• Aucun résultat trouvé

Null controllability of non diagonalisable parabolic systems Michel Duprez

N/A
N/A
Protected

Academic year: 2021

Partager "Null controllability of non diagonalisable parabolic systems Michel Duprez"

Copied!
32
0
0

Texte intégral

(1)

Null controllability of non diagonalisable parabolic systems Michel Duprez

Institut de Mathématiques de Marseille

Groupe de travail contrôle et problèmes inverses

Marseille, I2M

(2)

Setting

Let beT >0,ω⊂Ω⊂RN and consider the system (

ty=D∆y+A(t, x)y+B1ωu inQT:= Ω×(0, T),

y= 0 on ΣT:=∂Ω×(0, T),

y(·,0) =y0 in Ω,

whereD∈ L(Rn)non diagonalisable,AL(QT;L(Rn) and B∈ L(Rm,Rn).

We are interested in

theapproximatively controllableat timeT, i.e.

∀y0, yTL2(Ω), ε >0∃u∈L2(QT) s.t.ky(T)−yTkL2(Ω)6ε, thenull controllableat timeT, i.e.

∀y0L2(Ω)∃u∈L2(QT) s.t. y(T) = 0.

Michel Duprez Sur la contrôlabilité de l’équation de la chaleur 1

(3)

Three problems

Problem 1 : (

ty=D∆y+A(t, x)y+1ωu inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω.

(S1) Conjecture : (S1) always null controllable.

Problem 2 : (

ty=D∆y+Ay+B1ωu inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω.

(S2)

Conjecture : (S2) null controllable (resp. approx. contr.) if and only if rank[λiDA|B] =n.

Problem 3 : (

ty1=D∆y1+A(x)y+B1ωu inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω.

(S3) Open problem

(4)

Problem 1 : Carleman

Let beT >0,ω⊂Ω⊂RN and consider the system (

ty=D∆y+A(t, x)y+1ωu inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω,

(S1)

whereD∈ L(Rn) andAL(Q;L(Rn)).

Theorem (see [1])

Let us suppose that the dimensions of the Jordan blocks of the canonical form ofDare≤4.

Then System (S1) is null controllable.

[1] Fernández-Cara, González-Burgos, de Teresa, Controllability of linear and semilinear non-diagonalisable parabolic systems

Michel Duprez Sur la contrôlabilité de l’équation de la chaleur 3

(5)

Duality

Consider the system (

ty=D∆y+Ay+1ωu inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω.

(S1)

Proposition

System (S1) isnull controllableat timeT iff there existsCobs>0 s.t. for allϕ0L2(Ω) the solutionϕW(0, T;H01(Ω), H−1(Ω)) to

( −∂

tϕ=D∆ϕ+Aϕ inQT,

ϕ= 0 on ΣT,

ϕ(·, T) =ϕ0 in Ω

(D)

satisfies theinequality of observability kϕ(·,0)k2L2(Ω)6Cobs

Z T 0

Z

ω

ϕ2.

(6)

Carleman inequality

Consider the system ( −∂

tϕ=d∆ϕ inQT, ϕ= 0 on ΣT, ϕ(·, T) =ϕ0 in Ω

(D) Let us denote byρp:=ξpe−2sα, where

α(t, x) := exp(4λkη0k)−exp[2λ(kη0k+η0(x))]

t(Tt) , ξ(t, x) :=exp[λ(2kη0k+η0(x))]

t(Tt) . Here,η0∈ C2(Ω) is a function satisfying

|∇η0|>κ >0 in Ω\ω2, η0>0 in Ω and η0= 0 on∂Ω.

Proposition

The solution to system (D) satisfies Z

QT

p−1∆ϕ2+ρp+1|∇ϕ|2+ρp+3ϕ2}6C Z

qT

ρp+3ϕ2+λ−1 Z

QT

ρpf2

for alls>s0 andλ>λ0.

Michel Duprez Sur la contrôlabilité de l’équation de la chaleur 5

(7)

Proof

Let us prove the observability inequality in the simple case : ( −∂

tϕ=D∆ϕ+Aϕ inQT,

ϕ= 0 on ΣT,

ϕ(·, T) =ϕ0 in Ω, where

D:=

1 0 0 0

1 1 0 0

0 1 1 0

0 0 1 1

andA

:=

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

.

