• Aucun résultat trouvé

On the convergence of a lacunary trigonometrical series

N/A
N/A
Protected

Academic year: 2022

Partager "On the convergence of a lacunary trigonometrical series"

Copied!
7
0
0

Texte intégral

(1)

C OMPOSITIO M ATHEMATICA

F U C HENG H SIANG

On the convergence of a lacunary trigonometrical series

Compositio Mathematica, tome 15 (1962-1964), p. 28-33

<http://www.numdam.org/item?id=CM_1962-1964__15__28_0>

© Foundation Compositio Mathematica, 1962-1964, tous droits réser- vés.

L’accès aux archives de la revue « Compositio Mathematica » (http:

//http://www.compositio.nl/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

Series

by

Fu

Cheng Hsiang

1. A

lacunary trigonometrical

series is a series for which the

terms different from zero are very sparse. This kind of

trigonomet-

rical series may be

put

in the form:

We here assume, for

simplicity,

that the constant term of the

series also vanishes. A series S Ci is said to possess a gap

(u, v)

if c, = 0 for u i v. It is known that

[3,

p.

251, § 10.81]

i f

a series ~

Ci

possesses

inlinitely

many gaps

(Mkl m’ k )

such that

M’k/Mk &#x3E; U

&#x3E; 1

f or

some p and is summable

(C, 1) to

sum

S,

then

S.

and also

Smk

converges to S.

2.

Suppose

that the above

trigonometrical

series is the Fourier series of an

integrable

function

f(x).

This series possesses in-

finitely

many gaps

(nv, nV+l)

such that

n,,,/n,,

&#x3E; A &#x3E; 1 for some

03BB.

Write,

for a

given point

xo ,

Since

holds for almost all x, the Fourier series of an

integrable

func-

tion is therefore almost

everywhere

summable

(C, 1) by Fejér’s

theorem. From this

fact,

we draw

immediately

the

following

well-

known

KOLMOGOROFF’S THEOREM

[1, 2]. Il

the Fourier series

o f

an

integrable function f (x )

possesses

in f initely

many gaps

(nv, nV+l)

such that

n"+l/n"

&#x3E; ,u &#x3E; 1, then the

partial sum Sny

converges almost

everywhere

to

1(x).

We can also conclude

that,

at a

given point

xo at which

q*(t) =0(1) (t

-

+0),

if

nV+l/nv

&#x3E; Â &#x3E; 1, then

Snv(aeo)

-

f(xo)

as v 00.

(3)

29 3. We write

In this note, we

replace

the condition

cp*(t)

=

0(l) by

the

weaker

conditioncpl (t)

=

0(1) (t -&#x3E; + 0).

We

develop Kolmogoroff’s

theorem into the

following

manner.

THEOREM.

Il

the

lacunary

Fourier series

of

an

integrable f unction f(x)

possesses

in f initely

many gaps

( n,, , nV+l)

such that

nV+l/nV

&#x3E; Â&#x3E; 1, and

i f,

at a

given point

xo,

( i ) CPl(t)

= 0

(1) (t

-

+0)

and

when 0

t q f or

some ~, then

Snv(xo)

~

f(x0)

as v --&#x3E; oo.

4.

Now,

we are in a

position

to prove the theorem.

Take,

for

instance,

n" = n, n"+l = m and dénote

respectively by Dn(t)

and

Kn(t)

Dirichlet’s and

Fejér’s

kernels. Then

Then,

from the

identity

and in virtue of the

special property

of the

lacunary

Fourier

séries,

we obtain

Write

(4)

Intégration by parts gives

say. We are

going

to estimate the orders of the

integrals I1

and

I. respectively.

We write

say. Since

( 2

sin

t/2)-I-t-1

is

bounded,

we

obtain, by

Riemann-

Lebesgue’s theorem,

as m - oo

by

De la Vallée Poussin’s test

[8,

p.

88, f 2.8]

for the

convergence of Fourier series at a

given point by

the condition

(ii) and ~2 (t)

= 0

(1)

as 1 - + 0.

Similarly,

(5)

31

as n - oo

by

the same test. It follows that

as n - oo. In

estimating

the order of

1",

let us write

say. We have

say.

Now,

Considering

that

for 0 t

n/2

and oc &#x3E; 0, we

get

Therefore,

(6)

Moreover,

we have

Last, by

the second mean value

theorem,

we obtain

’where A is an absolute constant. From the above

analysis,

it

follows that

For a

given a

&#x3E; 0, we can choose a ô so small that

by

the condition

(i).

After

fixing

ô, we take a

sufficiently large

(7)

88

integer n

which makes

11.1, 1141

and

(m-n)-16-S

all less than e.

Thus,

we obtain

finally

Since e is an

arbitrary

small

quantity, letting

it tend to zero,

we

get

This proves the theorem.

REFERENCES.

A. KOLMOGOROFF

[1] Une contribution à l’étude de la convergence des séries de Fourier, Fund.

Math., 5 (1924), 96-97.

J. MARCINKIEWICZ

[2] A new proof of a theorem of Fourier series, Journ. London Math. Soc., 8

(1933), 279.

A. ZYGMUND

[8] Trigonometrical Series, Warsaw (1985).

National Taiwan University, Taipei, China.

Références

Documents relatifs

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention