• Aucun résultat trouvé

SCANNING-DLTS

N/A
N/A
Protected

Academic year: 2021

Partager "SCANNING-DLTS"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: jpa-00229640

https://hal.archives-ouvertes.fr/jpa-00229640

Submitted on 1 Jan 1989

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SCANNING-DLTS

O. Breitenstein

To cite this version:

O. Breitenstein. SCANNING-DLTS. Journal de Physique Colloques, 1989, 50 (C6), pp.C6-101-C6-

110. �10.1051/jphyscol:1989609�. �jpa-00229640�

(2)

REVUE DE PHYSIQUE

APPLIQUEE

Colloque C6, Suppl6ment au n06, Tome 24, Juin 1989

SCANNING-DLTS

0. BREITENSTEIN

Institute of Solid. State Physics and Electron Milcroscopy of the Academy of Sciences of the GDR, Weinberg 2, DDR-4050 Halle, D.R.G.

R'esumg

-

DLTS d bakayage (SDLTS) e s t une t e c h n i q u e c o u r a n t e de l a m i c r o s c o p i e g l e c t r o n i q u e

2

b a l a y a g e p o u r l a d g t e c t i o n d e s d i s t r i b u t i o n s l o c a l e s d e s c e n t r e s

a

p r o f o n d n i v e a u . Dans l e r a p p o r t l e s f o n d a t i o n s p h y s i c a l e s d e l a t e c h n i q u e SDLTS s o n t t r a i t e e s e t l e s n e c e s s i t g e s de l a i n s t r u m e n t a t i o n s o n t d i s c u t g e s . La p r a t i q u e d e mesure e s t d g c r i t e t i l l u s t r ' e 8i l t a i d e de q u e l q u e exemples e x p e r i m e n t a l s . F i n a l e m e n t l e s p o s s i b i l i t s s e t l i m i t a t i o n s d e SDLTS s o n t c r i t i q u e m e n t r e v u s .

A b s t r a c t

-

S c a n n i n g Deep L e v e l T r a n s i e n t S p e c t r o s c o p y (SDLTS) i s a c u r r e n t SF&l t e c h n i q u e f o r t h e d e t e c t i o n of t h e l o c a l d i s t r i b u t i o n of deep l e v e l c e n t r e s i n s e m i c o n d u c t o r s . The c o n t r i b u t i o n d e a l s w i t h t h e p h y s i c a l f o u n d a t i o n s of t h e SDLTS t e c h n i q u e and i t d i s c u s s e s t h e de- mands on t h e i n s t r u m e n t a t i o n . The measurement p r a c t i c e i s d e s c r i b e d and i l l u s t r a t e d by s e v e r a l e x p e r i m e n t a l examples. F i n a l l y , t h e p o s s i b i l - i t i e s a n d l i m i t a t i o n s of SDLTS a r e c r i t i c a l l y reviewed.

1

-

INTRODUCTION

Scanning-DLTS (SDLTS) r e p r e s e n t s t h e c o m b i n a t i o n of t h e DLTS d e t e c t i o n t e c h - n i q u e w i t h t h e l o c a l e x c i t a t i o n f a c i l i t y of a s c a n n i n g e l e c t r o n m i c r o s c o p e

(SEN). The f u n c t i o n of t h i s method i s t o image t h e s p a t i a l d i s t r i b u t i o n of n o n - r a d i a t i v e r e c o m b i n a t i o n c e n t r e s i n s e m i c o n d u c t o r s p a c e c h a r g e s t r u c t u r e s

( p n j u n c t i o n s , S c h o t t k y - d i o d e s ) . A s a r u l e , i t i s used i n c o n j u n c t i o n w i t h t h e EBIC imaging t e c h n i q u e t h a t e a s i l y a l l o w s t h e l o c a l i z a t i o n o f c r y s t a l d e f e c t s and o t h e r i n h o m o g e n e i t i e s i n t h e s e s t r u c t u r e s . U n l i k e EBIC, however, SDLTS r e p r e s e n t s a s p e c t r o s c o p i c t e c h n i q u e e n a b l i n g t h e i d e n t i f i c a t i o n of t h e d e f e c t s d i s p l a y e d w i t h r e s p e c t t o t h e i r t h e r m a l i o n i z a t i o n energy. IVIore- o v e r , SDLTS a l l o w s one t o image t h e d i s t r i b u t i o n o f c e n t r e s a c t i n g a s t r a p - p i n g c e n t r e s r a t h e r t h a n a s r e c o m b i n a t i o n c e n t r e s t h a t would n o t a f f e c t t h e E B I C c o n t r a s t . I n t h i s s e n s e , SDLTS and EBIC r e p r e s e n t complementary t e c h - n i q u e s w i t h t h e i r r e s u l t s s u p p l e m e n t i n g e a c h o t h e r .

The SDLTS t e c h n i q u e was f i r s t proposed by P e t r o f f and Lang / I / . T h e i r a r - rangement used t h e c u r r e n t d e t e c t i o n p r i n c i p l e ( s e e n e x t c h a p t e r ) on t h i n n e d specimens w i t h i n a STEN, t h u s a l l o w i n g t h e c o r r e l a t i o n of t h e r e s u l t s n o t o n l y w i t h t h e EBIC-image b u t a l s o w i t h TEN! i n v e s t i g a t i o n s . A f t e r s e v e r a l p r o m i s i n g r e s u l t s o b t a i n e d by t h i s g r o u p ( c f . e.g. /2/ and /3/) t h e method was f u r t h e r d e v e l o p e d t o work a l s o w i t h c a p a c i t a n c e d e t e c t i o n and t o be con-

t r o l l e d by a microcomputer s y s t e m l a r g e l y r a t i o n a l i z i n g t h e measurement p r a c t i c e and t h e image d i s p l a y ( B r e i t e n s t e i n and H e y d e n r e i c h , /4/ and / 5 / ) . TTevertheless, t h e number of groups vrorking w i t h SDLTS i s s t i l l l i m i t e d ( s e e

e.g. /6/ t o /9/). I t i s much t o be hoped t h a t t h e f u t u r e a v a i l a b i l i t y of a commercial s p e c i a l SDLTS equipment w i l l encourage a b r o a d e r a p p l i c a t i o n of t h i s p r o m i s i n g t e c h n i q u e .

I n t h e f o l l o v ~ i n g t h e p h y s i c a l f o u n d a t i o n of SDLTS w i l l be reviewed. Then, some demands on t h e i n s t r u m e n t a t i o n w i l l be d i s c u s s e d . I n c h a p t e r 4 t h e measurement p r a c t i c e i s d e s c r i b e d and i l l u s t r a t e d by i n t r o d u c i n g some meas- urement examples. F i n a l l y , a c r i t i c a l r e v i e w w i l l be g i v e n of t h e p o s s i b i l - i t i e s and l i m i t a t i o n s of t h e t e c h n i q u e .

2

-

PHYSICAL POL2DATIONS

The b a s i c p h y s i c a l p r o c e s s e s u n d e r l y i n g t h e SDLTS t e c h n i q u e a r e d e s c r i b e d e.g. by Sah e t a l . / l o / and i n t h e o r i g i n a l DLTS p a p e r by Lang /11/. There-

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1989609

(3)

f o r e , t h e y w i l l be reviewed h e r e a s b r i e f l y a s p o s s i b l e f o r d e s c r i b i n g t h e method and i t s e v a l u a t i o n , b u t s p e c i a l a t t e n t i o n w i l l be payed t o t h e phys- i c s of t h e e l e c t r o n beam e x c i t a t i o n i n comparison t o c o n v e n t i o n a l DLTS t r a p i i l l i n g u s i n g b i a s p u l s e s .

The b a s i c i d e a o f t h e DLTS p r o c e d u r e i s t o a p p l y p e r i o d i c a l l y t r a p f i l l i n g p u l s e s t o t r a p s l o c a t e d i n a r e v e r s e - b i a s e d s p a c e c h a r g e s t r u c t u r e (pn-junc- t i o n , S c h o t t k y - d i o d e ) . These t r a p s a r e i n t h e r m a l e q u i l i b r i u m i n t h e i o n i z e d s t a t e and g e t f i l l e d by t h e s e p u l s e s . Then, a f t e r each f i l l i n g t h e s y s t e m t e n d s t o r e a c h .the-ma1 e q u i l i b r i u m by t h e r m a l l y e m i t t i n g c a r r i e r s i n t o t h e c o r r e s p o n d i n g band, where t h e y a r e swept away by t h e e l e c t r i c f i e l d w i t h i n t h e s p a c e c h a r g e r e g i o n . The t i m e c o n s t a n t

re

of t h i s t h e r m a l e m i s s i o n , b e i n g t h e i n v e r s e of t h e s o - c a l l e d e m i s s i o n r a t e en; f o r e l e c t r o n s o r h o l e s , r e s p e c t i v e l y , i s governed by t h e sample t e m p e r a t u r e

8

and t h e t r a p p i n g e n e r g y

rn - - J -

"t

re

= l / e n ; p = ----B--, exp Nc;vCn;

(g: d e g e n e r a c y f a c t o r of t h e l e v e l ; Nc.,: e f f e c t i v e d e n s i t y of s t a k e s i n t h e c o n d u c t i o n o r v a l e n c e band, r e s p e c t i v e l y ; cn;p: c a p t u r e c o e f f i c i e n t f o r e l e c t r o n s o r h o l e s , r e s p e c t i v e l y ; k: Boltzmann c o n s t a n t ) . The e m i s s i o n l e a d s t o a m e a s u r a b l e c u r r e n t t r a n s i e n t

J ( t ) = en;p VtNte exp ( - e t ) n ; P

(Vt: volume from where t h e e m i s s i o n c o n t r i b u t e s t o t h e s i g n a l ; N t : t r a p den- s i t y ; e: e l e m e n t a r y c h a r g e ; t: time a f t e r t h e e x c i t a t i o n p u l s e ) and a capa- c i t a n c e t r a n s i e n t

'tNte exp ( - e n ; p t )

" a t ) = 4(V+VD)

(V: a p p l i e d r e v e r s e b i a s ; VD: d i f f u s i o n v o l t a g e ) , which a r e t h e two a l t e r n a - t i v e p r i m a r y measurement s i g n a l s f o r current-DLTS and capacitance-DLTS, r e - s p e c t i v e l y . Under t h e p r e s u p p o s i t i o n of a homogeneous t r a p d i s t r i b u t i o n and t o t a l t r a p f i l l i n g i n t h e whole s p a c e c h a r g e r e g i o n , ( 3 ) can b e w r i t t e n i n t h e more p o p u l a r form

(ND-NA: n e t doping c o n c e n t r a t i o n ; Co: b a s i c sample c a p a c i t a n c e ) . F o r c u r r e n t - DLTS, t h e s i g n a l p o l a r i t y i s i n d e p e n d e n t of w h e t h e r e l e c t r o n s o r h o l e s a r e

e m i t t e d , t h e s i g n a l a m p l i t u d e i s p r o p o r t i o n a l t o t h e e m i s s i o n r a t e , a n d a l s o m i n o r i t y c a r r i e r s e m i t t e d o u t s i d e t h e s p a c e c h a r g e r e g i o n may c o n t r i b u t e t o t h e t r a n s i e n t measured i f t h e y a r e a b l e t o d r i f t t o t h e s p a c e c h a r g e r e g i o n . F o r capacitance-DLTS, on t h e o t h e r hand, m i n o r i t y c a r r i e r e m i s s i o n l e a d s t o p o s i t i v e t r a n s i e n t s a n d m a j o r i t y c a r r i e r e m i s s i o n t o n e g a t i v e o n e s , t h e a m p l i t u d e of t h e t r a n s i e n t i s i n d e p e n d e n t of t h e e m i s s i o h r a t e , and o n l y c a r - r i e r e m i s s i o n w i t h i n t h e s p a c e c h a r g e r e g i o n l e a d s t o a c a p a c i t a n c e t r a n - s i e n t . The a c t u a l DLTS s i g n a l i s formed from t h e measured t r a n s i e n t s i g n a l by a s i g n a l c o s r e l a t i o n . p r o c e d u r e , which i n t h e s i m p l e s t c a s e r e p r e s e n t s t h e s u b t r a c t i o n of t h e s i g n a l v a l u e s a t two t i m e s t l and t 2 a f t e r t h e end of t h e f i l l i n g p u l s e /11/. T h i s d i f f e r e n c e h a s a maximum i f t h e e m i s s i o n r a t e h a s a c e r t a i n v a l u e b e i n g

-

I n ( t 2 / t l )

e

-

n; P (5)

t2-tl

f o r capacitance-DLTS; f o r current-DLTS t h e maximum i s d e f i n e d by t h 6 s o l u - t i o n of t h e e q u a t i o n

1

-

en. . P t 1 = exp (-e ( t 2 - t , ) )

.

I - e t n ; P

n;P 2

(4)

Hence, t h e s e l e c t i o n of t l and t 2 opens a s o - c a l l e d " r a t e windowr1, i n which t h e emission r a t e h a s t o f a l l f o r t h e DLTS-peak t o appear. Other p o s s i b i l - i t i e s of t h e DLTS-correlation a r e d i s c u s s e d e.g. by M i l l e r e t a l . /12/.

I n a standard-DLTS experiment, a c e r t a i n r a t e window i s s e l e c t e d and t h e sample temperature i s s l o w l y scanned t y p i c a l l y scanning t h e range between l i q u i d n i t r o g e n temperature and somewhat above room temperature. Then, ac- oording t o ( 1 ) t h e emission r a t e s of a l l t r a p s of t h e sample change and a DLTS peak s i g n a l a p p e a r s always a t a c e r t a i n temperature governed by ( I ) and

( 5 ) o r (61, r e s p e c t i v e 1

,

w i t h a peak h e i g h t governed by t h e r e s p e c t i v e t r a p d e n s i t y a c c o r d i n g t o ( 2 q t o ( 4 ) . Repeating t h i s procedure f o r d i f f e r e n t r a t e windows l e a d s t o a s h i f t of t h e temperature p o s i t i o n of t h e DLIS-peaks. The r e s u l t of t h i s procedure i s t h e measurement of t h e temperature dependence of t h e emission r a t e , a l l o w i n g t h e e s t i m a t i o n of t h e i o n i z a t i o n energy Et of t h e corresponding l e v e l s a c c o r d i n g t o ( 1 ) (ArrIienius p l o t ) . S p e c i a l t e c h n i q u e s u s i n g t h e v a r i a t i o n of t h e f i l l i n g p u l s e w i d t h and t h e f i l l i n g p u l s e h e i g h t o r i n t r o d u a i n g a second v c l e a r w - p u l s e a r e known t o measure t h e c a p t u r e c r o s s s e c t i o n s o r t h e depth d i s t r i b u t i o n of t h e l e v e l s /11/.

I n a Scanning-DLTS experiment t h e sample i s mounted t o a c r y o s t a t w i t h i n a SEM ( s e e Fig. I ) , t h e temperature i s f i x e d a t t h e temperature of a c e r t a i n DLTS-peak f o r t h e g i v e n r a t e window, t h e r e v e r s e b i a s i s permanently a p p l i e d t o t h e sample, and o n l y a s m a l l amount of t h e sample a r e a i s e x c i t e d p e r i - o d i c a l l y u s i n g t h e focused e l e c t r o n beam of t h e SEM b e i n g p u l s e d a c c o r d i n g t o t h e s p e c t r o m e t e r a c t i o n . Then, s o l e l y t h e l e v e l s w i t h i n t h i s e x c i t e d a r e a a r e f i l l e d and c o n t r i b u t e t o t h e s i g n a l , whereas t h e r e s t of t h e sample r e - w i n s p a s s i v e . The s i g n a l a t t h e s p e c t r o m e t e r o u t p u t t h u s r e f l e c t s t h e l o c a l d e n s i t y of t h e l e v e l s w i t h i n t h i s e x c i t e d a r e a . Scanning t h e e l e c t r o n beam o v e r t h e sample t h e n l e a d s

t.o

a l i n e s c a n o r , i f a two-dimensional image s c a n i s performed, t o a n image being connected w i t h t h e l o c a l d i s t r i b u t i o n of t h e v e r y l e v e l s e l e c t e d by t h e sample temperature and t h e r a t e window. Scanning t h e sample temperature and m a i n t a i n i n g a f i x e d beam p o s i t i o n , on t h e o t h e r hand, a l l o w one t o measure a DLTS spectrum b e i n g c h a r a c t e r i s t i c f o r t h i s v e r y region. We would propose t o c a l l t h e l a t t e r procedure Local-DLTS r a t h e r t h a n Scanning-DLTS, s i n c e no image i s produced here.

A d e c i s i v e d i f f e r e n c e between standard-DLTS and Scanning-DLTS a r i s e s from t h e d i f f e r e n t t r a p f i l l i n g c o n d i t i o n s f o r both methods, i n some c a s e s r e v e a l i n g d i f f e r e n t t r a p t y p e s f o r a standard-DLTS experiment and f o r an e l e c t r o n beam e x c i t e d SDLTS- o r Local-DLTS experiment, on t h e o t h e r hand. I n b o t h c a s e s t h e e x c i t a t i o n mechanism h a s t o be c o n s i d e r e d a c c o r d i n g a s a pn-junction o r a

P i g , 1

-

SDLTS p r i n c i p l e and s i m p l e s t arrangement u s i n g an x y - p l o t t e r f o r s i g n a l r e c o r d i n g .

(5)

Schottky-diode i s t h e sample under i n v e s t i g a t i o n . I f i n a standard-DLTS ex- periment t h e r e v e r s e b i a s i s reduced t o z e r o o r o n l y p a r t l y reduced, o n l y m a j o r i t y c a r r i e r s w i l l be c a p t u r e d i n t o t h e corresponding l e v e l s ( m a j o r i t y c a r r i e r p u l s e ) . I f a pn j u n c t i o n i s forward-biased d u r i n g t h e p u l s e , b o t h e l e c t r o n s and h o l e s w i l l be c a p t u r e d ( i n j e c t i o n p u l s e ) . For a S c h o t t k y diode, however, a s a r u l e forward b i a s i n g does n o t i n j e c t m i n o r i t y c a r r i e r s , t h e o n l y d i f f e r e n c e a s t o a m a j o r i t y c a r r i e r p u l s e i s t h a t t h e l e v e l s a r e f i l l e d up t o t h e i n t e r f a c e l a y e r and a l s o i n t e r f a c e s t a t e s a r e f i l l e d and may con- t r i b u t e t o t h e DLTS-signal. Only f o r probably non-ideal Schottky b a r r i e r s some a u t h o r s have r e p o r t e d a l s o m i n o r i t y c a r r i e r t r a p f i l l i n g a f t e r " i n j e c - t i o n " p u l s e s t o appear.

Note t h a t u n l i k e Scanning-DLTS i n a 1 1 t h e s e standard-DLTS c a s e s t h e c a p t u r i n g occurs under z e r o f i e l d c o n d i t i o n s . Under e l e c t r o n beam e x c i t a t i o n , however, due t o t h e permanently a p p l i e d b i a s t h e c a p t u r e always t a k e s p l a c e w i t h i n a more o r l e s s - s t r o n g e l e c t r i c f i e l d , a t l e a s t a s l o n g a s l e v e l s w i t h i n t h e

s p a c e charge r e g i o n a r e considered. Pig. 2 summarizes t h e most important ex- c i t a t i o n geometries w i t h t h e i r b a s i c p r o p e r t i e s . Note t h a t , a s a r u l e , t h e c a p t u r e p r o c e s s i s c o n s i d e r e d t o o c c u r n o t due t o h o t c a r r i e r s w i t h i n t h e g e n e r a t i o n volume but r a t h e r t o t h e r m a l i z e d e x c e s s c a r r i e r s d r i f t i n g away from t h e g e n e r a t i o n volume t o and through t h e s p a c e charge r e g i o n . For a l l geometries, of c o u r s e , t h e two complementary t y p e s e x i s t . S i n c e t h e p e n e t r a - t i o n d e p t h of t h e e l e c t r o n beam s t r o n g l y v a r i e s w i t h t h e SEM a c c e l e r a t i o n v o l t a g e , t h i s p r o v i d e s a s p e c i a l degree of freedom e.g. t o c o n s i d e r a c e r - t a i n pn f u n c t i o n t o be e i t h e r deep ( f o r low a c c e l e r a t i o n v o l t a g e s ) o r shallow f o r h i g h a c c e l e r a t i o n v o l t a g e s ) . lmalogously, a l a r g e r e v e r s e b i a s and/or a low a c c e l e r a t i o n v o l t a g e p r e f e r e n t i a l l y e n a b l e s m a j o r i t y c a r r i e r t r a p s t o be d e t e c t e d i n S c h o t t k y d i o d e s , and v i c e v e r s a . Note t h a t f o r a Schottky-diode t h e g e n e r a t e d m i n o r i t y c a r r i e r s always have t o d r i f t through

t h e metal-semiconductor i n t e r f a c e . Thus, i f t h e diode i s no i d e a l one, hence i f a c e r t a i n oxide l a y e r o r o t h e r i n t e r f a c e - r e l a t e d s t a t e s i n t h e c r y s t a l e x i s t , t h e s e s t a t e s a r e always f i l l e d and c o n t r i b u t e t o t h e SDLTS-signal, g e n e r a l l y forming a broad and r e l a t i v e l y temperature-independent s i g n a l p a r t . Therefore, t h e demands on t h e q u a l i t y of a Schottky-diode f o r b e i n g used f o r t h e SDLTS-application a r e much h i g h e r than f o r b e i n g used i n standard-DLTS experiments

.

Apart from t h e d i f f e r e n t t y p e s of c a r r i e r s b e i n g i n t r o d u c e d i n t o t h e s p a c e charge r e g i o n a c c o r d i n g t o t h e d i f f e r e n t e x c i t a t i o n g e o m e t r i e s , t h e r e a r e two f a c t o r s t h a t might p r e v e n t t h e appearance of a c e r t a i n DLTS-signal i n an

predominmtly majority carrier flovl

Schottky diode

m a j o r i t y and minority c a r r i e r flow

Fig. 2

-

SDLIS e x c i t a t i o n geometries.

(6)

e l e c t r o n beam e x c i t e d experiment ( Scanning-DLTS o r Local-DLTS)

,

even i f i t had been d e t e c t e d i n a standard-DLTS experiment b e f o r e . The f i r s t one i s t h e e l e c t r i c f i e l d mentioned above. It i s p o s s i b l e t h a t a c e r t a i n c a p t u r e c r o s s s e c t i o n i s s t r o n g l y field-dependent s o t h a t no t r a p s a r e a b l e t o be f i l l e d w i t h i n t h e e l e c t r i c f i e l d . The p h y s i c a l mechanism might simply be t h a t with- i n t h e s p a c e charge r e g i o n s t h e c a r r i e r s a r e " h o t H , and even i f t h e y were c a p t u r e d t h e i r k i n e t i c energy would s u f f i c e t o cause a spontaneous reemis- s i o n process. A second f a c t o r o n l y h o l d s f o r l e v e l s i n t h e m a j o r i t y c a r r i e r gap h a l f having a l a r g e r c a p t u r e c r o s s s e c t i o n f o r m i n o r i t y c a r r i e r s . Note t h a t f o r a standard-DLTS m a j o r i t y c a r r i e r p u l s e a l s o t h e s e l e v e l s can be f i l l e d , s i n c e no m i n o r i t y c a r r i e r s a r e p r e s e n t . For Scanning-DLTS, however, t h e r e i s no s h a r p d e l i m i t a t i o n of t h e e x c i t a t i o n r e g i o n , hence a t l e a s t a s m a l l amount of m i n o r i t y c a r r i e r s a r e always p r e s e n t d u r i n g t h e e x c i t a t i o n pulse. These m i n o r i t y c a r r i e r s may recombine w i t h m a j o r i t y c a r r i e r s a l r e a d y t r a p p e d , a g a i n p r e v e n t i n g t h e appearance of t h e s e l e v e l s i n an SDLTS-ex- periment. For t h i s c a s e Woodham and Booker have proposed t h e SDDLTS method u s i n g t h e e l e c t r o n beam a s a " c l e a r t t - p u l s e /8/. The problem w i t h t h i s method i s j u s t t h a t t h e dynamic r a n g e of t h e DLTS-measurement h a s t o exceed t h e r a t i o of t h e sample a r e a t o t h e e x c i t e d a r e a .

U n f o r t u n a t e l y , one can o b v i o u s l y n o t be s u r e t o f i n d a g a i n a l e v e l i n an SDLTS-experiment t h a t p r e v i o u s l y had been c h a r a c t e r i z e d by standard-DLTS

.

P a r t i c u l a r l y f o r Schot tky-diodes

,

a s a r u l e , standard-DLTS r e v e a l s o n l y m a j o r i t y c a r r i e r c e n t r e s , whereas Scanning-DLTS p r e f e r e n t i a l l y d e p i c t s mino- r i t y c a r r i e r t r a p s . Note, however, t h a t many i m p o r t a n t l e v e l s a s t h e EL2- l e v e l i n n-GaAs o r t h e Au-acceptor i n n - s i l i c o n a r e a b l e t o be e x c i t e d i n SDLTS-experiments on S c h o t t k y b a r r i e r s , though t h e y a r e m a j o r i t y c a r r i e r t r a p s ( s e e n e x t s e c t i o n ) . Note a l s o t h a t t h e o p t i c a l l y e x c i t e d DLTS ex- periment (ODLTS) u s i n g a n LED, a Laser-diode o r a f l a s h lamp f o r e x c i t a t i o n , a s a r u l e , y i e l d s e x c i t a t i o n c o n d i t i o n s v e r y s i m i l a r t o t h o s e i n SDLTS o r Local-DLTS. It i s , t h e r e f o r e , a d v i s a b l e t o c h a r a c t e r i z e t h e samples b e f o r e , u s i n g t h i s t e c h n i q u e ( s e e c h a p t e r 4).

3

-

IITSTRUMENTATION

A s Pig. 1 shows, t h e b a s i c i n s t r u m e n t s f o r c a r r y i n g o u t SDLTS a r e a SEM pro- v i d i n g a p u l s e d e l e c t r o n probe, a s r y o s t a t , and an a p p r o p r i a t e DLTS s p e c t r o - meter. Almost a l l SEX o r S T m a r e s u i t a b l e provided t h e y a r e equipped w i t h a beam b l a n k i n g u n i t and have enough s p a c e f o r a c r y o s t a t . The c r y o s t a t should be c o n s t r u c t e d t o move a s l i t t l e a s p o s s i b l e d u r i n g t h e t e m p e r a t u r e s c a n i n o r d e r t o have a w e l l - d e f i n e d p o s i t i o n f o r Local-DLTS experiments. S p e c i a l c a r e ( a n t i c o n t a m i n a t i o n f a c i l i t y , o i l - f r e e vacuum) has t o be t a k e n t o p r e v e n t sample contamination a t low temperatures. The r e s o l u t i o n of t h e SEM i s un- c r i t i c a l , s i n c e t h e s p a t i a l r e s o l u t i o n i s g e n e r a l l y governed by c a r r i e r s p r e a d i n g e f f e c t s , o r i t i s s e l e c t e d i n a well-defined manner ( s e e n e x t sec- t i o n ) . Also a L a s e r Scanning Microscope might be a p p r o p r i a t e f o r b e i n g used i n SDLTS i f i t i s equipped w i t h a n e l e c t r o n i c l i g h t chopper; t h e o n l y prob- lem would be t h a t i t r e q u i r e s s e m i t r a n s p a r e n t c o n t a c t s o r unmet'allized pn- j u n c t i o n s t o be used, and t h a t t h e p e n e t r a t i o n depth i s f i x e d by t h e wave- l e n g t h .

Very s p e c i a l demands, however, have t o be made on t h e DLTS-spectrometer b e i n g used. The b a s i c d i f f i c u l t y i n SDLTS and Local-DLTS i s t h a t t h e DLTS- s i g n a l i s p r o p o r t i o n a l t o t h e e x c i t e d a r e a , hence t h e SDLTS-signal i s smal- l e r t h a n t h e standard-DLTS s i g n a l of t h e same sample by a f a c t o r sample a r e a / e x c i t e d a r e a , which t y p i c a l l y i s i n t h e o r d e r of 104. Hence, t h e s p e c t r o - meter should p r o v i d e a n extremely h i g h s e n s i t i v i t y , and n e v e r t h e l e s s a r e l a - t i v e l y l o n g i n t e g r a t i o n time has t o be s e l e c t e d i n o r d e r - t o g e t t h e s i g n a l o u t of t h e n o i s e . Meanwhile, h i g h l y s e n s i t i v e current-DLTS systems (Borsuk and Swanson / 1 3 / ) a s w e l l a s capacitance-DLTS systems have been i n t r o d u c e d

( M i s r a c h i e t a l . /14/; B r e i t e n s t e i n /15/). These h i g h l y s e n s i t i v e oapa- citance-DLIS systems a r e based on s p e c i a l resonance-tuned b r i d g e c i r c u i t s and o f f e r s e n s i t i v i t i e s below 10-5 pP, whioh f o r a s p a t i a l r e s o l u t i o n of a few microns corresponds t o a t r a p d e n s i t y below 1014 cm-3 o r l e s s t h a n 1000 d e t e c t e d atoms. The l o n g i n t e g r a t i o n time, however, l e a d i n g t o a measure- ment time i n t h e o r d e r of h a l f a n hour o r more, f o r a two-dimensional image c o m p l i c a t e s a n on-line image r e c o r d i n g a s a y-modulation r e p r e s e n t a t i o n o r v i a t h e SEU CRT-screen. T h e r e f o r e , t h e o n l y s o l u t i o n t o e a s e t h e measure-

(7)

ment and image d i s p l a y i s t o u s e a microcomputer system f o r t h e SDLTS-meas- urement c o n t r o l and d i s p l a y . The computer s h o u l d a t l e a s t be a b l e t o s o a n t h e e l e c t r o n beam p o s i t i o n , t o d i g i t i z e t h e measured SDLTS-values and t o d i s p l a y t h e p r o p e r l y s c a l e d r e s u l t (y-modulation r e p r e s e n t a t i o n o r gray- p a t c h e s image) e i t h e r on t h e CRT-screen of t h e SEM o r on a g r a p h i e monitor o r a g r a p h i c p l o t t e r . I f t h e computer i s a d d i t i o n a l l y a b l e t o ~ o n t r o l t h e r a t e window, t h e p u l s e width and t h e sample b i a s , hence i f t h e DLTS s p e c t r o - meter i t s e l f can be c o n t r o l l e d by t h e computer, s e v e r a l a d d i t i o n a l measure- ment p o s s i b i l i t i e s a r i s e ( s e e n e x t s e c t i o n ) .

Another i m p o r t a n t demand on t h e SDLTS s p e c t r o m e t e r i s t h a t i t h a s t o a l l o w a s i m p l e s w i t c h i n g between SDLTS-measurement and EBIC-display of t h e sample, i n o r d e r t o c o r r e l a t e t h e SDLTS-image t o t h e p o s i t i o n s of t h e d e f e c t s w i t h i n t h e sample. F o r a current-DLTS system, which anyway i s equipped w i t h a sample c u r r e n t q m p l i f i e r , t h i s i s a t r i v i a l problem; a capacitance-DLTS sys- tem, however, has e s p e c i a l l y t o be equipped w i t h a n EBIC-amplifier. Then, t h e consequent s o l u t i o n i s t o d e s i g n t h e SDLTS-spectrometer a s a combined c u r r e n t - and capacitance-DLTS s p e c t r o m e t e r o f f e r i n g t h e d i f f e r e n t p o s s i b i l - i t i e s of b o t h t e c h n i q u e s t o be used a t choice.

4

-

MEASUREMENT PRACTICE

A s a r u l e , f o u r d i f f e r e n t s t e p s may be a s s o c i a t e d w i t h a Scanning-DLTS i n - ves t i g a t i o n :

1. An e l e c t r o n beam e x c i t e d DLTS-measurement ( t e m p e r a t u r e s c a n ) of t h e whole sample a s t o i d e n t i f y t h e l e v e l s a p p e a r i n g under e l e c t r o n beam e x c i t a t i o n ( i d e n t i f i c a t i o n measurement).

2. The a c t u a l SDLTS measurement ( l i n e s c a n o r image s c a n ) . 3. The o p t i m i z a t i o n of t h e e x c i t a t i o n i n t e n s i t y .

4. The check of t h e p h y s i c a l s i g n i f i c a n c e of c e r t a i n SDLTS image s t r u c t u r e s . The i d e n t i f i c a t i o n measurement simply r e p r e s e n t s a Local-DLTS measurement u s i n g a s t r o n g l y defocused beam and a h i g h beam c u r r e n t t o e x c i t e almost t h e whole sample a r e a . Note t h a t t h e c o n d i t i o n s f o r c e r t a i n peaks t o a p p e a r can be optimized by v a r y i n g t h e a c c e l e r a t i o n v o l t a g e and/or t h e sample b i a s ac- c o r d i n g t o t h e d i s c u s s i o n i n c h a p t e r 2. I n o r d e r t o measure t h e thermal ac- t i v a t i o n energy of t h e l e v e l s a c c o r d i n g t o (I), t h e i d e n t i f i c a t i o n measure- ment h a s t o be r e p e a t e d f o r d i f f e r e n t r a t e windows; a s a r u l e t h i s i n v e s t i g a - t i o n can be c a r r i e d o u t a l s o o u t s i d e t h e SEM u s i n g o p t i c a l e x c i t a t i o n tech- n i q u e s (ODLTS)

.

The e x c i t e d a r e a of t h e SDLTS-experiment should be i n t h e o r d e r of t h e p i x e l a r e a of t h e image ( d i a m e t e r = d i s t a n c e between t h e measurement p o i n t s ) . I f t h e e x c i t e d a r e a i s l a r g e r t h e s p a t i a l r e s o l u t i o n drops, and i f i t i s smal- l e r t h e s i g n a l h e i g h t i s u n n e c e s s a r i l y reduced, and c e r t a i n i m p o r t a n t s i g n a l p a r t s w i l l probably n o t be d i s p l a y e d due t o t h e incomplete s c a n n i n g of t h e a r e a . The two f a c t o r s governing t h e e x c i t e d a r e a a r e t h e a r e a of beam i n c i - dence and t h e e x c i t a t i o n i n t e n s i t y ( t h e product of t h e beam c u r r e n t times t h e p u l s e w i d t h ) , governing t h e e f f e c t of t h e i n e v i t a b l e c a r r i e r s p r e a d i n g . I f t h e e x c i t a t i o n i n t e n s i t y i s t o o h i g h , a l s o l e v e l s w i t h i n a c e r t a i n r e g i o n o u t s i d e t h e a r e a of i n c i d e n c e a r e f i l l e d ( w o v e r e x p o s u r e e f f e c t v ) . The lower l i m i t of t h e s p a t i a l r e s o l u t i o n i s s e t by t h e d i a m e t e r of t h e e x c i t e d volume w i t h i n t h e c r y s t a l . The a r e a of i n c i d e n c e can be f i x e d i n a well-defined way e i t h e r by u s i n g a d e f i n e d defocus of t h e beam o r by performing a " p i x e l scanf1 a s i t was i n t r o d u c e d by Woodham and Booker /8/ f o r Local-DLTS, hence by q u i c k l y scanning t h e focused e l e c t r o n beam a c r o s s t h e d e s i r e d p i x e l a r e a a t l e a s t once d u r i n g each e x c i t a t i o n pulse. I n Scanning-DLTS t h i s p i x e l s c a n can be managed by computer-control t o a c h i e v e a complete non-overlapping subsequent scanning of t h e whole a r e a p i x e l by p i x e l . I f t h e a r e a of i n c i - dence i s w e l l - d e f i n e d , t h e problem of f i n d i n g o u t t h e optimum beam c u r r e n t and/or t h e optimum p u l s e width may be s o l v e d most r e l i a b l y by performing a computer-controlled p u l s e width s c a n ( s e e B r e i t e n s t e i n and Heydenreich /5/).

The optimum i s reached i f t h e s i g n a l dependence of t h e p u l s e width t e n d s t o become s u b l i n e a r ( b e g i n n i n g s a t u r a t i o n ) . A good g e n e r a l r u l e of thumb i s t o work w i t h a n e x c i t a t i o n i n t e n s i t y a s s m a l l a s p o s s i b l e t o have a s i g n a l - t o - n o i s e r a t i o s t i l l a c c e p t a b l e . Then, i f image d e t a i l s of one p i x e l i n s i z e a r e p r e s e n t i n t h e image, a n a d d i t i o n a l c a r r i e r s p r e a d i n g e f f e c t can be ex- cluded.

(8)

The q u e s t i o n of t h e p h y s i c a l s i g n i f i c a n c e of t h e SDLTS s i g n a l h a s a l r e a d y been d i s c u s s e d elsewhere / 5 / . Vfhether some s t r u c t u r e i s indeed caused by t h e i n t e r e s t i n g p o i n t d e f e c t i n s t e a d of t h e s u p e r p o s i t i o n of s p e c t r a l l y d i f f e - r e n t s i g n a l p a r t s can most e a s i l y be checked by performing a Local-DLTS i n - v e s t i g a t i o n a t and b e s i d e s a n i n t e r e s t i n g d e t a i l i n t h e SDLTS-image. An a l t e r n a t i v e procedure c o n s i s t s i n a computer-controlled r a t e window s c a n

( i s o t h e r m a l DLTS, s e e Okushi and Tokamaru / 1 6 / ) , which can most e f f e c t i v e l y be combined w i t h a l i n e s c a n a c r o s s t h e i n t e r e s t i n g d e t a i l (combined r a t e window/line s c a n , s e e below). It should be mentioned h e r e t h a t t h e q u e s t i o n of t h e p h y s i c a l s i g n i f i c a n c e should a c t u a l l y a l s o imply t h e check of t h e homogeneity of t h e n e t doping c o n c e n t r a t i o n w i t h i n t h e r e g i o n of i n t e r e s t . Note t h a t , a t l e a s t a s l o n g a s t r a p emission i n s i d e t h e s p a c e charge r e g i o n

i s c o n s i d e r e d , l o c a l f l u c t u a t i o n s of t h e n e t doping c o n c e n t r a t i o n may a l s o l e a d t o SDLTS-contrasts, even i f t h e t r a p c o n c e n t r a t i o n does n o t vary. For S c h o t t k y diodes t h e r e a r e some methods (energy-dependent /17/ o r bias-de- pendent /18/ EBIC-measurements) t o measure t h e homogeneity of t h e n e t doping c o n c e n t r a t i o n . The second f a c t o r p r o b a b l y c a u s i n g an induced SDLTS-contrast i s a l o c a l l y v a r y i n g d i f f u s i o n l e n g t h b e i n g i n d i c a t e d by t h e EBIC-contrast i t s e l f . This l e a d s e i t h e r t o a l o c a l l y v a r y i n g e x c i t a t i o n i n t e n s i t y o r , f 6 r current-SDLTS where c a r r i e r emission o u t s i d e t h e s p a c e charge r e g i o n domi- n a t e s , t o v a r i a t i o n s of t h e c o n t r i b u t i n g c r y s t a l volume. F o r t h e l a t t e r c a s e P e t r o f f e t a l . have proposed a deconvolution procedure / 3 / . There a r e , how- e v e r , c r i t e r i a of p l a u s i b i l i t y i n d i c a t i n g t h e v a l i d i t y of SDLTS-results.

Thus, i f an a n t i c o r r e l a t i o n between t h e EBIC- und t h e SDLIS-image e x i s t s ( l a r g e SDLTS-signal i n r e g i o n s of low EBIC-signal) o r i f t h e SDLTS-contrast s t r o n g l y exceeds t h e EXiIC-contrast, t h e r e s u l t can be r e g a r d e d t o be q u a l i - t a t i v e l y v a l i d . Only i f t h e EBIC- and t h e SDLTS-images a r e l o o k i n g v e r y s i m i l a r , an EBIC-induced SDLTS-contrast has t o be assumed. Thus, q u a n t i t a t i v e SDLTS-statements being s c a l e d i n c o n c e n t r a t i o n u n i t s might r e q u i r e some ad- d i t i o n a l e f f o r t t o ensure t h a t f l u c t u a t i o n s of t h e t r a p d e n s i t y a r e indeed t h e o n l y f a c t o r governing t h e SDLTS-contrast, o r t o t a k e o t h e r f a c t o r s prop- e r l y i n t o account. According t o eqs. ( 2 ) and ( 3 ) , however, i t i s always jus- t i f i e d t o s c a l e a n SDLTS r e s u l t i n u n l t s of d e t e c t e d charges.

I n t h e f i r s t experimental example measurements were c a r r i e d out u s i n g a Schottky-diode on a b e v e l l e d s t r u c t u r e c o n s i s t i n g of a l a s e r - r e c r y s t a l l i z e d n-poly-Si l a y e r on an o x i d i z e d S i s u b s t r a t e (SOS-structure). Fig. 3 shows t h e standard-DLTS spectrum and t h e e l e c t r o n beam e x c i t e d DLTS-spectrum of t h e sample. I t i s obvious t h a t t h e n e g a t i v e ( e l e c t r o n t r a p ) peak a p p e a r i n g

Fig. 3

-

Standard-DLTS spectrum ( a ) and e l e c t r o n beam e x c i t e d DLTS spectrwn ( b ) of a L a s e r - r e c r y s t a l l i z e d SOS-structure (Au-Schottky diode).

(9)

i n t h e standard-DLTS spectrum does n o t a p p e a r I n t h e SDLTS i d e n t i f i c a t i o n measurement. I n s t e a d , a p o s i t i v e ( h o l e t r a p ) peak a p p e a r s a t 267 K and an a d d i t i o n a l broad p o s i t i v e band probably belonging t o i n t e r f a c e s t a t e s appears.

The h o l e t r a p energy was measured t o be 5002 50 meV, t h e s u p e r p o s i t i o n w i t h t h e broad band p r e v e n t e d a more e x a c t d e t e r m i n a t i o n . Fig. 4 shows a n EBIC image of a c e r t a i n sample r e g i o n ( a ) and t h e c o r r e s p o n d i n g SDLTS-image meas- ured a t 267 K ( b ) . The EBIC-image r e p r e s e n t s a number of l i n e d e f e c t s t h a t might be d i f f e r e n t t y p e s of g r a i n boundaries a n d / o r d i s l o c a t i o n s . The s t r o n g

dark l i n e s e p a r a t i n g t h e r e g i o n c o n t a i n i n g d e f e c t s from t h e d e f e c t - f r e e r e - g i o n ( s u b s t r a t e ) i s t h e S i 0 2 - l a y e r v i s i b l e i n t h i s b e v e l l e d s t r u c t u r e . The SDLTS-ima e c l e a r l y r e v e a l s t h a t o n l y p a r t of t h e d e f e c t s g i v e r i s e t o SDLTS- c o n t r a s t $ s e e arrows i n Fig. 4 a ) . Though t h e n a t u r e of t h e 500 meV l e v e l s i s n o t y e t c l e a r and t h e t y p e s of t h e c r y s t a l d e f e c t s have n o t y e t been i d e n t i - f i e d h e r e , t h e SDLTS measurement c l e a r l y i n d i c a t e s t h e e x i s t e n c e of d i f f e r e n t t y p e s of d e f e c t s i n t h i s sample, which cannot be p r e d i c t e d from t h e EBIC- image.

The second example shows r e s u l t s of t h e i n v e s t i g a t i o n of a Au-Schottky d i o d e on a n n-type LEC GaAs c r y s t a l . One of t h e most i n t e r e s t i n g l e v e l s i n t h i s ma- t e r i a l i s t h e EL2 l e v e l , a p p e a r i n g i n standard-DLTS experiments a s w e l l a s i n Scanning-DLTS a s a n e l e c t r o n t r a p l e v e l . Fig. 5 shows t h e EBIC-image ( a )

Fig. 4

-

E3IC-image ( a ) and SDLTS-image of a 500 meV h o l e t r a p l e v e l (b) of a b e v e l l e d r e g i o n of a L a s e r - r e c r y s t a l l i z e d SOS-structure.

Fig. 5

-

EBIC-image ( a ) and SDLTS-image of t h e EL2-level ( b ) of a n n-type LEC GaAs-sample (Au-Sohottky d i o d e ) .

(10)

and t h e SDLTS-image of t h e EL2 l e v e l d i s t r i b u t i o n ( b ) . The s i g n of t h e SDLTS- s i g n a l h a s been chosen s o t h a t b r i g h t c o n t r a s t corresponds t o a l a r g e t r a n - s i e n t s i g n a l (which i s a c t u a l l y n e g a t i v e h e r e ) ; t h i s should be t h e g e n e r a l way t o p r e s e n t SDLTS r e s u l t s . It i s obvious t h a t t h e EL2 l e v e l i s e v e r y t h i n g but homogeneously d i s t r i b u t e d i n t h i s c r y s t a l . I n s t e a d , i t seems t o be con- c e n t r a t e d around groups of c r y s t a l d e f e c t s v i s i b l e i n t h e EJ3IC-image. An i n - homogeneous n e t doping c o n c e n t r a t i o n can be r u l e d out h e r e t o be r e s p o n s i b l e f o r t h i s s t r o n g SDLTS-contrast, s i n c e t h i s would l e a d t o a d i f f e r e n t EBIC- c o n t r a s t i n t h e corresponding r e g i o n s . Q u a l i t a t i v e l y s i m i l a r r e s u l t s have been found on s. i. GaAs c r y s t a l s u s i n g ir-microscopic t e c h n i q u e s a t low temperatures /9/. Note t h a t f o r t h e SDLTS-investigations of EL2 o n l y a h e a t i n g s t a g e i s n e c e s s a r y r a t h e r t h a n a c r y o s t a t .

A s t h e l a s t example of t h i s paper, Fig. 6 demonstrates t h e check of t h e phys- i c a l s i g n i f i c a n c e of a a e r t a i n SDLTS-structure. The sample was a Au-Schottky diode on a p l a s t i c a l l y deformed n-GaAs sample c o n t a i n i n g t h e EL2 l e v e l and t h e 400 meV *Haf1-hole t r a p l e v e l (Wosinski and B r e i t e n s t e i n /20/) a s t h e do- minant p o i n t d e f e c t l e v e l s . Moreover, t h e e l e c t r o n beam e x c i t e d DLTS-spec- trum r e v e a l e d a broad h o l e t r a p - t y p e band t h a t i s superimposed w i t h t h e Ha- l e v e l s i g n a l and probably a l s o w i t h t h e EL2-signal, and t h a t most probably was caused by t h e def orma tion-induced d i s l o c a t i o n s themselves. The q u e s t i o n was, whether some l o c a l s i g n a l maximum of t h e SDLTS-signal was i n d e e d caused by a s t r o n g e r p o i n t d e f e c t s i g n a l r a t h e r t h a n by a s t r o n g e r d i s l o c a t i o n - i n - duced s i g n a l i n t h i s p o s i t i o n . Fig. 6 shows t h e SDLTS-line s c a n s f o r t h e Ha- and t h e EL2-signal w i t h t h e two maxima i n t h e 50 /urn-position. The s i g n of t h e EL2-signal i s i n v e r t e d s o t h a t b o t h s i g n a l s a r e p o s i t i v e . The c o r r e - sponding combined r a t e window/line s c a n s , where t h e beam i s scanned a l o n g t h e t r a c e of t h e SDLTS-line s c a n , and i n any p o s i t i o n a r a t e window s c a n i s performed, u n i u e l y enable t h e d i s t i n c t i o n between t h e corresponding p o i n t d e f e c t s i g n a l ?peak i n t h e r a t e window-dependence i n t h e corresponding p o s i - t i o n ) and d i f f e r e n t superimposed s p e c t r a l c o n t r i b u t i o n s . Note t h a t i n Fig. 6 t h e z e r o - l i n e s of t h e SDLTS-signal f o r b o t h r a t e window/line s c a n s a r e s h i f ted.

5

-

SUMMARY

Scanning-DLTS a s a s p e c i a l SEMi t e c h n i q u e u s i n g t h e DLTS d e t e c t i o n p r i n c i p l e o f f e r s unique p o s s i b i l i t i e s of checking t h e homogeneity of t h e i n c o r p o r a t i o n of deep l e v e l d e f e c t s i n semiconductor s p a c e charge s t r u c t u r e s . E s p e c i a l l y

Fig. 6

-

SDLTS-line s c a n s f o r t h e Ha-level and t h e EL2-level i n p l a s t i c a l l y deformed n-GaAs /19/ and r a t e window/line s c a n s measured a t t h e temperatures of b o t h s i g n a p appearing.

(11)

i t s s p e c t r o s c o p i c p o s s i b i l i t i e s i n c o m b i n a t i o n w i t h t h e E B I C t e c h n i q u e a l l o w t h e d e t a i l e d i n v e s t i g a t i o n of i n t e r a c t i o n s between p o i n t d e f e c t s and ex- t e n d e d c r y s t a l d e f e c t s , which i s of g r e a t b a s i c p h y s i c a l a s w e l l a s techno- l o g i c a l i m p o r t a n c e . I t s d e t e c t i o n l i m i t , which i n f a v o u r a b l e c a s e s i s below 1000 atoms p e r s c a n n i n g p o i n t a n d c o r r e s p o n d s t o a t r a p d e n s i t y of l e s s t h a n 1014 cm-3 f o r a few m i c r o n s of s p a t i a l r e s o l u t i o n , exceeds t h a t of most o t h e r m i c r o a n a l y t i c a l methods.

N e v e r t h e l e s s , t h e d e t e c t i o n s e n s i t i v i t y i s s t i l l a m a j o r f a c t o r l i m i t i n g t h e f i e l d of a p p l i c a t i o n o f SDLTS, s i n c e deep l e v e l s may be e l e c t r i c a l l y a c t i v e i n even l o w e r c o n c e n t r a t i o n s . Note a l s o t h a t n o t a l l t y p e s o f deep l e v e l s may be e x c i t e d b y t h e e l e c t r o n beam i n a g i v e n s e m i c o n d u c t o r s t r u c t u r e . Moreover, a d d i t i o n a l i n v e s t i g a t i o n s a r e n e c e s s a r y t o i n t e r p r e t a n SDLTS r e - s u l t q u a n t i t a t i v e l y , hence t o p r o v e t h a t i t r e a l l y r e f l e c t s a c o n c e n t r a t i o n d i s t r i b u t i o n o r t o t a k e o t h e r sample i n h o m o g e n e i t i e s p r o p e r l y i n t o a c c o u n t . I f , however, a c e r t a i n l e v e l t u r n s o u t t o b e e x c i t a b l e b y t h e e l e c t r o n beam, i t i s q u i t e e a s y t o check i f i t i s i n c o r p o r a t e d homogeneously a r o u n d c e r t a i n c r y s t a l d e f e c t s , o r n o t . Thus, q u a l i t a t i v e i n f o r m a t i o n ( c o n c e n t r a t i o n en- hancement o r r e d u c t i o n a r o u n d c e r t a i n d e f e c t s ) i s r e l a t i v e l y e a s y t o o b t a i n , and t h i s i s t h e d e c i s i v e new i n f o r m a t i o n j u s t i f y i n g t h e u s e of SDLTS. The e x p e r i m e n t a l expense of t h e method i s , of c o u r s e , r a t h e r h i g h , b u t i t c o u l d be r e m a r k a b l y r e d u c e d i f a commercial s p e c i a l SDLTS-equipment were a v a i l a b l e . Acknowledgement

The a u t h o r i s i n d e b t e d t o R. Dietmann, W. E b e r h a r d t , M. Op e l t and t h e mem- b e r s of t h e IFE microcomputer a p p l i c a t i o n g r o u p ( a l l H a l l e P f o r t h e i r sup- p o r t i n c o n s t r u c t i n g t h e SDLTS equipment, and t o B. T i l l a k ( ~ r a n k f u r t / ~ d e r ) a n d V. Chubarenko losco scow), t o C. F r i g e r i and R. F o r n a r i ( b o t h Parma), and t o T. Woosinski (warsaw) f o r p r o v i d i n g samples and e x p e r i m e n t a l a s s i s t a n c e i n t h e measurement examples 1, 2 a n d 3, r e s p e c t i v e l y . The s t i m u l a t i n g i n t e r e s t of P r o f . J. Heydenreich ( H a l l e ) i n t h i s work i s g r a t e f u l l y acknowledged.

REFERENCES

/ I / P e t r o f f , P.M. and Lang, D.V., Appl. Phys. L e t t .

2

(1977) 60.

/2/ P e t r o f f , P.M., Lang, D.V., S t r u d e l , J.L. and Savage, A . , Proc. 9 t h I n t . Congr. E l e c t r . M i c r o s c . , T o r o n t o

1

(1978) 130.

/3/ P e t r o f f , P.M., Lang D.V., Logan, R.A. and J o h n s t o n , W.D., I n s t . Phys.

Conf. S e r .

46

(19793 427.

/4/ B r e i t e n s t e i n , 0. and H e y d e n r e i c h , J . , J. d e P h y s i q u e C4 (1983) 207.

/5/ B r e i t e n s t e i n , 0. and Heydenreich, J . , S c a n n i n g

7

( 1 9 8 3 273.

/6/ S p o r o n - F i e d l e r , F. and Weber, E., Proc. SPIE I n t . Soc. Opt. Eng.,

Los Angeles, (1986) 72.

/7/ I n o u e , N . , I k u t a , K. and Wada, K., P r o c . X I t h I n t . Cong. o n E l e c t r o n M i c r o s c . , Kyoto, 1 (1986) 401.

/8/ Woodham, R.G. a n d - ~ o o k e r , G.R., I n s t . Phys. Conf. S e r . 87 (1987) 781.

/9/ Dozsa, L. and T o t h , A . , L e c t u r e Notes i n Phys.

301

( 1 9 8 n 115.

/lo/

Sah, C.T., F o r b e s , L . , R o s i e r , L.L. and Tasch, A.F., S o l i d S t a t e E l e c t r .

12

(1970) 759.

/ I I / Lang, D.V.

,

J. Appl. Phys. 45 ( 1 974) 3014.

/12/ M i l l e r , G.L., Ramirez, J . V . a n d Robinson, D.A.H., J. Appl. Phys.

46

(1975) 2638.

/13/ Borsuk, J . A . and Swanson, R.M., IEEE T r a n s . E l e c t r o n Devices

27

(1980) 2217.

/14/ M i s r a c h i , S., P e a k e r , A.R. and Hamilton, B., J. Phys. E

12

(1980) 1055.

/15/ B r e i t e n s t e i n , O . , phys. s t a t . s o l . ( a )

71

(1982) 159.

/16/ Okushi, H. and Tokumaru, Y . , J a p . J. Appl. Phys. 1 9 (1980) L 335.

/ I T / F r i g e r i , C., I n s t . Phys. Conf. S e r . WJ (1988) 7 4 5 7

/18/ Heydenreich, J. and B r e i t e n s t e i n , O . , J. Microsc.

141

( 1 986) 129.

/19/ F i l l a r d , J p . , G a l l , P., A s g a r i n i a , M., C a s t a g n e , M. and B a r o u d i , M., J a p . J. Appl. Phys. 27 (1988) L899.

/20/ Wosinski, T. and B r e s e n s t e i n , O . , phys. s t a t . s o l . ( a )

96

(1986) 311.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to