• Aucun résultat trouvé

On the representation as exterior differentials of closed forms with L 1 -coefficients

N/A
N/A
Protected

Academic year: 2021

Partager "On the representation as exterior differentials of closed forms with L 1 -coefficients"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: hal-02105413

https://hal.archives-ouvertes.fr/hal-02105413v2

Preprint submitted on 14 May 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On the representation as exterior differentials of closed

forms with L 1 -coefficients

Eduard Curcă

To cite this version:

(2)

Mathematical Analysis

On the representation as exterior differentials

of closed forms with L

1

-coefficients

Eduard Curc˘

a

a

aUniversit´e de Lyon, Universit´e Lyon 1, CNRS UMR 5208, Institut Camille

Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France

Abstract

Let N ≥ 2. If g ∈ L1

c(RN) has zero integral, then the equation div X = g need not

have a solution X ∈ Wloc1,1(RN; RN) (Wojciechowski 1999) or even X ∈ LN/(N −1)loc (RN; RN) (Bourgain and Brezis 2003). Using these results, we prove that, whenever N ≥ 3 and 2 ≤ ` ≤ N − 1, there exists some `-form f ∈ L1c(RN; Λ`) such that df = 0 and the equation dλ = f has no solution λ ∈ Wloc1,1(RN; Λ`−1). This provides a negative answer to a question raised by Baldi, Franchi and Pansu (2019).

R´esum´e

Sur la repr´esentation comme diff´erentielles ext´erieures des formes ferm´ees `

a coefficients L1

Soit N ≥ 2. Si g ∈ L1c(RN) est d’integrale nulle, alors en g´en´eral il n’est pas possible de r´esoudre l’´equation div X = g avec X ∈ Wloc1,1(RN; RN) (Wojciechowski 1999), ou mˆeme X ∈ LN/(N −1)loc (RN; RN) (Bourgain et Brezis 2003). En utilisant ces r´esultats, nous prouvons que, pour N ≥ 3 et 2 ≤ ` ≤ N − 1, il existe une `-forme f ∈ L1c(RN; Λ`) avec df = 0 et telle que l’´equation dλ = f n’ait pas de solution λ ∈ Wloc1,1(RN; Λ`−1). Ceci donne une r´eponse n´egative `a une question pos´ee par Baldi, Franchi et Pansu (2019).

Version fran¸caise abr´eg´ee

R´epondant `a une question pos´ee par Baldi, Franchi et Pansu ([1]), nous mon-trons le r´esultat suivant :

(3)

Th´eor`eme 1 Soit N, ` entiers tels que N ≥ 3 et 2 ≤ ` ≤ N − 1. Il existe une `-forme diff´erentielle ferm´ee `a coefficients L1, f ∈ L1

c(RN; Λ`), telle que

l’´equation dλ = f n’ait pas de solution λ ∈ Wloc1,1(RN; Λ`−1).

La preuve est faite par l’absurde et repose sur un r´esultat de non-existence bien connu pour l’´equation div X = g. Plus pr´ecis´ement, il existe des fonctions g ∈ L1c((0, 1)`; R) avec ´ g = 0 et telles que l’´equation div X = g n’ait pas de solution X ∈ L`/(`−1)loc (R`; R`) (voir Bourgain et Brezis [2]). `A partir d’une

telle fonction g, nous construisons une forme diff´erentielle explicite f , ferm´ee, `

a support compact et `a coefficients L1. En supposant le Th´eor`eme 1 faux,

nous obtenons l’existence d’une fonction G ∈ C2

c((0, 1)`; R) et d’un champ

Y ∈ L`/(`−1)loc (R`; R`) tels que div Y = g + G, ce qui contredit les propri´et´es de

la fonction g.

En combinant ce r´esultat avec les r´esultats de [6], [2], nous obtenons la con-s´equence suivante.

Corollaire 2 Soient N ≥ 2 et 1 ≤ ` ≤ N . Soit A la classe des `-formes f ∈ L1c(RN; Λ`) satisfaisant la condition de compatibilit´e df = 0 (si 1 ≤ ` ≤ N − 1), respectivement ´ f = 0 (si ` = N ). Alors nous avons l’´equivalence 1 ⇐⇒ 2, o`u

1. l’´equation dλ = f a une solution λ ∈ Wloc1,1(RN; Λ`−1) pour tout f ∈ A. 2. ` = 1.

1 Introduction

We consider the Hodge system

dλ = f in RN, (1)

where f and λ are ` and (`−1)-forms respectively, f being given and satisfying the compatibility condition df = 0. We focus on the case where f has L1

coefficients.

To start with, let us recall some known facts about the cases ` = N and ` = 1.

In the case ` = N , (1) reduces to the divergence equation. It was first shown by Wojciechowski [6] that there exists g ∈ L1c(RN), with zero integral, such that the equation div X = g has no solution X ∈ Wloc1,1(RN; RN). On the other hand, Bourgain and Brezis [2] proved, using a different method, the following: there exists g ∈ L1c(RN) with zero integral, such that the equation div X = g has no solution X ∈ LN/(N −1)loc (RN; RN). In view of the embedding Wloc1,1 ,→ LN/(N −1)loc , this improves [6].

(4)

In the case ` = 1, (1) reduces to the following “gradient” equation

∇λ = f, (2)

where f is a vector field satisfying the compatibility condition ∇ × f = 0 and λ is a function. Unlike the case ` = N , this time (2) has a solution λ ∈ Wloc1,1(RN). Actually, any solution of (2) belongs to Wloc1,1 and, moreover, if f is compactly supported then we may choose λ ∈ W1,1.

The question of the solvability in Wloc1,1 of the system (1) with datum in L1 in the remaining cases, i.e., 2 ≤ ` ≤ N − 1, has been recently raised by Baldi, Franchi and Pansu [1]. Our main result settles this problem.

Theorem 3 Let N ≥ 3. Let 2 ≤ ` ≤ N − 1. Then there exists some f ∈ L1

c(R

N; Λ`) such that df = 0 and the equation dλ = f has no solution λ ∈

Wloc1,1(RN; Λ`−1).

The proof of Theorem 3 we present is a simplification, communicated to the author by P. Mironescu, of the original one. This simplified version has the advantage of being relatively self-contained and elementary.

2 Proof of Theorem 3

We start with some auxiliary results.

Lemma 4 Let 1 ≤ κ ≤ N − 1 and f ∈ L1 c(R

N; Λκ) be such that df = 0. Then

there exists some ω ∈ Lqloc(RN; Λκ−1), for all 1 ≤ q < N/(N − 1), such that

dω = f .

Proof. Let E be ”the” fundamental solution of ∆ and set η := E ∗ f . Let ω := d∗η. First, η ∈ Wloc1,q(RN) (by elliptic regularity) and thus ω ∈ Lqloc(RN), 1 ≤ q < N/(N − 1). Next, dη = E ∗ df = 0. Finally,

dω = dd∗η = (dd∗+ d∗d)η = ∆η = f.

Hence, ω has the required properties. 

A similar argument leads to the following.

Lemma 5 Let 1 < r < ∞, k ∈ N. Let 1 ≤ κ ≤ N − 1. Let f ∈ Wck,r(RN; Λκ) be such that df = 0. Then there exists some ω ∈ Wlock+1,r(RN; Λκ−1) such that

(5)

We next recall the following “inversion of d with loss of regularity”. It is folklore, and one possible proof consists of using Bogovskii’s formula (see for example [4, Corollary 3.3 and Corollary 3.4] for related arguments).

Lemma 6 Let 1 ≤ κ ≤ N −1. Let Q be an open cube in RN. Then there exists some integer m = m(N, κ) such that if f ∈ Ck

c(Q; Λκ−1), with k ∈ {m, m +

1, . . .} ∪ {∞}, satisfies df = 0, then there exists some ω ∈ Cck−m(Q; Λκ−1) such that dω = f .

Combining Lemmas 4–6, we obtain the following

Proposition 7 Let 1 ≤ κ ≤ N − 1. Let Q be an open cube in RN. Let f ∈ L1c(Q; Λκ) be such that df = 0. Then there exists some ω ∈ Lqc(Q; Λκ−1), for all 1 ≤ q < N/(N − 1), such that dω = f .

Proof. Set f0 := f . We consider a sequence (ζj)j>0 in Cc∞(Q; R) such that

ζ0 = 1 on supp f0 and, for j > 1, ζj = 1 on supp ζj−1. We let η0 be a solution

of dη0 = f0, constructed as in Lemma 4. We set ω0 := ζ0η0, so that ω0 ∈

Lq c(Q; Λκ−1), 1 ≤ q < N/(N − 1) and dω0 = dζ0∧ η0+ ζ0dη0 = dζ0∧ η0+ ζ0f0 = dζ0∧ η0 | {z } −f1 +f0.

Let us note that df1 = −d2ω0 + df0 = 0 and that f1 ∈ Lqc(Q; Λκ), 1 ≤ q <

N/(N − 1).

Fix some 1 < r < N/(N −1). By Lemma 5, there exists some η1 ∈ Wloc1,r(R

N; Λκ−1)

such that dη1 = f1. Set ω1 := ζ1η1. Then ω1 ∈ Wc1,r(Q; Λκ−1) and, as above,

f2 := f1− dω1 satisfies df2 = 0 and f2 ∈ Wc1,r(Q; Λκ). Applying again Lemma

5, we may find η2 ∈ Wloc2,r(R

N) such that dη

2 = f2.

Iterating the above, we have

ω0+ · · · + ωj ∈ Lqc(Q; Λ κ−1

), 1 ≤ q < N/(N − 1),

d(ω0+ · · · + ωj) = f0− fj, with dfj = 0 and fj ∈ Wcj,r(Q; Λκ).

Let now j be such that Wj,q(Q) ,→ Cm(Q), with m as in Lemma 6. Let

ξ ∈ C0

c(Q; Λκ−1) be such that dξ = −fj. Set ω := ω0 + · · · + ωj + ξ. Then ω

has all the required properties. 

Let us note the following consequence of hypoellipticity of ∆ and of the proofs of Proposition 7 and Lemmas 4 and 5 (but not of their statements).

(6)

Corollary 8 Assume, in addition to the hypotheses of Proposition 7, that f ∈ C∞(U ) for some open set U ⊂ Q. Let s ∈ N. Then we may choose ω such that, in addition, ω ∈ Cs(U ).

Proof of Theorem 3. We write the variables in RN as follows: x = (x0, x00), with x0 ∈ R` and x00 ∈ RN −`.

Pick some g ∈ L1

c((0, 1)`; R) with zero integral, such that the equation div X =

g has no solution X ∈ L`/(`−1)loc (R`; R`) (see [6], [2]). Clearly, for any G ∈ C2

c((0, 1)`; R),

the equation div Y = g + G has no solution Y ∈ L`/(`−1)loc (R`; R`). (3)

Let ψ ∈ Cc∞((0, 1)N −`) be such that ψ ≡ 1 in some nonempty open set V ⊂

(0, 1)N −`. Set Q := (0, 1)N and η := g(x0)ψ(x00)dx0 ∈ L1

c(Q; Λ`). We note

that dη = g(x0) dψ(x00) ∧ dx0 ∈ L1

c(Q; Λ`+1). Let us also note that dη = 0 in

R`× V . By Corollary 8 with U = (0, 1)`× V , there exists some ω ∈ Lq

c(Q; Λ`),

1 ≤ q < N/(N − 1), such that dω = dη and ω ∈ C2((0, 1)`× V ).

Consider now the closed form f := η − ω ∈ L1

c(Q; Λ`). We claim that there

exists no λ ∈ Wloc1,1 (RN; Λ`−1) such that dλ = f . Argue by contradiction and let λi denote the coefficient, in λ, of dx1∧ dx2· · · ∧ dxi−1∧ dxi+1∧ · · · ∧ dx`,

1 ≤ i ≤ `. Let ω0 denote the coefficient of dx0 in ω. Then, in R`× V , we have

`

X

i=1

(−1)i+1∂iλi(x0, x00) = g(x0)ψ(x00) − ω0(x0, x00) = g(x0) − ω0(x0, x00). (4)

Hence, for a.e. x00 ∈ V , the following equation is satisfied in D0(R`

): ` X i=1 (−1)i+1∂iλ0i = g − ω 0 0, (5) with λ0i := λi(·, x00) ∈ Wloc1,1(R `) and ω0 0 = ω0(·, x00) ∈ Cc2((0, 1) `). (6)

The above properties (5) and (6), combined with the embedding Wloc1,1(R`) ,→ L`/(`−1)(R`), contradict (3).



Remark 1 We have actually proved the following improvement of Theorem 3. Let N ≥ 3 and 2 ≤ ` ≤ N − 1. Then there exists some f ∈ L1

(7)

satisfying df = 0 and such that the system dλ = f has no solution

λ ∈ L1loc(R(N −`); L`/(`−1)loc (R`; Λ`−1)).

Remark 2 A similar question can be raised in L∞. We have the following analogue of Theorem 3.

Theorem 9 Let N ≥ 3. Let 2 ≤ ` ≤ N − 1. Then there exists some f ∈ L∞c (RN; Λ`) such that df = 0 and the equation dλ = f has no solution λ ∈ Wloc1,∞(RN; Λ`−1).

The proof of Theorem 9 is very similar to the one of Theorem 3. The main difference is the starting point, in dimension `. Here, we use the fact that there exists some g ∈ L∞c (R`), with zero integral, such that the equation div X = g has no solution X ∈ Wloc1,∞(R`; R`) (see [5]).

3 Solution in LN/(N −1) when 1 ≤ ` ≤ N − 1

As mentioned in the introduction, when ` = N , the system (1) with right-hand side f ∈ L1 need not have a solution λ ∈ LN/(N −1)

loc . In view of Theorem

3 and of Proposition 7, it is natural to ask whether, in the remaining cases 1 ≤ ` ≤ N − 1, given a closed `-form f ∈ L1c, it is possible to solve (1) with λ ∈ LN/(N −1)loc . This is clearly the case when ` = 1 (by the Sobolev embedding Wloc1,1 ,→ LN/(N −1)loc ). Moreover, we may pick λ ∈ W1,1. The remaining cases

are settled by our next result. In what follows, we do not make any support assumption on f , and therefore the case where ` = 1 is also of interest.

Proposition 10 Let N ≥ 2 and 1 ≤ ` ≤ N − 1. Then, for every f ∈ L1(RN

; Λ`) with df = 0, there exists some λ ∈ LN/(N −1)(RN

; Λ`−1) such that

f = dλ.

Proof. Suppose f ∈ L1(RN; Λ`−1) with df = 0 as above. According to Bourgain

and Brezis [3] (see Corollary 20 in [3] for a very similar statement; see also Theorem 3 in [7]), we have ˆ Rd hψ, f i . kf kL1kd ∗ ψkLN, ∀ ψ ∈ C ∞ c (R N; Λ`). (7)

Consider the functional

(8)

Here, S is endowed with the LN-norm. The inequality (7) shows that L f

is well-defined and bounded. By the Hahn-Banach theorem, there exists an extension Lef : LN(RN; Λ`+1) → R of Lf with Lef = kLfk. Hence, there

exists an (` − 1)-form λ ∈ LN/(N −1)(RN; Λ`−1) such that

ˆ RN hψ, f i = Lf(d∗ψ) =Lef(d∗ψ) = ˆ RN hd∗ψ, λi = ˆ RN hψ, dλi

for all ` -forms ψ ∈ Cc∞(RN; Λ`).

This implies that λ ∈ LN/(N −1)(RN; Λ`−1) satisfies dλ = f. 

Acknowledgements

The author thanks Petru Mironescu for illuminating discussions and Haim Brezis for suggesting this problem. He was supported by the LABEX MILYON (ANR-10-LABX-0070) of Universit´e de Lyon, within the program “Investisse-ments d’Avenir” (ANR-11-IDEX-0007) operated by the French National Re-search Agency (ANR).

References

[1] Baldi, A., Franchi, B., Pansu, P., L1-Poincar´e inequalities for differential forms on Euclidean spaces and Heisenberg groups. hal-02015047, 2019.

[2] Bourgain, J., Brezis, H., On the equation div Y = f and application to control of phases. J. Amer. Math. Soc. 16, no. 2, 393–426, 2003.

[3] Bourgain, J., Brezis, H., New estimates for eliptic equations and Hodge type systems. J. Eur. Math. Soc. 9, no. 2, 277–315, 2007.

[4] Costabel, M., Mcintosh, A. On Bogovskii and regularized Poincar´e integral operators for de Rham complexes on Lipschitz domains. Mathematische Zeitschrift 265, no. 2, 297–320, 2010.

[5] McMullen, C.T., Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal. 8, 304–314, 1998.

[6] Wojciechowski, M., On the representation of functions as a sum of derivatives. C. R. Acad. Sci. Paris S´er. I Math. 328, no. 4, 303–306, 1999.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to