• Aucun résultat trouvé

( The Diophantine Equation x 2 + 7 -- 2"

N/A
N/A
Protected

Academic year: 2022

Partager "( The Diophantine Equation x 2 + 7 -- 2""

Copied!
3
0
0

Texte intégral

(1)

A R K I V F O R M A T E M A T I K B a n d 4 n r 13

Read 13 J a n u a r y 1960

T h e D i o p h a n t i n e E q u a t i o n x 2 + 7 - - 2"

B y T. NAGELL

I n Vol. 30 of the Norsk Matematisk Tidsskrift, pp. 62-64, Oslo 1948, I published a proof of the following theorem: 1

W h e n x is a positive integer, the n u m b e r x ~ + 7 is a p o w e r of 2 only i n the/ollowing [ive cases: x = 1, 3, 5, 11, 181.

Since prof. L . J . Mordell drew m y attention to a paper by Chowla, Lewis and Skolem in the Proceedings of the American Mathematical Society, Vol. 10 (1959), p. 663-669, on the same subject, I consider it necessary to publish in English m y proof of 1948 which is quite elementary.

The problem consists in determining all the positive integers x and y which satisfy the relation

1 @2+7 )=2u" (1)

4

I t is evident t h a t the difference of two integral squares u 2 and v 2 is equal to 7 only for u 2= 16 and v2=9. Hence we conclude t h a t the exponent y in (1) can be even only for y = 2 and x = 3 . Thus we m a y suppose t h a t y is odd and > 3 . Passing to the qtiadratic field K(]/---~), in which factorization is unique, we get from (1)

x - + ~ - ( ! + l / = 7 ) y ' 2 2 (2) whence

Considering this equation modulo

2 we get, since y is odd and >= 3, and since

(

I + V V--5 1

1 T h e t h e o r e m is s e t as a p r o b l e m i n m y Introduction to Number Theory, S t o c k h o l m a n d N e w Y o r k 1951 ( P r o b l e m 165, p. 2'/2).

12:2 1 8 5

(2)

T. NACELL,

The Diophantine Equation x 2 + 7 = 2 n

the congruence

1 + ~/--7 + }/_~ (mod - 3 2~/-~7) 2

But this congruence is possible only when the right-hand side is - 1/~ 7. Hence, we must take the lower sign in (3). Thus equation (3) may be written

-1

This equation implies the congruence

- 2 v - l - - ~ y (mod 7), which has the solutions

y---3, 5, 13 (rood 42).

Suppose first y--= 3 (mod 42) and put

y-3=TZ.6.h,

where h is an integer not divisible by 7. The number

( ) Y ( Y - I ) ( y - 2 ) ( y - 3 ) ' ( Y - 4 ) "Tk

2 [ + 1

"7k=(2k-2)(2k-1)2k(2k+l)

2 k - 3

is divisible by 7 *+1 for k > 2 , since 7 k - ~ > 2 k + l . Hence we get from (4)

and thus

- 2 ~-~ ~ y - ~ y ( y - 1) ( y - 2) (mod 7~+~), 7

- - 2 ~ - 1 ~ - 4 ~ y - 7 (modT~+l).

But this implies

y - 3 --= 0 (mod 7~+1),

which is contrary to our hypothesis on y. Thus the only possibility is y = 3 cor- responding to x = 5.

Suppose next that y ~ 5 (mod 42) and put y - 5 = 7 ~ . 6 . h ,

where h is an integer not divisible by 7. The number

2 1 ( 2 k - 4 ) ( 2 k - 3 ) . . . ( 2 k + 1) is divisible by 7 z+l for k>=3, since 7 k - l > 2 k + 1.

186

(3)

A R K I V F O R M A T E M A T I K . B d 4 n r 13 H e n c e we g e t from (4)

- 2 y-1 --~ - 16 ~-- y - 70 + 49 (mod 7~+1).

B u t t h i s implies

y - 5 ~ 0 (mod 7 '+1)

which is c o n t r a r y t o our h y p o t h e s i s on y. Thus t h e o n l y p o s s i b i l i t y is y = 5 cor- r e s p o n d i n g t o x = 11.

F i n a l l y consider t h e case y - - 1 3 (mod 42) a n d p u t y - 1 3 = 7 ~ - 6 - h , where h is a n integer n o t d i v i s i b l e b y 7. The n u m b e r

( ) "7k- y(y-1)'''(y-13)

. ~ y - 1 4 ~ . 7 k 2 [ + 1 ( 2 k - 12) ... ( 2 k + 1) \ 2 k - 13]

is divisible b y 7 ~+1 for k > 7 , since 7 k - 2 > 2 k + 1. H e n c e we get from (4)

--212---4096 --y--(Y)" 7 § (Y)'72- (Y)" 73 § (Y)'74- (Y 1)" 75§

W e m a y r e p l a c e y b y 13 in all t h e t e r m s on t h e r i g h t - h a n d side which are di- visible b y 7. T h e n we g e t t h e congruence

- 4096 =- y - 4109 (mod 7~+1).

H e n c e

y - 13 --- 0 (mod 7z+1),

which is c o n t r a r y t o our h y p o t h e s i s on y. T h u s t h e o n l y p o s s i b i l i t y is

y=

13,

corresponding t o

x=

181.

Tryckt den 5 augusti 1960

Uppsala 1960. Almqvist & Wiksells Boktryckeri AB

187

Références

Documents relatifs

Maverick a une petite entreprise de graphisme. Il estime que pour bien faire son travail, une page contenant seulement du texte nécessite 25 minutes de travail alors qu’une

Urbanowicz for pointing out the fallacy in the original paper and for showing them a way to repair the

Mathematlsch Centrum University of Debrecen Rijksuniversiteit Amsterdam, Netherlands Debrecen, Hungary Leiden, Netherlands.. In this paper we prove a further

CASSELS. of

KORN, A., Automatische Herstellung der Jacquard-Karten ffir die mecha- nische Weberei.. TIMOSttENKO, S., Stability and strength of thin-walled

John8 College, Cambridge, England. Ahnqvist & Wiksells

Relation between Markoff numbers and extremal numbers : simultaneous approximation of x and x 2 by rational numbers with the same denominator.

Two performance measures were used in this paper: the optimization reliability, defined as the probability of finding the true optimum, and the expected maximum fitness function 11.