• Aucun résultat trouvé

On the number of representations of an integer as a sum of primes belonging to given arithmetical progressions

N/A
N/A
Protected

Academic year: 2022

Partager "On the number of representations of an integer as a sum of primes belonging to given arithmetical progressions"

Copied!
7
0
0

Texte intégral

(1)

C OMPOSITIO M ATHEMATICA

A. Z ULAUF

On the number of representations of an integer as a sum of primes belonging to given arithmetical progressions

Compositio Mathematica, tome 15 (1962-1964), p. 64-69

<http://www.numdam.org/item?id=CM_1962-1964__15__64_0>

© Foundation Compositio Mathematica, 1962-1964, tous droits réser- vés.

L’accès aux archives de la revue « Compositio Mathematica » (http:

//http://www.compositio.nl/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

A. Zulauf

1. Introduction: Let

K1, ..., Ks

be s

given positive integers,

and K their least common

multiple.

Let further a,, ..., as be

given integers, (au, Ku)

= 1

(or

=

1,

...,

s),

and denote

by K(n)

the

number of sets of residues xl, ..., x8

(mod K)

which

(i)

are rela-

tively prime

to

K,

and

(ii) satisfy

the

following system

of con-

gruences.

Finally

let

N(n)

denote the number of

representations

of the

positive integer n

in the form

(1)

n =

Pl+P2+

...

+ p.,

Pu = au

(mod K03C3) (03C3

= 1, ...,

s )

where the p03C3 are odd

prime

numbers.

1 have

proved t )

that if n = s

(mod 2),

and s &#x3E;

2:),

then

where p

denotes Euler’s

function,

where p runs

through

the odd

prime numbers,

and where

Q = 1,

or = 2,

according

as K is even, or odd.

In this paper we shall prove an

explicit

formula for

K(n).

2. Lemma: Let p be a

prime number &#x3E;

2, let s &#x3E;

1, 1’ 1: L,

and

let -K,, (.Y, 1, L ; n)

denote the number of sets of residues ae1, ..., ae.

(mod pL )

which

satisfy simultaneously

t) see [lJ, p. 228.

t) If s = 2 this results holds for "almost ail" n. See [3] and [4].

(3)

65

Then

PROOF. The lemma is

evidently

true for s =

1,

since the

system

has

pL-l,

or no, solutions xl

(mod pL) according

as

pin

or

pin.

Next, assuming

the lemma true for s = t, we shall prove that it is also true for s = t+l.

The

system

has

pL-l,

or no, solutions Xt+l

(mod pL ) according

as

or not. Thus

If

pin

then

pfm

for

every m =1= n (mod p),

and we

obtain, by assumption,

from

(3)

If

pfn

then

pfm

for

(p-2)

residues

m # n (mod p),

and

plm

for one residue

m # n (mod p).

In this case we

obtain, therefore,

from

(3)

It

follows, by induction,

that our lemma is true for all s

&#x3E;

1.

3. Theorem. Let

K(n)

be defined as in the introduction. Let k =

(Kl,

...,

Ks),

let q run

through

all

prime

factors

of K,

and

put

(4)

or

K(n)

= 0,

according

as

or not.

PROOF. Since the congruences

imply

it is trivial that

K(n)

= 0 if n does not

satisfy

the congruence

(4).

Suppose

now that n does

satisfy

the congruence

(4).

Let

so that

If

Kq(n)

denotes the number of sets of residues x1, ..., x,

(mod q Lq)

which

satisfy

then, obviously,

For

finding

the value of

Kq( n),

there is no less of

generality

in

assuming

that

(5)

67

Consider first the case

q]k.

If

q]k

we

have 9,

= 0 and

Since

Âq

=

lq,

and hence

the number of different sets of residues X2, - - " X,,

(mod rio)

satis-

fying

is

evidently given by

Now the congruence

uniquely

determines a

residue xi (mod qLe),

and if xi is so deter-

mined, then, by (6), (7)

and

(4),

also

Since

(au, Ku)

= 1 and

ÀqU &#x3E; l,

the congruences

(7)

and

(8) imply (xu, q) = 1 (or == 1, ..., s),

and hence we conclude that

if

qlk,

and n satisfies

(4).

Now consider the case

qf k. If qf k

we have 1

= s,,

s-l, and

the number of different sets of

residues eXSf+l’ ...,

es

(mod qLq )

which

satisfy

is

evidently given by

(6)

different sets of residues xl, ..., x,

(mod rfl)

which

satisfy

the

congruences

(11)

and

But

Âq(1

= 0

and, consequently,

Further,

the congruences

(11)

and the conditions

(aO’, KO’)

---- 1

imply

since then

Â(l(T &#x3E;

1.

Hence,

if

qf k,

then

KQ(n)

is

given by

the

expression (12). By (10)

and

(11),

the condition

is

equivalent

to

qlmq.

We

deduce, therefore,

from

(12)

and the

lemma

that,

in the case

qf k,

The truth of our

theorem,

when n satisfies

(4),

is thus established

by (5), (9)

and

(13).

4. Conclusion. We have

K(n)

&#x3E; 0 if

simultaneously

for

every odd

prime number q

which

divides

all

Ku except

one,

Ku-

say.

(Condition (14c)

may be stated as

qf mq

for every odd

prime

num-

ber

q[K

for

which Sq

=

1.)

(7)

69

It follows that all

sufficiently large integers n satisfying

the

conditions

(14)

can be

represented

as a sum of

primes

in the form

(1),

and

(2)

will be an

asymptotic

formula for the number of such

representations. 1)

To prove the above statement about

K(n)

&#x3E; 0, we observe

that,,

since

(au, KQ)

= 1,

provided

that n satisfies

(14a).

Hence 82 is odd

if2fm2’

and

(s2 -1 )

is odd if

21M2’

It follows

that,

if

(14a)

and

(14b)

are

satisfied,

then

K(n)

vanishes

only

if there is an odd

prime number q

for which

8q = 1 and

qlmq

1) The above conclusions could also be drawn from general results proved in my paper [2].

REFERENCES A. ZULAUF

[1] Über die Darstellung natürlicher Zahlen als Summen von Primzahlen aus

gegebenen Restklassen und Quadraten mit gegebenen Koeffizienten, I: Resul-

tate für genügend gro03B2e Zahlen, Journ. f. Math, 192 (1954), 210-229.

[2] - - - ditto, II: Die singuläre Reihe, Journ. f. Math. 193 (1954), 39-53.

[3] - - - ditto, III: Resultate für fast alle Zahlen, Journ. f. Math. 193 (1954),

54-64.

J. G. VAN DER CORPUT

[4] Über Summen von Primzahlen und Primzahlquadraten, Math. Annalen. 116 (1938), 1-50.

University College, Ibadan, Nigeria.

March 19th, 1959.

(Oblatum 30-5-1959).

Références

Documents relatifs

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention