• Aucun résultat trouvé

An <span class="mathjax-formula">$n$</span>-dimensional analogue of a theorem of H. Weyl

N/A
N/A
Protected

Academic year: 2022

Partager "An <span class="mathjax-formula">$n$</span>-dimensional analogue of a theorem of H. Weyl"

Copied!
4
0
0

Texte intégral

(1)

C OMPOSITIO M ATHEMATICA

W ALTER P HILIPP

An n-dimensional analogue of a theorem of H. Weyl

Compositio Mathematica, tome 16 (1964), p. 161-163

<http://www.numdam.org/item?id=CM_1964__16__161_0>

© Foundation Compositio Mathematica, 1964, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:

//http://www.compositio.nl/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

161

An n-dimensional analogue

of a

theorem of

H.

Weyl

* 1

by

Walter

Philipp

It is wellknown that for any fixed basis a &#x3E; 1 almost all real numbers x are normal with

respect

to a. An

equivalent

statement

is the

following:

For any fixed

integer

a &#x3E; 1 the sequence

{anx}

is

uniformly

distributed mod 1 for almost all x. This is a conse-

quence of a theorem due to H.

Weyl [4] :

If

{ln}

is an

increasing

sequence of real numbers which does not increase too

slowly

in a

sense to be determined later then

{lnx}

is

uniformly

distributed mod 1 for almost all x.

In another lecture contained in this volume

Cigler (see

also

[1])

states the

following

THEOREM 1: Let A be a

nonsingular

m X m-matrix with

integral

entries such that no

eigenvalue

of A is a root of

unity

then the

sequence of m-dimensional vectors

{An}

is

uniformly

distributed mod 1 for almost all

vectors g

e R’".

This is a consequence of a result of Rochlin

[3]

who

proved

that

the transformation

A-[A]

is

ergodic

and measure

preserving

with

respect

to

Lebesgue

measure if A is a matrix with the above

properties.

But theorem 1 also follows from the

following

theorem

which can be

deduced

from

Weyl’s

criterion.

THEOREM 2: Let

{An}

be a sequence of

nonsingular

m X m-

matrices with

integral

entries and for fixed n and k = 1, ..., n let

h(n)k

be the number of

integers j (1 S j ~ n)

such that

det

(Aj-Ak)

= 0. If there are two

positive

constants e and c

such that

then

{An}

is

uniformly

distributed mod 1 for almost all .

Taking A n

= A n Theorem 1 follows

immediately.

* Nijenrode lecture.

1 The results of this lecture are published in [2].

(3)

162

Replacing X by 1 IN ï

where N is a

positive integer

we see that

the conclusion of the theorem holds also if

An

=

N-1 B.

with an

arbitrary integral

Bn with the above

properties.

We now can prove the

following:

THEOREM 3: Let A be a real

symmetric

matrix with m rows

whose

eigenvalues Ai (1 ~ i ~ m )

are all &#x3E; 1 and let further

{ln}

be a sequence of real numbers

increasing

not too

slowly,

more

precisely:

Let there be two

positive

constants e and c with the

property

that 1 - considered as a function of the index - increases at least

by

c as the index increases from n to

n+(n/(log n)1+03B5);

under these conditions the sequence

{A ln}

is

uniformly

distributed mod 1 for almost

all g

.Moreover if A is an

arbitrary

real square- matrix whose

eigenvalues À; satisfy |03BBi|

&#x3E; 1 the same conclusion is true if one supposes that

the ln

all are

integral.

The

example

A

= (03BB 0 0 03BB-1)

shows that the

assumption |03BBi|

&#x3E; 1 cannot be

replaced by

a weaker one.

For the

proof

of the theorem we write A = U-14U where

det(U)

= ib 1 and d =

[I03C11(03BB1),

...,

I03C1r(03BBr)]

is a Jordan

quasi-

diagonal

matrix

(in

the case where A is

symmetric

we have even a

diagonal matrix).

Thus in each case A In is defined in an obvious way.

If X =

(xij)

is a

square-matrix

with m rows we

write 11 XII

=

m·max|xij|.

For two matrices X and Y we

have ~X+Y~ ~ IIXII+IIYII and ~XY~ ~ ~X~ ~Y~ ~Y~

and for any vector g we have

|X| ~ m1 2~X~ ||

with

||

=

(j x2i)1 2.

Now let N be a

positive integer.

We take now matrices

An

whose

elements are rational

numbers,

all with the same denominator N such that

For

lie

e

lj(1 j,

k

m)

and for fixed n we now

put

If

l;-lk

&#x3E; c we have

~0394lj-0394lk~

=

0(l).

So we have

~03A9kj-E~ = 0(N-1) (E

... unit

matrix).

Therefore

det

(03A9kj) = 1+0(N-l).

We have

1 det (0394lj - 0394lk) -

det

(A;-Ak)1 =

|det(0394lj-0394lk)~

det

(Dkj) - 11 .

So we can choose N

large enough

to

yield |det(Aj-Ak)| ~ 1 2|det(0394lj-0394lk)| ~

0 for those

values j

which

satisfy li-lt ~

c. But there are at most

(4)

163

such

numbers i

such that

lj - lk

c. Therefore

Because one can show in the same manner that det

(An) =1=

0

for all n Theorem 2

applies.

So we have

for almost

all g

where

e(x)

= e203C0ix and

f *

is the

transposed

vector

of an

arbitrary integral vector f ~

0. For real rj, sj, xj

(1 ~ j m )

the

following inequality

holds

From this it follows

easily

that

We now denote

by

2!N the set of

those ï

for which

(1 )

does not

hold. The measure

m(2!N)

= 0. Let 2[ =

UN 2IN

~

m(U)

= 0.

From

(2)

we conclude that

for at least

all ~ U.

This proves the theorem.

LITERATURE J. CIGLER

[1] Der individuelle Ergodensatz in der Theorie der Gleichverteilung mod 1.

J. reine angew. Math. 205, 91-100 (1960).

W. PHILIPP

[2] Ein metrischer Satz über die Gleichverteilung mod 1. Archiv Math. 12, 429 2014 433 (1961).

W. A. ROCHLIN

[3] Über Endomorphismen von kompakten abelschen Gruppen. Izwestija Akad.

Nauk SSSR, Ser. mat 13, 329-340 (1949) (russ.).

H. WEYL

[4] Über die Gleichverteilung von Zahlen mod 1. Math. Ann. 77, 313-352 (1916).

(Oblatum 29-5-63).

Références

Documents relatifs

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention