• Aucun résultat trouvé

Optimization methods for phase estimation in differential-interference-contrast (DIC) microscopy

N/A
N/A
Protected

Academic year: 2021

Partager "Optimization methods for phase estimation in differential-interference-contrast (DIC) microscopy"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01426317

https://hal.inria.fr/hal-01426317

Submitted on 4 Jan 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Optimization methods for phase estimation in differential-interference-contrast (DIC) microscopy

Simone Rebegoldi, Lola Bautista, Laure Blanc-Féraud, Marco Prato, Luca Zanni, Arturo Plata

To cite this version:

Simone Rebegoldi, Lola Bautista, Laure Blanc-Féraud, Marco Prato, Luca Zanni, et al.. Optimization methods for phase estimation in differential-interference-contrast (DIC) microscopy. Workshop on Optimization Techniques for Inverse Problems III, Sep 2016, Modena, Italy. �hal-01426317�

(2)

Optimization methods for phase estimation

in differential-interference-contrast (DIC) microscopy

Simone Rebegoldi

1

, Lola Bautista

2,3

, Laure Blanc-F´eraud

3

, Marco Prato

1

, Luca Zanni

1

and Arturo Plata

2

1Universit`a di Modena e Reggio Emilia, 2Universidad Industrial de Santander, 3Universit´e Cˆote d’Azur,

The DIC phase estimation problem

The DIC image is formed by the interference of two orthogonally polarized beams that have a lateral displacement (called shear) and are phase shifted relatively one to each other. The resulting image has a 3D high contrast appearance, which can be enhanced by introducing a uniform phase difference between the beams (called bias).

Model: the DIC image formation is described by the polychromatic rotational-diversity model [1,2]

(ok)j = (h k ⊗ e−iφ/λℓ) j 2 + (ηk)j, k = 1, . . . , K , ℓ = 1, 2, 3, j ∈ χ

• k is the index of the rotation of the specimen w.r.t. the horizontal axis, ℓ is the index denoting one of the RGB channels and j = (j1, j2) is a 2D–index varying in the set χ = {1, . . . , M} × {1, . . . , P}

• λ is the ℓ−th illumination wavelength

• ok ∈ RMP is the ℓ−th color component of the k−th observed image ok = (ok1, ok2, ok3) ∈ RMP×3

• φ ∈ RMP is the unknown phase vector and e−iφ/λℓ ∈ CMP is defined by (e−iφ/λℓ)

j = e−iφj/λℓ

• hk ∈ CMP is the discretization of the continuous DIC Point Spread Function

• ηk ∈ RMP is the noise corrupting the data, ηk ∼ N (0, σ2I(MP)2).

Problem: given the rotationally diverse images o1, . . . , oK , retrieve the phase vector φ by solving

min φ∈RMP J (φ) ≡ J0(φ) + JTV (φ), (P) • J0(φ) = 3 P ℓ=1 K P k=1 P j∈χ h (ok)j − (hk ⊗ e−iφ/λℓ) j

2i2 is the nonconvex least-squares term

• JTV (φ) = µ P

j∈χ

p

((Dφ)j)21 + ((Dφ)j)22 + δ2 is the total variation (TV) functional, where µ > 0 is the regularization parameter and δ ≥ 0 is the smoothing parameter (δ = 0 → standard TV).

Optimization methods

Case δ > 0: problem (P) is differentiable → we use a gradient-descent method.

Algorithm 1 Limited Memory Steepest Descent (LMSD) method [3]

Set ρ, ω ∈ (0, 1), m > 0, α0(0), . . . , α(0)m−1 > 0, φ(0) ∈ RMP, G = [ ], Θ = [ ], n = 0. WHILE True

FOR l = 1, . . . , m

1. Compute the smallest non-negative integer in such that αn = αn(0)ρin satisfies

J(n) − αn∇J(φ(n))) ≤ J(φ(n)) − ωαnk∇J(φ(n))k2.

2. Compute the new point as φ(n+1) = φ(n) − αn∇J(φ(n)).

3. Update G = [G ∇J(φ(n))] and Θ = [Θ α−1n ].

4. Set n = n + 1.

END

6. Define the (m + 1) × m matrix Γ =

 diag(Θ) zeros(1, m)  −  zeros(1, m) diag(Θ)  .

7. Compute the Cholesky factorization RTR of the m × m matrix G TG .

8. Solve the linear system RT r = G T∇J(φ(n)).

9. Define the m × m matrix Φ = [R, r ]ΓR−1 and its approximation

e

Φ = diag(Φ) + tril(Φ, −1) + tril(Φ, −1)T,

which is symmetric and tridiagonal.

10. Compute eigenvalues θ1, . . . , θm of eΦ and define αn(0)+i−1 = 1/θi, i = 1, . . . , m.

END

Case δ = 0: problem (P) is non differentiable → we use a proximal-gradient method.

Algorithm 2 Inexact Linesearch based Algorithm (ILA) [4]

Set ρ, ω ∈ (0, 1), 0 < αmin ≤ αmax, τ > 0, φ(0) ∈ RMP, n = 0.

WHILE True

1. Set αn = max

n

min nα(0)n , αmax

o

, αmino, where αn(0) is chosen as in Algorithm 1.

2. Let ψ(n) = proxαnJTV φ(n) − αn∇J0(φ(n))



= argminφ∈RMP h(n)(φ).

Compute ˜ψ(n) such that h(n)( ˜ψ(n)) − h(n)(ψ(n)) ≤ ǫn and 0 ≤ ǫn ≤ −τ h(n)( ˜ψ(n)).

3. Set d(n) = ˜ψ(n) − φ(n).

4. Compute the smallest non-negative integer in such that λn = ρin satisfies

J(φ(n) + λnd(n)) ≤ J(φ(n)) + ωλnh(n)( ˜ψ(n)).

5. Compute the new point as φ(n+1) = φ(n) + λnd(n).

6. Set n = n + 1.

END

Convergence and numerical results

Convergence: Any limit point of Algorithm 1 and 2 is stationary

for problem (P). Since J satisfies the Kurdyka- Lojasiewicz property, Algorithm 1 converges to a limit point; the same result can be proved for Algorithm 2 when the proximal point is computed exactly [4].

Results: for both objects, cone (top row) and cross (bottom row),

K = 2 DIC images have been generated.

True phase Noisy DIC image Rec. phase

The parameters of the methods have been tuned as follows: ρ = 0.5, ω = 10−4, m = 4, αmin = 10−5, αmax = 102, τ = 106 − 1, φ(0) = 0. The methods are compared with the Polak-Ribi`ere conjugate gradi-ent method equipped with the strong Wolfe conditions (PR+-SW) and a linesearch based on polynomial approximation (PR-PA) [1].

10−1 100 101 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 CONE Time (s) Error PR−PA PR+−SW LMSD ILA 10−1 100 101 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 CROSS Time (s) Error PR−PA PR+−SW LMSD ILA

Object Algorithm Iterations # f # g Error

Cross

PR–PA 98 997 98 3.63 % PR+–SW 98 326 326 3.63 % LMSD 152 221 152 3.64 % ILA 97 179 97 3.46 %

[1] C. Preza, J. Opt. Soc. Am. A, 17(3), 415–424, 2000.

[2] L. Bautista et al., 2016 IEEE 13th Int. Symp. on Biomedical Imaging, 136–139, 2016.

[3] R. Fletcher, Math. Program., 135(1–2), 413–436, 2012.

Références

Documents relatifs

A l’aide d’un tableur, construit les diagrammes représentant la température et les précipitations sur l’ile Heard.. Quelle est l’étendue

[r]

a) Déterminer par maximisation de l’hamiltonien, l’expression de la commande optimale u pour β=1. b) Montrer que seule la solution positive de l’équation de Riccati

[r]

Les élèves disposent d’un paquet de cartes et d’un plateau de jeu A3.. Le jeu nécessite aussi un dé et

Par comparaison entre ce qui est pareil et ce qui est différent, le binôme trouve ce qu’il faut donner à Minibille pour qu’elle ait autant que Maxibille.. Le

[r]

construire une petite boîte pour mettre les petits cailloux perdus au cours de la partie qui peuvent être récupérés par un joueur chanceux et la poser à côté du plateau de