 6 r e l a t i v e t o

6 z S

and 6 3 a r e very l a r g e and k v e r y s m a l l a s f o r example wf t h metals, (For rnfld s t e e l , i f 6 be t a k e n

equal t o 320,000 kg/cm2, k f s t h e n z s 0,0075) I n t h i s group a l s o belong w a t e r - s a t u r a t e d c l a y s s u b j e c t t o qufck foadfng, The r f g h t

s f d e of r e l a t f o n ( 2 ) can t h u s be assumed a s c o n s t a n t and t h f s transforms f t s e l f i n t o t h e Ruber-von

MI

ses-Hencky flow condf ti on f o r s t e e l ,

(7)

5, t h u s s i g n i f i e s t h e f l o w - l i m i t ( y i e l d - p o i n t ) i n t h e s i m p l i - f i e d s t r e s s - s t r a i n diagram w i t h pure t e n s i o n s t r e s s ( s e e

Figure

l),

The same numerical value i s o b t a i n e d from ( 3 ) f o r u n i q x f a l oompressive s t r e s s ,

(b) I n t h e case of p l a i n deformation

-

61

+

6 3 d 2

-

m

I n t h e i n i t i a l s t a g e s of t h e flow process w i t h most m a t e r i a l s

m

= 2 and t h e e q u a t i o n ( 3 ) g i v e s t h e n t h e flow c o n d i t i o n

The s t r e s s d i f f e r e n c e can t h e r e f o r e be h i g h e r i n t h e r a t i o of 2 %

6

=

1,15 t h a n w i t h pure t e n s i o n s t r e s s , Thus t h e r e a r i s e s a n upper and a lower y i e l d p o i n t , which a l s o a g r e e s wf t h observation, 2

( c ) We consider a l s o t h e following axial-symmetric s t r e s s con- d i t i o n , which a r i s e s with t h e loading of t h e half-space through a r i g i d c y l i n d r i c a l d i e ; i n t h e d i r e c t i o n of t h e

Z-axis t h e l a r g e s t p r e s s u r e 6 a c t s , t h e two o t h e r p r i n c i p a l s t r e s s e s a r e e q u a l p r e s s u r e s 0 =

a2.

The e q u a t i o n ( 3 )

-

y i e l d s f o r t h i s case 6

-

o 3

-

6' o ~ o ~ ~ o o o o o o ~ o o . Q o (3c) o o o The s t r e s s d i f f e r e n c e i s t h u s t h e same with u n i a x i a l l o a d i n g , Group 11, F i l l s ( o r d e p o s i t s ) with 6

=

O o I n t h e flow c o n d i t i o n

( 2 ) t h e r e remains only t h e c o n s t a n t k, Since here only comDres- i f & s t r e s s e s (with n e g a t i v e s i g n ) can occur, we writelnow t h e flow c o n d f t f o n ( 2 ) a s f o l l o w s s

( a ) I n u n i a x i a l s t r e s s c o n d i t i o n t h e r e r e s u l t s

D 3

=

0

..

...

....

( 5 a ) T h i s m a t e r i a l possesses no compressiVe s t r e n g t h o

2

Refer t o

P o

Bi,jlaardp Theory of Local P l a s t i c Deformation, Proceedings I o A o B o & S , E , , Vole 6 page 27,

(8)

( b ) For the case of plane deformation, the flow c o n d i t i o n runs (with m

=

2 ) " 3

-

6l

-

k

. . . .

O O O O .. . b . O O O . O O O O O O (5b) 3

-

0

\f3

6 1

+

6 3

T h i s i s t h e known equation of c l a s s i c a l e a r t h pressure theory,

i f t h e f r i c t i o n angle i s i n d i c a t e d by

4 k

p),

= a r c s i n

-

.

6

( c ) For t h e a x i a l symmetric loading, we must d i s c r i m i n a t e here between two, cases,

1) The a x l a 1 pressure C 3 i s l a r g e r than t h e mantle pressure

2 6 1

+

bg 61 + a 3

G1 3 620 One n o t i c e s t h a t

3

=

z

so one g e t s t h e flow condition i n t h e form

There appears i n t h i s case another f r i c t i o n angle

9

2

3k

=

a r c s i n +

2 ) The a x i a l pressure

el

i s smaller

t

han the mantle pressure

-

G 2

-

a3"

S u b s t i t u t i o n i n (4) l e a d s t o t he flow condition, 6 3

-

61 3k and t h e f r i c t i o n angle

6 1

+

6 3

= -

a t t a i n s t h e value

43

=

a r c s i n 3k o O O O o O O o O O O O o O ( 5 6 ) 6 - k 3 O l + 6 3 = This a r i s e s from O2

=

+

'33

m

2 4

The theory of e a r t h pressure a g a i n s t r e t a i n i n g w a l l s comes under t h i s s t r e s s conditiono

(9)

I f t h e assumed general flow condition ( 2 ) corresponds t o t h e a c t u a l behaviour of t h e m a t e r i a l , d i f f e r e n t magnitudes of t h e f r i c t i on an319 must t h e r e f ore appear with d i f f e r e n t s t r e s s conditions, There r e s u l t s , f o r example, f o r k

=

1 t h e values

42

= 25O20', $ 3 = 37O; t h e f r i c t i o n - a n g l e w i t h plane defor- mation

4

= 35O201 l i e s between these. 5

The measurements of Kjellman mentioned have a c t u a l l y 1 given, w i t h h i s t e s t sand, a smaller f r i c t i o n angle f o r case t h a n f o r case2, 35O h s compared with 43O; t h e d i f f e r e n c e , however, i s not a s l a r g e a s t h a t given by equations ( 5 c ) and

(5b) 0

6

Various research measurements a r e comparable with flow conditions (5b) and ( 5 c ) ; these show t h a t t h e r e l a t i o n between the two values (

o3

-

61) rn d (

a l

+

g 3 ) i s not l i n e a r but can be represented by a s l i g h t l y curved l i n e , We must t h e r e f o r e

l i m i t the usefhlness of t h e s i m p l i f i e d flow condition ( 2 ) t o a s t r e s s region i n which t h e enveiope of t h e Mohr's c i r c l e s can be s u b s t i t u t e d by t h e s t r a i g h t l i n e of Coulomb, (Figure 2,)

5

It would appear from t h i s , t h a t i f the f r i c t i o n angle obtain-d from a t r i a x i a l t e s t i s t o be a p p l i e d t o r e t a i n i n g w a l l e a r t h pressure theory the value of k should f i r s t be obtained from

*2, and then derived from

it.

For examples suppose a t r i a x i a l t e s t y i e l d s a value of

$

= 31°20V, then we have

6

Actually k works out t o be 1,4 and 1.2 i n t h e s e cases, More experimental work by means of t h e t r i a x i a l t e s t i s d e s i r a b l e t o i n v e s t i g a t e these r e l a t i o n s and t h u s s u b s t a n t i a t e o r

condemn t h e theory.

For example, W. Bernatzik, "Researches regarding the s t r e n g t h p r o p e r t i e s of sand i p t r i a x i a l s t r e s s conditions", Water

(10)

T h i s i s p e r m i s s i b l e i n p r a c t i c a l problems of s o i l mechanics, s i n c e h e r e o n l y t h e p r o p o r t i o n a t e l y s m a l l d i f f e r e n c e s of p r e s s u r e s t r e s s appear,

I n any case, t h e f a c t s can be e x p l a i n e d through t h e assumption of t h e t h e o r y of t h e l i m i t e d work of deformation, t h a t with t h e use of varioub measuring d e v i c e s d i f f e r e n t magnitudes of t h e f r i c t i o n angle can be e s t a b l i s h e d with t h e

same material'; a c c o r d i n g l y t h e angle of i n t e r n a l f r i c t i o n must be a v a r i a b l e , d e ~ e n d e n t on. t h e magnitude of t h e value

of t h e mean p r i n c i p a l s t r e s s , and there-should be d i s c r i m i n a - t i o n between t h e value

6 .

(with plane deformation c o n d i t i o n )

I A -

and

(I

( i n t h e case c ,.

51

= 3 2 ) o

Group 111, M a t e r i a l s with ~ o h e s i o n and i n t e r n a l f r i c t i o n , The flow c o n d i t i o n ( 2 ) remains w i t h b o t h c o n s t a n t s k and

o

i n f o r c e . It follows, f o r t h e u n i a x i a l s t r e s s condition,- t h a t t h e flow l i m i t i n pure p r e s s u r e l i e s h i g h e r t h a n w i t h pure t e n s i o n , For t r i a x i a l p r e s s u r e s t r e s s c o n d i t i o n s , t h e flow c o n d i t i o n , f o r a l l t h r e e of t h e previous m a t e r i a l groups considered, can be brought t o t h e form

O 3

-

"1 = s i n

...

o . o o o o o o ( 6 )

5 - 1 + 5 3 + 2 b T

The f r i c t i o n a n g l e

.$

h a s again, i n each of t h e s e cases, a d i f f e r e n t value

6

l,

6

,

:l3 and indeed t h e same a s i n t h e

' .*

e q u a t i o n s 5b, 5c, 5d. I n o t h e r r e s p e c t s fhe flow c o n d i t i o n ( 6 ) i s i d e n t i c a l w f t h t h e known Coulomb e q u i l i b r i u m c o n d i t i o n f o r cohesive m a t e r i a l ; t h e cohesion, i n t h e uoulomb sense,

-

i s g i v e n by OIL! = c =

-

2 t a n

4

.

A s w i t h t h e previous m a t e r i a l groups,

one must a g a i n l i m i t t h e v a l i d i t y of c o n d i t i o n ( 6 ) o n l y t o a d e t e r m i n a t i o n r e g i o n , f o r example

MN

i n Figure 2, i n which t h e curved envelope l i n e of t h e p r i n L i p a l s t r e s s c i r c l e s can be r e p l a c e d by a s t r a i g h t l i n e , Tha magnitude 6 i s dependent

on t h e choice of t h i s r e g i o n ; i t s i g n i f i e s a p r e s s u r e a t r e a s a n d i s t o be put i n t o e q u a t i o n ( 6 ) with a n e g a t i v e s i g n , a s with t h e

p r e s s u r e s t r e s s e s . F 1 and 630 The value O, h e r e no longer s i g n i I f e s t h e flow-limft ( y i e l d - p - l i n t ) with pure unfaxfaP p r e s -

s u r e s t r o s s ; If 6

=

0, t h e magnit,~de conforms t o

1

~ s , = 2 s i n

5-

=-

4\

,

i n d t h u s

(11)

obviously according t o t h e value of t h e f r i c t i o n angle and t h e r e w i t h a l s o according t o t h e mean p r i n c i p a l s t r e s s

s

2 0

The p r e s s u r e s t r e n g t h w i l l be, w i t h p a r t i q l l y h i n d e r e d expansi on, l a r g e r t h a n w i t h pure p r e s s u r e s t r e s s ,

80 The Loadin% a t t h e Limit of t h e E l a s t i c S t a t e ,

We w i l l now, w i t h t h e h e l p of t h e r e l a t i o n s h i p o b t a i n e d i n t h e preceding s e c t i o n , seek t o determine t h e i n t e n s f t ; ~ of t h e s t r i p loading which l i e s a t t h e l i m i t between predominantly e l a s t i c and predominantly p l a s t i c behavfour of t h e s t r e s s e d half-spaceo Ip order t o o b t a i n a p r e c i se d e f i n i t f on of t h i s l i m i t loading, consider f i r s t t h e f o l l o w i n g simple c a s e ; t h e m a t e r f a l of t h e half-space i s e l a s t i c - i s o t r o p i c and belongs t o t h e m a t e r i a l of Group I of t h e preceding s e c t i o n , The flow c o n d i t i on i s , t h e r e f o r e , given, f o r t h e plane deformatf on con- d i t i on by e q u a t i o n ( 3 b ) , Thi

s

means t h a t t h e d i f f e r e n c e of

t h e p r i n c i p a l s t r e s s e s s h a l l not exceed a c o n s t a n t value 2

&

-

;

6*1i s h e r e t h e y i e l d p o i n t i n pure u n i a x i a l t e n s i o n s t r e s s t 3

The upper s u r f a c e of t h e h a l f - s p a c e on b o t h s f d e s of t h e r i g i d - p l a t e s t r i p i s not loaded, and t h e s p e c i f i c w e i g h t of t h e

m a t e r f a l w i l l not be taken i n t o c o n s i d e r a t i o n ,

Then t h e p r i n c i p a l s t r e s s e s w i l l be determfned by t h e formula (19) and t h e i r d i f f e r e n c e i s

I f one p l o t s t h e r e s p e c t i v e v a l u e of ( g l

-

5 3) a t each pofnt of t h e XZ-plane p e r p e n d i c u l a r t o t h e plane of t h e diagram

(Figure 31, one o b t a i n s a s u r f a c e whose contour l i n e s a r e r e - p r e s e n t e d a t p r o j e c t i o n by f sochromes, Thf s s u r f a c e c u t s t h e p i c t u r e plane i n the X-axis, ascends along t h e Z-axis t o over t h e p o i n t C, vhich l i e s a t t h e d f s t a n c e a

f i

from t h e l o a d

s u r f a c e and s i n k s a g a i n g r a d u a l l y with i n c r e a s i n g z - o r d i n a t e of t h e p o i n t s consideredo

The formula (19 i n t h e paper) i s t h e u s u a l w e l l known formula f o r t h e p r i n c i p a l s t r e s s e s i n t h e half-apace due t o a s t r i p - l o a d i n g o R i s t h e d i s t a n c e of t h e p o i n t from t h e c e n t r e of t h e loaded s t r i p , z t h e d i s t a n c e below t h e h o r i z o n t a l s u r f a c e ,

r t h e r a d i u s of t h e c i r c l e passing through t h e edges .f t h e s t r i p and t h e p o i n t under consfderatfon, q t h e t o t a l l o a d on t h e s t r i p per u n i t of l e n g t h of s t r i p o

(12)

From p o i n t C i t forms two r i s i n g r i d g e s mounting towards t h e edges of t h e l o a d s u r f a c e , which become i n f i n i t e l y high a t an i n f i n i t e s i m a l d i s t a n c e from t h e edges, With t h e s m a l l e s t loadfng,

the'=

a u s t , t h e r e f o r e , a l r e a d y be p l a s t i c d e f o r n a t i o n a t t h e edge r e g i o n , and indeed n o t o n l y f n t h e s t r e s s e d h a l f -

apace b u t a l s o i n t h a t of t h e l o a d - t r a n s m i t t i n g body, I n Figure 3, t h a t r e g i o n i s d e s i g n a t e d by c r o s s h a t c h i n g , i n whfch t h e p r i n c i p a l s t r e s s d i f f e r e n c e exceeds t h e y i e l d p o i n t 2

6-

T;T 2 6, if t h e c r o s s - s e c t i o n loading amounts t o = o 2a 0070 q 6

Thereby a change i n t h e s t r e s s c o n d i t i o n w i l l be induced, The a n a l y s f s of t h i s c o n d i t i o n belongs t o t h e s t a t i c a l l y indetepsafnate task of p l a s t i c i t y mechanics, f o r i t f s dependent on t h e

p l a s t i c displacement a t t h e edge of t h e body and i n t h e h a l f - space, and d e f i e s a t p r e s e n t a r i g o r o u s t h e o r e t i c a l t r e a t m e n t , One can, n e v e r t h e l e s s , o b t a i n a n approximate value f o r t h e edge p r e s s u r e

e A ,

by assuming a s known t h e p a t h s of t h e f s o -

s t a t i c c u r v e s ( and t h e r e w i t h t h e s l i p l i n e s ) i n t h e immediate neighbourhood of t h e edge p o i n t ,

( a ) The Rankine e q u i l i b r i u m c o n d i t i o n ,

The d i r e c t i o n s of t h e p r i n c i p a l s t r e s s e s a r e p a r a l l e l t o t h e X and

Z

axes, To t h e r i g h t from edge p o i n t A t h e flow c o n d i t i o n w i t h 6

=

0 p r e v a i l s ; t o t h e l e f t from i t t h e flow c o n d i t i o n w i t h t h e l a r g e s t p r e s s u r e s t r e s s

a d ,

The e q u i l i b r i u m immediately below t h e edge p o i n t r e q u f r e s t h a t on both s i d e s t h e same

a,

occurs; t h e flow c o n d i t i o n (36)

(b) The Boussinesq-Resal e q u i l i b r i u m c o n d i t i o n ,

It w i l l be assumed t h a t a sheaf of s l i p l i n e s w i l l be formed by r a y s whfch go o u t from t h e edge p o i n t , T h i s assumption

"

g i v e s w i t h t h e flow c o n d i t i o n (3b)

9

S , A , Caquot, "Equilib d e s Massif a Frottement I n t e r n w , P a r i s 193a0 Po 5g0

(13)

The a c t u a l edge s t r e s s probably w l l l be n e a r the value ( 8 a ) and t h e r e s u l t a n t change i n p r e s s u r e d f s t r f b u t f o n on t h e loaded sur-

f a c e can be r e p r e s e n t e d perhaps by t h e broken l f ne i n Ffgure 3, The s t r e s s pofnt f s rounded o f f and d i s p l a c e d towards t h e middle of t h e l o a d s t r i p , That t h e s t r e s s c o n d i t f o n of t h e h a l f - s p a c e f s changed and t h e r e b y a l s o t h e l i m f t of the p l a s t f c r e g i o n i a evf dent from a comparf son of t h e s t r e s s o p t f e photograph i n Ffgure 4 w i t h t h e t h e o r e t i c a l course of t h e fsochromes i n t h e edge region, T h i s s t r e s s rearrangement remains confined, however, according t o t h e p r i n c i p l e of S t , Venant, i n the fmmedfate

nefghbourhood of t h e d l sturbanee c e n t r e , I n t h e p l a s t f c region, t h e cross-extenaion number, f o e o P o f s s o n ~ a number, s i n k s

t o

t h e value m = 2 and t h e d e r i v e d c u b i c compression becomes n i l , A correspondfng p o r t f o n of t h e m a t e r f a l whfch has become p l a s t f c must t h e r e f o r e be squeezed out sfdewfse from t h e edge, The edge

of t h e l o a d body c u t s i n t o t h e h a l f - s p a c e i f t h e m a t e r i a l of

t h i s body f s h a r d e r than t h a t of t h e h a l f -space, One can c l e a r l y observe t h i s , f o r example, wfth t h e t e s t loadfng of cohesfve s o i l ,

The displacement of t h e r f g f d loading-body f s gfven, t h e r e - f o r e , i n t h f s s t a g e of loadfng process, by t h e e l a s t f c eompression I n t h e Z-axis; t h e r e f o r e continued s i n k i n g can not occur a s long a s t h e flow r e g i o n remafns l f m f t e d t o t h e edge region.

If t h e l o a d now be Increased, t h e n t h e two r e g i o n s f n whfch t h e c r i t i c a l s t r e s s d i f f e r e n c e w i l l o v e r s t e p the e l a s t f c con- d f t i o n grow u n t i l f i n a l l y , wfth t h e value of t h e p r i n c f p a l s h e a r s t r e s s given by (18) 1 0

,

t h e y reach t h e pofnt C a t t h e 2-axfs, The mean loadfng a t t h f s i n s t a n t amounts t o

2 60 3

*&

%

= 8 = 2,356 6, 0 0 0 0 0 0 0 0 . 0 0 G 0 ~ 0 (91

6

$ 1 The course of t h e isochrome (

c l

-

83)

=

0.490

-*

gofng through C I s r e p r e s e n t e d i n F f g w e 30 I n t h e e l a s t f c

c o n d f t i o n t h e c r f t f c a l shear s t r e s s was exceeded i n t h e whole regf on e n c l o s e d between t h e two branches of t h i s curveo The formatfon of t h e p l a s t f c r e g i o n caused I n t h f s way, whose depth now a t t a i n s t h e o r d e r of magnftude of h a l f t h e s t r f p wf dth, c a l l s f o r t h a f u r t h e r rearrangement of t h e p r e s s u r e df s t r f b u t f on,

I U

Expression (18) 5. s f o r t h e maximum mean s t n e s s d i f f e r e n c e on t h e Z-axis under a s t r i p loading, It I s

max ( O X

-

= z ) = 2

(14)

If t h e l o a d be i n c r e a s e d f u r t h e r , t h e n a connected p l a s t f c r e g i o n forms, somewhat according t o Ffgure 5 (12) which envblops t h e remaining e l a s t i c core under t h e l o a d s u r f a c e and s e p a r a t e s

i t

from t h e o u t e r remaining e l a s t i c regfon of t h e half-space, A t t h i s s t a g e of t h e loading process t h e m a t e r f a l can, however,

s t i l l not s l i d e s i n c e t h e s l i p l i n e s G cannot y e t develop, The m a t e r i a l which h a s become p l a s t f c with t h e Pofsson number rn = 2 must, however, due t o i t s constancy of volume, be squeezed out

near t h e p l a t e edges and t h e l o a d body s i n k s w i t h t h e e l a s t i c core, whereby the d i s t a n c e

ON

becomes s m a l l e r , Consequently, t h e s t r e s s a t N i n c r e a s e s , a f u r t h e r t h f n l a y e r of t h e m a t e r f a l becomes a f f e c t e d through the flow p r o c e s s and t h e s i n k i n g pro-

ceeds with s m a l l e r v e l o c i t y , The continued s e t t l e m e n t can t h e n f f r s t cease f f t h e wefght of t h e d i s p l a c e d m a t e r f a l a g a i n e s - t a b l i s h e s t h e e l a s t f c c o n d i t i o n under t h e middle of t h e p l a t e , On t h e b a s f s of t h e s e c o n s f d e r a t f o n s , t h e r e q u i r e d l i m i t i n g l o a d can be d e f i n e d a s t h a t l o a d magnitude w i t h vh i c h t h e c r i t i c a l s t r e s s r e l a t i o n i s reached a t any p o i n t on t h e l i n e of a c t i o n of t h e a c t i n g f o r c e , The c r f t f c a l r e l a t i o n 1s understood t o be t h e f u n c t i o n of t h e p r l n c i p a l s t r e s s e s l i m f t e d by t h e flow condf t f on,

9, The Lfrnftfng Load w i t h Plane Deformation Conditfons,

Let u s c o n s i d e r f i r s t of a l l t h e g e n e r a l case, t h a t t h e upper s u r f a c e of t h e h a l f - s p a c e s u p p o r t s a uniformly d i s t r f - buted l o a d Po on b o t h s i d e s of t h e p l a t e - s t r i p a s i n Ffgure 6, The m a t e r i a l i s d e s f g n a t e d according t o ( 7 ) by t h e f r f c t f o n angle and t h e c o n s t a n t 6 = - c l c o t

8

10 We w i l l n o t , f o r t h e p r e s e n t , t a k e t h e s p e c f f f c wefght of t h e half-space i n t o account, The p r e s s u r e d i s t r i b u t i o n under t h e r i g i d - p l a t e s t r i p i s gf,ven by (25) l2 and t h e

p r i n c i p a l s t r e s s e s under t h e c e n t r e of t h e p l a t e according t o (24) and (17)

s

'Po

=

- -

_

9

-

. -

a2

m - 1

n-

s 3

These t h e o r e t i c a l formulae f o p t h e s t r e s s e s a r e worked o u t i n t h e f f r s t p a r t of t h e paper and a r e here r e f e r r e d t o by t h e i r numbers a s given i n t h a t p a r t ,

(15)

We work o u t t h e r e l a t i o n vhfch t h e l e f t s i d e of t h e f l o w c p n d f t i o n ( 6 ) forms w i t h v, One s u b s t i t u t e s t h e v a l u e s (10) and

$

= a r c

2

,

a n d o b t a i n s : 9 m-2 -2 a

?,

s i n Jcos2 13 v

(8)

=

x P . + ~

%a . O o O o O O O O O ( l l ~ m -2a

R

m e + '

$a

.

s i n 6

+

2c, c o t v l T h i s r e l a t i o n r e a c h e s a maximum w i t h

S m

of t h e a n g l e

2

.

which i s c o n d i t i o n e d by t h e e q u a t i o n a s i n Jm c o s 0 0 D O o O O O D 0 0 0 0 0 0 0 0 0 ( f 2 ) The maximum v a l u e of v must s a t i s f y t h e flow c o n d i t i o n ( 6 1

~ ( 6 , )

=

s i n

gl

.

.. ..

. .

...

.

..

(13) B y a l i m i n a t i o n of

d,

from e q u a t i o n s (12) and

(131,

one o b t a i n s t h e l i m i t i n g l o a d q a s a f u n c t i o n of t h e g i v e n value s o With t h e a b b r e v i a t i o n t h e r e r e s u l t s 13

(16)

The c o e f f i c i e n t s K1 a r e g i v e n i n Table I f o r v a r i o u s v a l u e s of t h e f r i c t i o n a n g l e o Table I P e r m i s s i b l e S o i l P r e s s u r e s f o r S t r f p Loadings C o e f f f c f e n t s of t h e Equations (15) and (27) From (12) and (13) f o l l o w s f u r t h e r P

-

s i n

4

1 s i n

8

=Ij

The o r d i n a t e

zm

of t h e p o i n t C, a t which t h e r e l a t i o n r e a c h e s f t s maximum, amountst-0 <.,.--..,-, , 2

+

s i n $J P P

-

s f n Q , l

The s m a l l e s t value of t h i s magnitude (with

9

=

0 ) P s

min

,

z

= a&

Example 1, A load

f

s t r a n s m i t t e d through a small r a i l t o a broad concrete block f a r from i t s edges, I f one s u b s t f t u t e s

t h e envelope curve according t o Figure 2, f o r whfch the c o n c r e t e of t h e block was determfned f o r plane deformation c o n d i t i o n s i n t h e p r e s s u r e r e g i o n by a s t r a i h t l i n e , t h e n t h i s f s d e t e r -

d

mined by t h e values Cl = 26 kg/cm = 4 l o O

The l i m i t i n g l o a d under t h e s t e e l r a i l f s, when t h e block i s otherwise unloaded, according t o (P5),

31r2)3 cos

@

1 2

.,-_ o1

=

397 kg/cm

(17)

The compressive s t r e n g t h of t h i s c o n c r e t e amounts t o about 1x0 kg/cm2 and t h e b r e a k i n g load, computed a c c o r d i n g t o Caquot,

5

2

9770 kg/crn

,

a c c o r d i n g t o R i t t e r 600 kglcm With a l o a d of 2

400 kg/cm

,

however, a c o n t i n u o u s g r a d u a l s i n k i n g of t h e r a i l i n t o t h e c o n c r e t e can r e s u l t *

10, The Limit Loading w i t h A x i a l Sgmmetric S t r e s s Condition,

The s t r e s s d l s t r i b u t i o n under a r i g i d c i r c u l a r d i e , whfch P i e s on t h e otherwi s e unloaded t o p s u r f a c e o f t h e h a l f - s p a c e ,

was determined b y Boussfnesq i n t h e y e a r 1885, I f a uniform l o a d i n g 'o i s a p p l f e d around t h e d i e a s i n F i g u r e 7 t h e r e r e s u l t s , wfth

t h e use of h i s s o l u t i o n and w i t h r e f e r e n c e t o t h e convenient c o n s i d e r a t i o n i n t h e d e r i v a t i o n of t h e e q u a t i o n (251, t h e f u n c t i on f o r t h e p r e s s u r e d i s t r i b u t f on a t t h e s o l e w i t h

( N o t a t i o n a c c o r d i n g t o Fig, 7 , )

The p r e s s u r e d i s t r f b u t f o n h a s a s i m f l a r c o u r s e a s w i t h t h e p l a n e deforrnati on condi ti ona ( s e e F i g u r e 31,

On t h e b a s i s of t h e assumed d e f i n i t i o n of t h e l i m i t

l o a d i n g , we a a t f s f y o u r s e l v e s w i t h t h e knowledge of t h e p r f n - efpaP s t r e s s e s i n t h e a x i s of symmetry, We i n t r o d u c e t h e e y l f n d r i c a l e o - o r d i n a t e s

r

and

z b

The w e l l known r e l a t i o n a from t h e e l a s t i e t h e o r y g i v e t h e f o l l o w i n g c o n t r i b u t i o n ' of

t h e l o a d f n g p'dk, of t h e whole c i r c l e r a d i u s

r,

t o t h e p r f n c f p a l s t ~ e s s e s a t p o i n t M(o,z)s

( N o t a t i o n a c c o r d i n g t o Fig, 7 ;

m

s i g n i f i e s P o f s s o n Q s number), Then we have t o c a r r y through t h e i n t e g r a t i o n from

(18)

I n a n e l e m e n t a r y f a s h i o n one f i n d s f r (- r d r ?,!a2- P 2 The s u b s t f t u t i o n of t h e l i m i t s , and t h e i n t e g r a t i o n r e s u l t s I n e q u a t i o n s (18) g f v e t h e s t r e s s components I n o r d e r t o o b t a i n t h e p r i n c i p a l s t r e s s e s

3'

a n d

6

of 1

t h e complete l o a d i n g of 7, one h a s s t i l l t o add t h e 3 components a c c o r d f n g t o e q u a t f o n (24) 1 4

.,

If one f n d f c a t e s t h e h a l f opening a n g l e by c and t h e % e f t s i d e of t h e f l o w c o n d i t i o n ( 6 ) by v, one f f n d s 3.4 Po These a r e

o

-

x

-

6 y = E ~ ~ 9

(19)

This r e l a t i o n s h i p reaches i t s maximum value i f t h e numerator of the expression (20) i s d i r e c t l y m u l t i p l i e d by the number

2 2

3m +

+

2 cos

J

-

2 s i n

J

m

The value of the opening angle thus conditioned w i l l be

rm.

Then t h e flow condition ( 6 ) i s

2 2

-

+

~ ( C O S

d m

-

s i n

S,)

2 * m 2

=

s i n

8

(20a) 2 3m +

+

2 ( c o s

Sm

-

s i n 6,)

m

(The s u b s c r i p t of t h e f r i c t i o n angle shows here t h a t t h i s angle

i s

t o be d i s t i n g u i s h e d from t h a t of t h e plane p r ~ b l e m ) ~ Out of (20a) follows

2 4 ( m

+

1)

+

(m + 2) s i n 5 2

cos

6

,

=

0 0 0 0 0 0 (21)

4m(3

-

s i n g 2 )

and t h e o r d i n a t e of t h e point of the Z-axis a t & i c h t h e flow l i m i t f s reached f s

.---

-...---

1)

+

(m

+

2) s i n s 2

'

m

1)

-

(5m

+

2) s i n (21a)

9 2

I f one s u b s t f t u t e s i n Equation (20) the angle

d'

given by equation ( 2 1 ) , one o b t a i n s t h e maximum value ~ ( 8 , )

=

s i n * a s a f u n c t i o n of the loading and of t h e f r i c t i o n angle * 2 0

I n thf s way t h e l i m i t i n g load f s determinedo W t h the abbrevf a t i on f 4 ( 3

-

s i n

5

2 )

- -

-

'2

(ern

-1

-

s m

+ 2 ~ 2

m

4m

(20)

I n s o i l mechanics t h e P o i s s o n number

rn

i s commonly t a k e n a s 2,

T h i s o r d i n a t e i s , w i t h a l l v a l u e s of 2, l a r g e r t h a n a , Example 2, A c i r c u l a r d i e i s p r e s s e d i n t o a m e t a l body of" c o n s i d e r a b l y l a r g e r s i z e ; t h e f l o w l i m i t of t h e m a t e r i a l f n pure t e n s i o n s t r e s s i s 6,

,

and t h e P o i s s o n number amounts t o 1 0

.

The upper s u r f a c e of t h e b l o c k 1s o t h e r w i s e n o t loaded,

Y 3

Po

=

00 Since

5

=

0 , i t f o l l o w s from (22) 2

,=I,($$)

= 4 0 1 6

The c r o s s - s e c t i on loading, w i t h which t h e overcoming of t h e continuous p e n e t r a t i o n of t h e df e i n t o t h e b l o c k b e g i n s , i s g i v e n a c c o r d i n g t o (23) w i t h

-

6 v 1 5

C 2 - - 0 2 *

With t h e v a l u e

m

= 2 one o b t a i n s , a c c o r d i n g t o (24) and ( 2 3 ) , 1 6

l=

% = T s

q a 2

=

2,676* a s compared with 2,36

6,,

f o r s t r i p l o a d a c c o r d i n g t o ( 9 ) o

l5

The p r i n c i p a l s h e a r s t r e s s i s one-half t h e d i f f e r e n c e between t h e p r i n c i p a l s t r e s s e s , I n pure t e n s f on one p r i n c i p a l s t r e s s i s 6,

,

t h e o t h e r i s z e r o ,

(21)

11, A p p l i c a t i o n t o Foundation Ground T e s t i n g , i , e , S o i l Mechanicso

If we wish t o u t i l i z e t h e r e s u l t s of t h e preceding con- s i d e r a t i o n s i n foundation problems, then we must f i r s t of a l l i n v e s t i g a t e how f a r and i n which d i r e c t i o n t h e s t r e s s c o n d i t i o n of t h e pseudo-solid e a r t h mass d e p a r t s from t h a t of t h e e l a s t i c - i s o t r o p f c h a l f -space with c o n s t a n t e l a s t f c modulio We aim a % f i n d i n g a g a i n t h e loading a t the l i m i t of t h e q u a s i - e l a s t f e behavfour of t h e loaded s o f l stratum, t h a t i s , t h e h i g h e s t l o a d with rvhich t h e s e t t l e m e n t , a f t e r t h e e q u a l f z a t i o n of t h e hydro- dynamfc s t r e s s , s t i l l remains a t a c o n s t a n t f i n a l value, T h i s l i m f t loading i s a g a i n t o be d i s t i n g u i s h e d from t h e r u p t u r a l o a d whfch w i l l be s i g n i f i c a n t l y h i g h e r , because before t h e r u p t u r e , a n e x t e n s i v e r e g i o n around t h e l o a d s u r f a c e must g e t i n t o t h e p l a s t i c s t a t e , The quoted knowledge i n S e c t i o n I

shows, however, t h a t w i t h c o n s t r u c t i o n ground, t h e permf s s f b l e s o l e p r e s s u r e must not exceed t h e r e q u i r e d l i m i t l o a d i n g ;

continuous s e t t l e m e n t , which l e a d s t o c r a c k i n g of t h e construc- t i o n , a f t e r t h e course of a long time can a l s o then occur even

i f t h e s a f e t y f a c t o r r e l a t i v e t o t h e ground r u p t u r e i s s u f -

f i c i e n t l y l a r g e , To a b b r e v i a t e , we w i l l a l s o desfgnate a s

e l a s t i c t h a t c o n d i t i o n of t h e e a r t h mass w i t h which flow r e g i o n s have not yet reached t h e l i n e of a c t i o n of t h e r e s u l t a n t of t h e a c t i n g sole-pressure, although t o be sure t h e b u f l d f n g ground may not behave e l a s t i c a l l y ( f n t h e t r u e sense o f t h e word),

Nf t h t h e I n v e s t i g a t i o n of t h e e q u i l i b r i u m condf t i o n s i n cohesfve s o l 1 types, one h a s t o b e a r i n mind the circumstance t h a t , f o r t h a t purpose only, t h e s t r e s s e s a c t i n g on t h e s o l i d substance a r e e f f e c t i v e ; t h a t p a r t of t h e s t r e s s whfch i s t r a n s m i t t e d through t h e pore water i s t h u s t o be l e f t o u t of c o n s i d e r a t i o n ,

An e a r t h stratum, which i s s t r e s s e d merely through i t s s p e c i f i c weight and a uniformly d l s t r i b u t e d loadfng

?

over f t s e n t f r e upper s u r f a c e , f i n d s i t s e l f i n t h e equflibr?um con- dfition which 1 s desfgnated by t h e v e r t f c a l and h o r i z o n t a l

p r i n c i p a l s t r e s s e a 61=

-

Po

-

y z ,

6"

=

6?

=

xb,,

Here

y

( 2 5 )

s t a n d s f o r t h e s p e c i f i c welght, z t h e depth below t h e upper s u r f a c e , and 3c t h e e a r t h p r e s s u r e a t r e s t , which here r e p l a c e s t h e value 1 of t h e e l a s t f c m a t e r i a l , The Poisson number

m - 1

m i s v a r f a b l e w i t h e a r t h masses; i t i s , t o a l l appearances, a f u n c t i o n of t h e s t r e s s r a t i o v which forms t h e l e f t s i d e of t h e f l o w c o n d i t i o n (61, I f v approaches t h e v a l u e s i n $ t h e n m s i n k s t o 2 ; i n t h e f l o w c o n d i t i o n a volume i n c r e a s e even

occurs w i t h dense packed s o i l t y p e s ; t h a t i s t o s a y thereby

(22)

The c o e f f i c f e n t of e a r t h p r e s s u r e a t r e s t 'X must be dependent on t h e valuo of the f r i c t f on a n g l e , Thf s f o l l o w s from t h e c o n s i d e r a t i o n t h a t a n i n f i n 1 te l y extended h o r i z o n t a l e a r t h s t r a t u m cannot f a i l by s l i d i n g , i f

i t

be s t r e s s e d o n l y by I t s own weigFt, I n t h i s case, f o r a c o h e s i o n l e s s m a t e r i a l

G z

<

s i n

*.

.

>

I.

-

s i n 4

6 2 + ijz 1

+

s i n

9

The v a l u e s of %

,

e s t a b l i s h e d s o f a r by measurement, a g r e e q u i t e w e l l w i t h t h e r e l a t i o n

% = I .

-

s i n

5

It g i v e s , f o r example, f o r sand w i t h

4

=

35O t h e coef- f i c i e n t of e a r t h - p r e s s u r e a t r e s t 0043, f o r f a t c l a y w i t h

9

= 16O t h e c o e f f i c i e n t 0.72, which a g r e e s w i t h e x p e r i e n c e , Thus, e q u a t i o n s (25) g i v e

-

s i n

dp

1

Now we have s t i l l t h e i n f l u e n c e of t h e s o l e p r e s s u r e t o determine, I n t h a t , i t i s n o t p e r m i s s i b l e t o proceed from t h e r e l a t i o n s h i p of t h e s t r e s s t o t h e deformation of an element of t h e mass, Boussinesq has a l r e a d y engaged himself w i t h t h i s q u e s t i o n o 16 Under t h e assumption of a completely loose p u l v e r f z e d mass he a r r i v e d a t a r e l a t i o n of t h e form

-

-

6,. g ' y

+

6 - 2 B x 3 (1

-

2 h L ' X )

...

, (26) Herefn

E

s i g n i f i e s t h e r e s p e c t i v e e x t e n s i o n and A a m a t e r f a l X

constant, The Boussfnesq mass i s volume c o n s t a n t , t h e r e f o r e only one c o n s t a n t appears i n t h e s t r a i n law, The a c t u a l

behavfour of t h e s o i l t y p e s correspond, however, i n no way t o t h e p r o p e r t i e s of t h i s i d e a l mass, a s r e c e n t measurements c l e a r l y show,

Figure 8 g i v e s t h e s t r e s s - s t r a i n diagram f o r a sand c y l i n d e r which was p r e s s u r e s t r e s s e d under a c o n s t a n t l y h e l d mantle p r e s s u r e

v o

in

t h e a x i a l d i r e c t i o n

Z,

If t h e law (26)

2.6

Boussfnesq°, " ~ s s a i Theorique sur 1 f E q u i l i b r e d e s Massifs ~ u l v e r u l e n t s " , Bruxelles, 1870, S o 270

(23)

were v a l i d , then t h e l i n e

K

woyld have t o show an o p p o s i t e c u r v a t u r e , Clay t e s t samples have given i n t h e t r i a x i a l com- p r e s s i o n a p p a r a t u s s i m i l a r s t r e s s - s t r a i n diagrams b o t h w i t h 17 A I d r a i n e d c y l i n d e r s and w i t h u n d r a i n e d c y l i n d g r s , The l i n e s h o l d t h e same c h a r a c t e r f o r c o n c r e t e and n a t u r a l s t o n e , a l - though w i t h d i f f e r e n t d e g r e e s o f c u r v a t u r e , On t h e b a s i s o f t h e r e s u l t s o f t h e s t r a i n measurements i n t r i a x i a l com- p r e s s i o n , t h e s u p p o s i t i o n . . can be e x p r e s s e d t h a t a l l b u i l d i n g m a t e r i a l s f o l l o w a s i m i l a r law, whereby t h e curve K d e p a r t s more o r l e s s from t h e broken l i n e OBC, ~w, t h a t t h e compression modulus i s more o r l e s s v a r i a b l e By 6, and 6 = f s t o be understood

t h e t o t a l a c t i n g p r i n c i p a l s t r e s s e s i n t h e s o l i d mass ( t o t a l cohesion, i n t e r n a l s t r e s s e s , e t c

.

) ,

As l o n g a s t h e p r o p o r t i o n

,%

does n o t exceed perhaps

6 9

h a l f o f t h e c r i t i c a l s t r e s s r a t i o

,

t h e curve K c a n a l s o

6-

be s u b s t i t u t e d i n t h i s r e g i o n by a s t r a i g h t l i n e OA f o r e a r t h masses, However, l o c a l i z e d l o a d i n g of t h e h a l f - s p a c e p l a i n l y d e a l s w i t h s t r e s s e s f o r which t h e behaviour o f t h e mass l i e s i n t h e f i n a l r e g i o n , which c o r r e s p o n d s t o t h e curved s e c t o r AD. (Thfs r e g i o n o c c u p i e s approximately t h e s u r f a c e which i n F i g u r e

4

i s l i m i t e d below by isochrome 2 and above by t h e a r e of isochrome 3 r u n n i n g immediately under t h e l o a d s u r f a c e ) , I n t h i s r e g i o n , much l a r g e r deformation3 a r e broqght about f o r a n a p p l i c a b l e s t r e s s c o n d i t i o n w i t h a c o n s t a n t e l a s t i c modulus,

( t h a t i s i n s t e a d of

OM)

t h a n t h e c o n t i n u i t y of t h e mass p e r m i t s ; i n t h i s r e g i o n a o r o s s e x t e n s i o n d e v e l o p s

i n

approxi- m a t e l y a h o r i z o n t a l d i r e c t i o n , and i s h i n d e r e d by t h e envelop- i n g mass, and t h u s t h e compression o f t h e o u t e r l y i n g p o r t i o n o f the h a l f - s p a c e must be t h e same,

It f o l l o w s from t h i s t h a t t h e p r e s s u r e d i s t r i b u t i o n i n t h e loaded e a r t h mass must be d i f f e r e n t from t h a t i n e l a s t i e m a t e r i a l s , It w f l l be s i m i l a r t o the s t r e s s c o n d i t i o n fh a

loaded s t r a t u m which i s h e a t e d a l o n g t h e Z-axis,

We w i l l n o t go f u r t h e r i n t o the computation of t h i s p r e s s u r e d i s t r i b u t i o n , la The t h e o r e t i c a l t r e a t m e n t w i l l , i n my o p i n i o n , be a b l e t o e s t a b l i s h t h e a c t u a l s t r e s s e s i n a n e a r t h mass o n l y when i n v e s t i g a t i o n s of the deformation under

17

L o

Rendulic

-

Der Bauing,

1936

S o

559

and 1937 S O

4590

LU

Ko Hruban, Der Spannungszustand d e s i m I n n e r n b e a n s p r u c h t e n Halbraumes, I n g e n i e u r - a r c h i o

1943,

H. 1 S

9,

(24)

t r f a x f a l s t r e s s c o n d i t i o n s have accumulated f u r t h e r knowledge, However, t h e y y f e l d t h e c r i t e r i a from whfch can be drawn t h e following requirementso

(a) I n t h e considered r e g i o n of l a r g e s t r e s s d i f f e r e n c e s , s t r o n g e r compression appears i n e a r t h masses t h a n i n e l a s t i c m a t e r i a l s ; t h e predominant h o r i z o n t a l p r i n c i p a l s t r e s s

61

shows, however, a p r o p o r t i o n a t e l y l a r g e r I n c r e a s e t h a n t h e predominant v e r t i c a l p r i n c i p a l s t r e s s

6 3 0

(b) Thereby t h e p r i n c i p a l s t r e s s r a t i o i n t h i s r e g i o n becomes more favourable t h a n i n t h e e l a s t i c half-space,

( c ) Wfth I n c r e a s i n g d i s t a n c e from t h i s region, t h e p r e s s u r e d i s t r i b u t i o n i n t h e e a r t h mass approaches t h e s t r e s s c o n d i t i o n i n t h e e l a s t i c h a l f - s p a c e ,

These t h e o r e t i c a l r e s u l t s a r e confirmed through t h e f o l - lowing experience :

The v e r t f c a l s t r e s s i n s a n d and loam was measured l9 with numerous r e s e a r c h e s and a c t u a l l y found t o be g r e a t e r t h a n t h e t h e o r y of e l a s t i c m a t e r i a l s I n d i c a t e s , Lines, which r e p r e s e n t t h e s e t t l e m e n t a s a f u n c t i o n of t h e loading, run i n t h e r e g f o n of t h e p e v f s s i b l e magnitude of l o a d i n g i n f o u n d a t i o n con-

20

d f t i o n s e i t h e r l i n e a r l y ( a s i f t h e mass followed Hookeos Law] o r a r e more s l i g h t l y curved t h a n t h e s t r e s s - s t r a i n curve of

Figure 8, With l o c a l i z e d loading of a c l a y block, approxfmatefy h a l f t h e s i n k i n g was found a s compared with t h a t corresponding

t o a p r e s s u r a t e s t on t h e same m a t e r i a l and comparative f n v e s t f - 2 1

g a t 1 ons with e l a s t i c masses A l l of t h e s e phenomena can be t r a c e d back t o the deformation law, i n t h e same way a s t h e

known d i f f e r e n c e between t h e bending and t h e t e n s i o n s t r e n g t h s of concrete i s explainedo

F i n a l l y , we come t h u s t o t h e view t h a t f t i s not p o s s i b l e wfth t h e p r e s e n t s t a t e of i n v e s t i g a t i o n s t o a s s i g n s t r e s s e s I n t h e e a r t h masses w i t h t h e same d e p e n d a b i l i t y a s f n a n e l a s t f c 19

Ho P r e s s , Die Bautechnik, 1934, So 569, 20

Ringlfng und Biemond, Proc, I n t o Conf, on S o i l Mech, 1936, Volo 1 So 1060

21

A , B , Mason, Proc, I n t o Conf, on S o i l Mechanics, 1936,

(25)

m a t e r i a l if one wfshes t o evade a l l assumptions n o t s u p p o r t e d by c o n c l u s i v e e x p e r i e n c e , \Ye a r e , t h e r e f o r e , n o t i n a

p o s i t i o n t o determine t h e l i m i t l o a d i n g a t t h e f l o w l i m i t

w i t h o u t a s i m i l a r h y p o t h e s i s , N e v e r t h e l e s s we can, w i t h t h e use of s t r e s s c o n d i t i o n s of t h e e l a s t i c h a l f - s p a c e , determine t h e l a r g e s t l o a d i n g , (which perhaps w i l l be a minimum) t h a t w i l l produce no c o n t i n u o u s f l o w phenomenon, T h i s h i g h e s t

l o a d i n g remaf n s t h u s on t h e s i d e of s a f e t y , and we w i l l d e s f g - n a t e i t a s t h e p e r m i s s i b l e s o i l p r e s s u r e ; p e r m i s s i b l e , wf t h c o n s i d e r a t i o n of t h e e q u i l i b r i u m c o n d i t i o n s i n t h e e a r t h mass, The magnitude of t h e e x p e c t e d s e t t l e m e n t due t o t h e consol-

i d a t i o n of t h e c o h e s i v e s o i l s t r a t u m i s n a t u r a l l y a l s o t o be t a k e n i n t o c o n s i a e r a t i o n , w i t h t h i s c h o i c e of t h e s o l e p r e s - s u r e l i m i t , 12, P e r m i s s i b l e S o i l P r e s s u r e w i t h Loaded S t r i p s On t h e b a s i s of t h e above d i s c u s s i o n , l e t u s t r a n s f o r m t h e e q u a t i o n (15) w i t h c o n s i d e r a t i o n of (25a), I n t h e d e r i v a t i o n , t h e s t r e s s parameter d i s c o n s i d e r e d c o n s t a n t ; t h e i n f l u e n c e of t h e s p e c i f i c weight depends however, accord- i n g t o (25a), on t h e d e p t h , We a l s o assume, t h e r e f o r e , t h a t t h e s t r e s s (25a) remains c o n s t a n t a t t h e c r i t i c a l d e p t i n s e r t i n (25a) t h e s m a l l e s t p o s s i b l e v a l u e of

zm

= a

Fnd

a c c o r d i n g t o (16a), Thus, t h e p r i n c i p a l s t r e s s e s i n t h e c r i t i c a l r e g i o n a r e ( N o t a t i o n a c c o r d i n g t o F i g o 6 , ) For t h e e q u i l i b r i u m of s t r a t u m I, t h e s t r e s s r a t i o a t t h e p o i n t C whose o r d i n a t e i s g i v e n by e q u a t i o n ( 1 6 ) i s a g a i n deef s f ve, The p e r m i s s i b l e e a r t h p r e s s u r e amounts t o

Thf s can be m i t t e n i n t h e form -fa

=

AICL + Bppo + Clya

(26)

i n which t h e c o n t r i b u t i o n of t h e cohesion C1 of t h e upper

s u r f a c e loading

Po

and t h e h a l f p l a t e width a appear s e p a r a t e d from one another, Herein 3/ s f g n i f f e s the s p e c i f f c weight of t h e s o i l below t h e f o o t i n g s o l e , The c o e f f f c f e n t s A1, B1, C1 a r e given i n Table I f o r v a r i o u s magnitudes of t h e f r i c t i o n angle

+

l o

Example 3 0

For a completely c o h e s i o n l e s s sand wlth = 40'

0

3/

= 1800 kg/m3 t h e perm1 s s i b l e s o i l p r e s s u r e g i v e s , from

Table I wfth foundation depth of 2 meters, t h e follovving valueso ( a ) No ground water present..

P o

= 2 x 0,18 = 0036 kg/cm2

2 p l a t e width ' 2 m

Pa

= 3.20

x

0,36

+

3.10 x 0,18 x 1 , O = 1.7 kg/cm

2 1 0 m

pa

= 3.20 x 0.36

+

3.10 x 0,18 x 5,O = 3,9

( b ) The s o l e l e v e l

P

meter below groundwater t a b l e s

3 (pore volume 32$, s p e c i f f c wefght under buoyancy 1120 kg/m )

2 p l a t e width 2 m

pa

= 3,20 x 0.29

+

3,10 x 0.112 x 1 , O = 1,31g/cm

9

Example 40

The s o l 1 under a p a r t of t h e p a r t y w a l l mentioned i n S e c t f on 1 showed i n t e s t ng with the s h e a r a p p a r a t u s a t r u e

k

cohesion C1 = 0.10 kg/cm and a f r i c t i o n a n g l e

P l

= 22O; t h e width of t h e foundation amounted t o 1,20 meters, t h e s p e c i f i c

0

weight of t h e s o i l under t h e foundation so

2!

6 y = 2000 kg/mao The foundation depth gave

Po

= 1,04 kg/cm ,

Equation (27) giveso

pa

= 1,04

+

8,45

@ , l o

x 0,927

+

0,117 (1,04

a

0,20 x 0.60 x

f i g

On t h e o t h e r hand, t h e r u p t u r e l o a d amounts (with C1 c o t

2

(27)

2 a c c o r d i n g t o Caquot: 1 , 0 4 x V05

+

0 0 2 5

x

6 , 5 = 9,4 kg/cm a c c o r d i n g t o R f t t e r t 1,04

x

5,6

+

0 0 2 5 x 4,15

+

0 , 2 x 0,6 Continuous s e t t l e m e n t , whfch made n e c e s s a r y a r e c o n s t r u c t f ~ n of t h e f o u n d a t i o n s , took p l a c e wfth a n a v e r a g e l o a d of 3 , 2 kg/cm2, t h a t i s a f a c t o r of s a f e t y a g a i n g t r u p t u r e of more t h a n 2, Layered B u i l d i ng Ground, The p e r m i s s i b l e s o i l p r e s s u r e a c c o r d i n g t o ( 2 7 ) was d e r i v e d under t h e assumption t h a t t h e f o u n d a t i o n was p l a c e d on a v e r y t h i c k s o i l stratum, f o r which

y

,

C1, c o u l d be assumod a s c o n s t a n t s o I n r e a l i t y , however, b u i l d i n g ground c o n s i s t s of l a y e r s of d i f f e r e n t c h a r a c t e r i s t i c s ; i f , t h e r e f o r e , one of t h e deeper l y i n g s t r a t a i s n o t a s s t r o n g a s t h e m a t e r i a l immediately under t h e f o u n d a t i o n s o l e , t h e n t h e e q u i l i b r i u m c o n d i t f on of t h i s s t r a t u m s h o u l d a l s o be t e s t e d o A s m a l l e r p e r m i s s i b l e s o i l p r e s s u r e

&

w i l l r e s u l t t h a n t h a t vh f c h cor- responds w f t h t h e upper s t r a t u m ,

lRJe c o n s i d e r a n y p o i n t M(o, z ) i n t h e Z-axis i n Ffgure 6

and d o s f g n a t e b y

P p

t h e v e r t i c a l p r e s s u r e s t r e s s which e x i s t s a t t h i s p o i n t i n t h e s o l f d s u b s t a n c e of t h e e a r t h due t o t h e weight of t h e e a r t h column of h e f g h t z l y i n g above i t , (Thf s p r e s s u r e f s t o be e s t a b l i s h e d w i t h c o n s i d e r a t i o n of t h e even- t u a l water buoyancy,) The flow c o n d i t f on ( 6 ) , f o r t h e p o i n t

M c o n s i d e r e d , i s , when CV1 and P1 a r e t h e m a t e r i a l c o n s t a n t s a t

Mo,

I Y s i n

$',

+ q

( P o +

PI)

-Zap, z T ' y3

(Po

+P,

)

-+:

$2'

-

2aP. + C , I = s i n

$ ,

Tr s c o t

q:

It g f v e s t h e s o i l p r e s s u r e which f s permf s s f b l e a t t h e founda- t f o n s o l e w i t h c o n s i d e r a t i o n of t h e f l o w l i m i t a t t h e p o i n t Mo

Références

Documents relatifs

i) The calculated intensities are very close to those obtained by the software CaRIne, ii) There is a difference between the calculated intensities and those given by the base

c Department of Chemical Engineering , Saad Dahlab University of Blida , Blida , Algeria d Laboratory of Environmental Biotechnologies BIOGEP , Ecole Polytechnique d’Alger—10

Par contre si le scénario d’accords agricoles alternatifs a augmenté les prix aux producteurs et l’équité, il a aussi augmenté les dépenses publiques pour le financement

اًﻮْﻀُﻋ ﺔﻴﻧﺪﻤﻟا ﺔﻴﻟوﺆﺴﻤﻟا ﻦﻣ ﻦﻴﻣﺄﺘﻟا ﺠﻟا نﻮﻧﺎﻘﻟا ﻲﻓ روﺮﻤﻟا ثداﻮﺣ جﺎـــــــﺤﻟوأ ﺪـــــــﻨﺤﻣ ﻲـــــــــﻠﻛأ

The nominal result and statistical uncertainty is given in black, while the results of the dominant systematic variations to the nominal model (per Sec. VI ) are given by the

راد ،(ةنراقم ةسارد) كلهتسملا ةيامح دعاوق ءوض يف ةحايسلا دوقع يف ةمالسلا نامضب مازتلالا ،حاتفلا دبع ديلف دباع رهاقلا ،ةيبرعلا ةضهنلا ،ة 2006 ص ، 26..

detection of flooded areas on the 526 MODIS images, chosen to monitor the annual and interannual variations of the flood. The IDL routine automatically computed

the criteria towards design and accepting the latter two as constraints, a proposal for the total form of the campus for 1980 is suggested. The existing