• Aucun résultat trouvé

Null controllability of the Grushin equation : non-rectangular control region M. Duprez

N/A
N/A
Protected

Academic year: 2021

Partager "Null controllability of the Grushin equation : non-rectangular control region M. Duprez"

Copied!
39
0
0

Texte intégral

(1)

Null controllability of the Grushin equation : non-rectangular control region

M. Duprez

1

, A. Koenig

2

,

1Laboratoire Jacques-Louis Lions, Paris

2Laboratoire Jean-Alexandre Dieudonné, Nice

Séminaire d’analyse

Institut de Mathématiques de Bordeaux 18/10/18

(2)

Outline

1 Controllability of the heat equation

2 Controllability of the Grushin equation

3 Comments and open problems

(3)

Notions of controllability

Problematic

We searchu, calledcontrol, such that the solutionfto system

tf=A(f) +B(u) f(0) =f0

satisfies :

ε

f0

f1 f(T)

fnear a given target at timeT

∀ε >0, f0, f1,u s.t. d(f(T), f1)6ε.

â Approximate controllability

freach a target at timeT

∀f0, f1,us.t.f(T) =f1. â Exact controllability

freach a target at timeT

∀f0, f1,us.t.f(T) = 0.

â Null controllability

1

(4)

Internal null controllability of the heat equation

LetΩbe an open bounded set ofRn, ωan non-empty open set ofΩ andT >0.

Consider the heat equation (

tf−∆f=1ωu, f|∂Ω= 0,

f(0) =f0.

(1)

ω

Theorem (Internal null controllability of the heat equation)

The heat equation(1)isnull controllableat timeT,i.e.for each initial condition f0L2(Ω), there exists a controluL2([0, T]×ω)such that solutionfto (1) satisfiesf(T) = 0.

Fattorini-Russell 71’ (dim 1) : moment method

Fursikov-Imanuvilov / Lebeau-Robbiano 95’ : Carleman inequality / spectral inequality

Remark

No minimal timeof controllability

No geometrical conditiononω

2

(5)

Boundary null controllability of the heat equation

LetΩbe an open bounded set ofRn,γan non-empty open set of∂ΩandT >0.

(

tf−∆f= 0, f|∂Ω=1γu, f(0) =f0.

(2)

Corollary (Boundary null controllability of the heat equation)

The heat equation(2)isnull controllableat timeT,i.e.for each initial condition f0L2(Ω), there exists a controluL2([0, T]×γ)such that solutionfto (2) satisfiesf(T) = 0.

Sketch of proof: the fictitious control method

• ExtensionΩ˜ofΩthroughγ

ω⊂Ω˜

f˜: = solution of the int. contr. problem onΩ∪Ω˜

u:= ˜f

γ

Remark

• Equivalence between internal and boundarynull controllability

3

(6)

Boundary null controllability of the heat equation

LetΩbe an open bounded set ofRn,γan non-empty open set of∂ΩandT >0.

(

tf−∆f= 0, f|∂Ω=1γu, f(0) =f0.

(2)

Corollary (Boundary null controllability of the heat equation)

The heat equation(2)isnull controllableat timeT,i.e.for each initial condition f0L2(Ω), there exists a controluL2([0, T]×γ)such that solutionfto (2) satisfiesf(T) = 0.

Sketch of proof: the fictitious control method

• ExtensionΩ˜ofΩthroughγ

ω⊂Ω˜

f˜: = solution of the int. contr. problem onΩ∪Ω˜

u:= ˜f

Ω˜ Ω

γ

Remark

• Equivalence between internal and boundarynull controllability

3

(7)

Boundary null controllability of the heat equation

LetΩbe an open bounded set ofRn,γan non-empty open set of∂ΩandT >0.

(

tf−∆f= 0, f|∂Ω=1γu, f(0) =f0.

(2)

Corollary (Boundary null controllability of the heat equation)

The heat equation(2)isnull controllableat timeT,i.e.for each initial condition f0L2(Ω), there exists a controluL2([0, T]×γ)such that solutionfto (2) satisfiesf(T) = 0.

Sketch of proof: the fictitious control method

• ExtensionΩ˜ofΩthroughγ

ω⊂Ω˜

f˜: = solution of the int. contr. problem onΩ∪Ω˜

u:= ˜f

ω Ω˜ Ω

γ

Remark

• Equivalence between internal and boundarynull controllability

3

(8)

Boundary null controllability of the heat equation

LetΩbe an open bounded set ofRn,γan non-empty open set of∂ΩandT >0.

(

tf−∆f= 0, f|∂Ω=1γu, f(0) =f0.

(2)

Corollary (Boundary null controllability of the heat equation)

The heat equation(2)isnull controllableat timeT,i.e.for each initial condition f0L2(Ω), there exists a controluL2([0, T]×γ)such that solutionfto (2) satisfiesf(T) = 0.

Sketch of proof: the fictitious control method

• ExtensionΩ˜ofΩthroughγ

ω⊂Ω˜

f˜: = solution of the int. contr. problem onΩ∪Ω˜

u:= ˜f

ω Ω˜ Ω

γ

Remark

• Equivalence between internal and boundarynull controllability

3

(9)

Boundary null controllability of the heat equation

LetΩbe an open bounded set ofRn,γan non-empty open set of∂ΩandT >0.

(

tf−∆f= 0, f|∂Ω=1γu, f(0) =f0.

(2)

Corollary (Boundary null controllability of the heat equation)

The heat equation(2)isnull controllableat timeT,i.e.for each initial condition f0L2(Ω), there exists a controluL2([0, T]×γ)such that solutionfto (2) satisfiesf(T) = 0.

Sketch of proof: the fictitious control method

• ExtensionΩ˜ofΩthroughγ

ω⊂Ω˜

f˜: = solution of the int. contr. problem onΩ∪Ω˜

u:= ˜f

ω Ω˜ Ω

γ

Remark

• Equivalence between internal and boundarynull controllability

3

(10)

Boundary null controllability of the heat equation

LetΩbe an open bounded set ofRn,γan non-empty open set of∂ΩandT >0.

(

tf−∆f= 0, f|∂Ω=1γu, f(0) =f0.

(2)

Corollary (Boundary null controllability of the heat equation)

The heat equation(2)isnull controllableat timeT,i.e.for each initial condition f0L2(Ω), there exists a controluL2([0, T]×γ)such that solutionfto (2) satisfiesf(T) = 0.

Sketch of proof: the fictitious control method

• ExtensionΩ˜ofΩthroughγ

ω⊂Ω˜

f˜: = solution of the int. contr. problem onΩ∪Ω˜

u:= ˜f

ω Ω˜ Ω

γ

Remark

• Equivalence between internal and boundarynull controllability

3

(11)

Duality

Denote byf(t;f0,u)the solution to

tf−∆f=1ωu, f|∂Ω= 0, f(0) =f0.

(1)

LetQT:= Ω×(0, T)and FT : L2(Ω) → L2(Ω),

f0 7→ f(T;f0,0)

GT : L2(QT) → L2(Ω), u 7→ f(T; 0,u) One has :

Null controllability of (1) ⇔ ∀f0,∃u:FT(f0) +GT(u) = 0

⇔ Im(FT)⊂Im(GT)

⇔ kFTϕTk6CkGTϕTk,∀ϕT Approximate controllability of (1) ⇔ Im(GT) =L2(Ω)

GTϕT = 0⇒ϕT= 0 ,∀ϕT

4

(12)

Duality

tf−∆f=1ωu, f|∂Ω= 0,

f(0) =f0.

(1)

−∂tϕ= ∆ϕ inQT, ϕ= 0 onΣT, ϕ(T) =ϕT inΩ.

Proposition (see Coron’s book 2007 or Tucsnak-Weiss’s book 2009)

1 System(1)is null controllableon(0, T), if and only if there existsCobs>0 such that for allϕTL2(Ω)

kϕ(0)kL2(Ω)6Cobs

Z T 0

kϕkL2(ω)dt

withϕthe solution to the dual system.

2 System(1)isapprox. controllableat timeT, if and only if for allϕTL2(Ω) the solution to the dual system satisfies

ϕ= 0inω×(0, T) ⇒ϕ= 0inQT.

5

(13)

Approximate controllability of the heat equation

tf−∆f=1ωu inQT, f|∂Ω= 0 onΣT, f(0) =f0 inΩ.

(1)

−∂tϕ= ∆ϕ inQT, ϕ= 0 onΣT, ϕ(T) =ϕT inΩ.

Since (1) is null controllable,

kϕ(0)kL2(Ω)6Cobs

Z T 0

kϕkL2(ω)dt

Hence

ϕ= 0inω×(0, T) ⇒ ϕ(0) = 0inΩ

ϕ= 0inΩ×(0, T)

Corollary (Approximate controllability of the heat equation) The heat equation(1)isapprox. controllableat timeT, i.e. for each

f0, f1L2(Ω), there exists a controluL2([0, T]×ω)such that solutionfto (1)satisfieskf(T)−f1k6ε.

6

(14)

The heat equation

Conclusion

• Non exact controllability

âRegularizing effect of the heat equation

• Null controllability

âEquivalence of int. and bound. null contr. thanks to fictitious control method

• Approximate controllability

âCome from the null controllability thanks to the duality

Question

How a modification of−∆can influx these notions of controllability ?

7

(15)

The Grushin equation

Consider ( (∂

tx2x2y2)f(t, x, y) =1ωu t∈[0, T],(x, y)∈Ω := (−1,1)×(0,1), f(t, x, y) = 0 t∈[0, T],(x, y)∈∂Ω,

f(0, x, y) =f0(x, y) (x, y)∈Ω,

x y

a a)

x y

a b)

x y

c)

a) minimal time of internal null controllabilityT=a2/2 âBeauchard-Miller-Morancey 2015

b) minimal time of internal null controllabilityT> a2/2 âBeauchard-Cannarsa-Guglielmi 2014

minimal time of boundary null controllabilityT=a2/2 âBeauchard-Dardé-Ervedoza 2018

c) No internal null controllability âKoenig 2017

8

(16)

Positive result

−a

x y

ω0 γ

Theorem (D.-Koenig)

Assume that there existε >0andγC0([0,1],Ω)withγ(0)∈(−1,1)× {0}and γ(1)∈(−1,1)× {π}such that

ω0:={z∈Ω,distance(z,Range(γ))< ε} ⊂ω, then the Grushin equation isnull-controllablein any timeT>a2/2, where a:= sup

(x,y)∈Ω\ω0

{|x|:∃x0∈(−1,1),|x|<|x0|,sgn(x) = sgn(x0),(x0, y)ω0}.

9

(17)

Positive result : sketch of proof

Proof :

−a a

x y

ω0

γ ωleft

ωright

Consider that controlled solutions [Beauchard Darde Ervedoza 2018]

( (∂

tx2x2y2)fleft=1ωleftuleft on[0, T]×Ω

(∂tx2x2y2)fright=1ωrighturight on[0, T]×Ω

fleft(0) =fright(0) =f0, fleft(T) =fright(T) = 0 onΩ There exists a functionθC( ¯Ω)such that

θ= 0onωleft\ω0, θ= 1onωright\ω0,supp(∇θ)⊂ω0. We remark thatf:=θfleft+ (1−θ)fright,solves

(∂tx2x2y2)f= 1ω0u on[0, T]×Ω, f(0) =f0, f(T) = 0 onΩ,

whereu:=θ1ωleftuleft+ (1−θ)1ωrighturight+ (frightfleft)(∂2x+x2y2

+2∂x(frightfleft)∂xθ+ 2x2y(frightfleft)∂yθ.

10

(18)

Positive result : sketch of proof

Proof :

−a a

x y

ω0

γ ωleft

ωright

Consider that controlled solutions [Beauchard Darde Ervedoza 2018]

( (∂

tx2x2y2)fleft=1ωleftuleft on[0, T]×Ω

(∂tx2x2y2)fright=1ωrighturight on[0, T]×Ω

fleft(0) =fright(0) =f0, fleft(T) =fright(T) = 0 onΩ There exists a functionθC( ¯Ω)such that

θ= 0onωleft\ω0, θ= 1onωright\ω0,supp(∇θ)⊂ω0. We remark thatf:=θfleft+ (1−θ)fright,solves

(∂tx2x2y2)f= 1ω0u on[0, T]×Ω, f(0) =f0, f(T) = 0 onΩ,

whereu:=θ1ωleftuleft+ (1−θ)1ωrighturight+ (frightfleft)(∂2x+x2y2

+2∂x(frightfleft)∂xθ+ 2x2y(frightfleft)∂yθ.

10

(19)

Positive result : sketch of proof

Proof :

−a a

x y

ω0

γ ωleft

ωright

Consider that controlled solutions [Beauchard Darde Ervedoza 2018]

( (∂

tx2x2y2)fleft=1ωleftuleft on[0, T]×Ω

(∂tx2x2y2)fright=1ωrighturight on[0, T]×Ω

fleft(0) =fright(0) =f0, fleft(T) =fright(T) = 0 onΩ There exists a functionθC( ¯Ω)such that

θ= 0onωleft\ω0, θ= 1onωright\ω0,supp(∇θ)⊂ω0. We remark thatf:=θfleft+ (1−θ)fright,solves

(∂tx2x2y2)f= 1ω0u on[0, T]×Ω, f(0) =f0, f(T) = 0 onΩ,

whereu:=θ1ωleftuleft+ (1−θ)1ωrighturight+ (frightfleft)(∂2x+x2y2

+2∂x(frightfleft)∂xθ+ 2x2y(frightfleft)∂yθ.

10

(20)

Negative result

ω

y0

−a a

x y

Theorem (D.-Koenig)

If for somey0∈(0, π)anda >0one has

{(x, y0),−a < x < a} ∩ω=∅,

then the Grushin equation isnot null controllablein timeT<a2/2.

Remark :Since the Grushin equation is not null-controllable whenωis the complement of a horizontal strip [Koenig 2017], our Assumption is quasi optimal.

11

(21)

Observability

Proposition (see Coron’s book 2007 or Tucsnak-Weiss’s book 2009)

The Grushin equation isnull controllabilityif, and only if, there existsC >0such that for allf0inL2(Ω), the solutionfto

( (∂

tx2x2y2)f(t, x, y) = 0 t∈[0, T],(x, y)∈Ω, f(t, x, y) = 0 t∈[0, T],(x, y)∈∂Ω, f(0, x, y) =f0(x, y) (x, y)∈Ω,

satisfies

Z

|f(T, x, y)|2dxdy≤C Z

[0,T]×ω

|f(t, x, y)|2dtdxdy.

12

(22)

Negative result : sketch of proof

Assume thatΩ =R×T. Forn >0,

e−nx2/2is the first eigenfunction of −2x+ (nx)2 and with associated eigenvaluen.

Then

e−nx2/2einyis an eigenfunction of −x2x2y2 and with eigenvaluen.

For the functions

f(t, x, y) =X

ane−nt+iny−nx2/2, the observability inequality reads :

X n

1/2

|an|2e−2nTC Z

[0,T]×ω

Xane−nt+iny−nx2/2

2

dtdxdy

13

(23)

Negative result : sketch of proof

Assume thatΩ =R×T. Forn >0,

e−nx2/2is the first eigenfunction of −2x+ (nx)2 and with associated eigenvaluen.

Then

e−nx2/2einyis an eigenfunction of −x2x2y2 and with eigenvaluen.

For the functions

f(t, x, y) =X

ane−nt+iny−nx2/2, the observability inequality reads :

X n

1/2

|an|2e−2nTC Z

[0,T]×ω

Xane−nt+iny−nx2/2

2

dtdxdy

13

(24)

Negative result : sketch of proof

Consider the change of variablezx(t, y) := e−t+iy−x2/2 and denoteDx:={e−x2/2−t+iy,0< t < T,(x, y)∈ω}:

Z

[0,T]×ω

Xaneiny−nt−nx2/2

2

dtdxdy= Z 1

−1

Z

Dx

X

n>0

anzn−1

2

dλ(z) dx.

ω x

|x|> a y |x|< a

−a a

Dx

Dx

14

(25)

Negative result : sketch of proof

Thus Z

D(0,e−T)

X

n>0

anzn−1

2

dλ(z)≤C

X

n>0

anzn−1 L(K)

.

e−a2/2 K=S1

x=−1Dx

15

(26)

Negative result : sketch of proof

Z

D(0,e−T)

X

n>0

anzn−1

2

dλ(z)≤C

X

n>0

anzn−1

2 L(K)

.

Letz0D(0, e−T)\K and

f:z∈C\z0[1,+∞)7→(z−z0)−1.

K

D(0, e−T)

z0

Proposition (Runge’s theorem)

LetKbe a connected and simply connected open subset ofC, and letfbe a holomorphic function onK. There exists a sequence(pk)of polynomials that converges uniformly on every compact subsets ofKtof.

Then, the familypkis a counter example to the inequality on entire polynomials.

16

(27)

Negative result : sketch of proof

Assume now thatΩ = (−1,1)×(0,1).

Forn >0, let us note

vnthe first eigenfunction of −2x+ (nx)2

with Dirichlet boundary condition on(−1,1), and with associated eigenvalueλn. Then

vn(x) sin(ny)is an eigenfunction of −x2x22y

with Dirichlet boundary condition on∂Ω, and with eigenvalueλn. For the functions

f(t, x, y) =X

anvn(x)e−λntsin(ny), the observability inequality reads :

X|an|2|vn|2L2e−2λnTC Z

[0,T]×ω

Xanvn(x)e−λntsin(ny)

2

dtdxdy Let us estimate the right hand-side of this inequality

17

(28)

Negative result : sketch of proof

•Notingω˜=ω∪ {(x,−y),(x, y)∈ω}, this implies Z

[0,T]×ω

Xanvn(x)e−λntsin(ny)

2

dtdxdy

C Z

[0,T]טω

Xanvn(x)einy−λnt

2

dtdxdy.

˜ ω

x y

−a0 a0

18

(29)

Negative result : sketch of proof

•Consider the change of variable





λn=n+ρn

vn(x) = e−(1−ε)nx2/2wn(x) zx(t, y) = e−t+iy−(1−ε)x2/2

Then Z

[0,T]טω

Xanvn(x)einy−λnt

2

dtdxdy

= Z

[0,T]טω

X

n>0

anwn(x)e−ρntzx(t, y)n

2

dtdxdy.

Remark (lemma)

The eigenfunctionvnof−∂x2+ (nx)2for the eigenvalue is closed to the eigenfunction of same operator onRfor the eigenvaluen,i.e.

vnclosed to n

1/4

e−nx2/2 and λnclosed ton.

19

(30)

Negative result : sketch of proof

•DenotingDx={e−(1−ε)x2/2e−t+iy,0< t < T,(x, y)∈ω}, we get˜ Z

[0,T]טω

X

n>0

anwn(x)e−ρntzx(t, y)n

2

dtdxdy

= Z 1

−1

Z

Dx

X

n>0

anwn(x)e−ρntzn−1

2

dλ(z) dx.

ω˜ x

|x|> a0 y |x|< a0

−a0 a0

Dx

Dx

20

(31)

Negative result : sketch of proof

•Sinceρn,wnare closed to0,1, Z 1

−1

X

n>N

anwn(x)e−ρntzn−1

2 L(Dx)

dx≤C Z 1

−1

X

n>N

anzn−1 L(U)

.

U

e−(1−)a02/2 K=S1

x=−1Dx

21

(32)

Negative result : sketch of proof

Thus Z

D(0,e−T)

X

n>0

anzn−1

2

dλ(z)≤C

X

n>N

anzn−1 L(U)

.

U

e−(1−)a02/2 K=S1

x=−1Dx

22

(33)

Negative result : sketch of proof

Then Z

D(0,e−T)

X

n>N

anzn−1

2

dλ(z)≤C

X

n>N

anzn−1

2 L(U)

.

Letz0D(0, e−T)\U and

f:z∈C\z0[1,+∞)z7→(z−z0)−1.

U

D(0, e−T)

z0

Proposition (Runge’s theorem)

LetUbe a connected and simply connected open subset ofC, and letfbe a holomorphic function onU. There exists a sequencepk)of polynomials that converges uniformly on every compact subsets ofUtof.

Then, the familypk(z) :=zN+1p˜k(z)is a counter example to the inequality on entire polynomials.

23

(34)

Minimal time

ω0 ω

y0

−a a

x y

Corollary (T0=a2/2)

Assume that there existε >0andγC0([0,1],Ω)withγ(0)∈(−1,1)× {0}and γ(1)∈(−1,1)× {π}such thatω0:={z∈Ω,distance(z,Range(γ))< ε} ⊂ω.

Assume that somey0∈(0, π),{(x, y0),−a < x < a}is disjoint fromωwhere a:= sup

(x,y)∈Ω\ω0

{|x|:∃x0∈(−1,1),|x|<|x0|,sgn(x) = sgn(x0),(x0, y)ω0}.

One has

• IfT>a2/2, then the Grushin equation isnull controllablein timeT.

• IfT<a2/2, then the Grushin equation isnot null controllablein timeT.

24

(35)

Open problems

ω

ω

−a

ω ω

−a We can’t go from the bottom boundary

to the top boundary while staying in- sideω.

T>a2/2

A pinched domain.

T>a2/2

ω

−a

−b

A cave.

T∈[a2/2, b2/2]

25

(36)

The Grushin equation

Conclusion

• Non exact controllability

âRegularizing effect of the heat equation

• Approximate controllability âBeauchard-Cannarsa-Guglielmi 2014

• Minimal time null controllability

âDetailed description of the influence of the control region

26

(37)

Comments

Other example : Parabolic coupled systems Consider

tf1−∆f1+q(x)f2= 0,

tf2−∆f2=1ωu, f|∂Ω= 0, f(0) =f0.

(1) System (1) is approx. contr. if and only if

Ik(q) = Z π

0

q(x)φk(x)2dx6= 0, ∀k >0. (2) whereφk:=p

2/πsin(kx).

If (2) is satisfied and Supp(q)∩ω=∅, then the minimal time of null controllability of system (1) is given by

T= lim sup−log|Ik(q)|

k2 . Ammar Khodja-Benabdallah-Gonzalez-Burgos-De Teresa, 2015 Question

Is there ageneral theoryto determine the minimal time of null controllability for parabolic systems ?

tf+Af=Bu

27

(38)

Comments

Other example : Parabolic coupled systems Consider

tf1−∆f1+q(x)f2= 0,

tf2−∆f2=1ωu, f|∂Ω= 0, f(0) =f0.

(1) System (1) is approx. contr. if and only if

Ik(q) = Z π

0

q(x)φk(x)2dx6= 0, ∀k >0. (2) whereφk:=p

2/πsin(kx).

If (2) is satisfied and Supp(q)∩ω=∅, then the minimal time of null controllability of system (1) is given by

T= lim sup−log|Ik(q)|

k2 . Ammar Khodja-Benabdallah-Gonzalez-Burgos-De Teresa, 2015 Question

Is there ageneral theoryto determine the minimal time of null controllability for parabolic systems ?

tf+Af=Bu

27

(39)

Thanks for your attention !

27

Références

Documents relatifs

Null controllability of non diagonalisable parabolic systems Michel Duprez.. Institut de Mathématiques

null controllability, observability, fractional heat equation, degenerate parabolic equations 12.. AMS

The purpose of the case study is to test the applicability of HIOA techniques to the area of automated transit; in particular, we are concerned that HIOA techniques

This section is devoted to the proof of the main result of this article, Theorem 1.2, that is the null-controllability of the Kolmogorov equation (1.1) in the whole phase space with

Indeed, while the heat equation is null controllable in arbitrarily small time, the same result holds for the Grushin equation only when degeneracy is not too strong (i.e.. On

One important motivation for this kind of control is that the exact controllability of the wave equation with a pointwise control and Dirichlet boundary conditions fails if the point

Control theory; degenerate parabolic partial differential equations; minimal null control time; moments method; biorthogonal families; spectral analysis of harmonic oscillator..

Firstly, we give a geometric necessary condition (for interior null-controllability in the Euclidean setting) which implies that one can not go infinitely far away from the