(8)

Proof

Using the Carleman inequality : Z

QT

−1∆ϕ24+ρ3ϕ24}6C Z

qT

ρ3ϕ24+λ−1 Z

QT

ρ0∆ϕ23 Z

QT

0∆ϕ23+ρ4ϕ23}6C Z

qT

ρ4ϕ23+λ−1 Z

QT

ρ1∆ϕ22

Z

QT

1∆ϕ22+ρ5ϕ22}6C Z

qT

ρ5ϕ22+λ−1 Z

QT

ρ2∆ϕ21

Z

QT

2∆ϕ21+ρ6ϕ21}6C Z

qT

ρ6ϕ21+λ−1 Z

QT

ρ3ϕ24

We deduce that

4

X

k=1

Z

QT

ρ7−kϕ2k6C

4

X

k=1

Z

qT

ρ7−kϕ2k

We conclude using the classical energy inequality Z

QΩ

ϕ(·,0)26C

4

X

k=1

Z

Z 3T /4 T /4

ϕ2

Michel Duprez Sur la contrôlabilité de l’équation de la chaleur 7

(9)

Problem 1 : Uniqueness-compactness

Let beT >0,ω⊂Ω⊂RN and consider the system (

ty=D∆y+A(x)y+1ωu inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω,

(S1)

whereD∈ L(Rn) andAL(Ω;L(Rn)).

Theorem (Duprez-Olive, in preparation) Let us suppose that

AL(Ω;L(Rn)).

• Ω satisfies (GCC).

Then System (S1) is null controllable at timeT.

(10)

Sketch of proof

1 There existsT >0 such that the following system is null contr. at timeT :

(

tty=D∆y+1ωu inQT,

y= 0 on ΣT,

y(·,0) =y0, ∂ty(·,0) =w0 in Ω.

2 We can add a compact perturbation : There existsT >0 such that the following system is null contr. at timeT

(

tty=D∆y+Ay+1ωu inQT,

y= 0 on ΣT,

y(·,0) =y0, ∂ty(·,0) =w0 in Ω.

3 We conclude with the transmutation method.

Michel Duprez Sur la contrôlabilité de l’équation de la chaleur 9

(11)

Compact perturbation

LetH andU be two Hilbert spaces. LetA0:D(A0)⊂H −→H be the generator of aC0-semigroup onH and letB ∈ L(U, H). LetA1∈ L(H) and let us form the unbounded operatorA:=A0+A1withD(A) =D(A0) (we recall thatAis then the generator of aC0-semigroup onH).

Theorem (Duprez-Olive, in preparation) We assume that :

• There existsT>0 such that (A0,B) is exactly controllable at time T.

• A1 is compact.

• The Fattorini criterion holds for (A,B), namely, ker(λ− A)∩kerB={0}, ∀λ∈C.

Then, the pair (A,B) is exactly controllable at timeT for everyT > T.

(12)

Peetre Lemma

Lemma

LetH1, H2, H3 be three Banach spaces. LetL∈ L(H1, H2) and K∈ L(H1, H3) be two linear bounded operators. We assume that

(i) There existsα >0 such that

αkzkH1≤ kLzkH2+kKzkH3, ∀z∈H1

(ii) K is compact.

Then

(i) kerLis finite dimensional.

(ii) If, moreover, kerL={0}, there existsβ >0 such that βkzkH1≤ kLzkH2, ∀z∈H1.

Michel Duprez Sur la contrôlabilité de l’équation de la chaleur 11

(13)

Proof of the general theorem

Since (A0,B) is exactly controllable kzk2HC

Z T 0

kBSA0(t)zk2U dt

≤2C Z T

0

kBSA(t)zk2U dt+ Z T

0

kBSA0(t)z− BSA(t)zk2U dt

.

Therefore, we want to apply the Peetre Lemma to the operators LT : H −→ L2(0, T;U)

z 7−→ BSA(·)z,

KT : H −→ L2(0, T;U)

z 7−→ B(SA0(·)zSA(·)z). Plan :

Step 1 :KT compact

Step 2 :kerLTD(A)

Step 3 :kerLT isA-stable

Step 4 :kerLT={0}

(14)

Proof of the general theorem

Step 1 :Letznzweakly inH. We have SA(t)zn=SA0(t)zn+

Z t 0

SA0(t−s)A1SA(s)znds, ∀t∈[0, T].

Lett∈[0, T]. Using the continuity of (SA(t))t≥0, we have SA(s)zn−−−−−→

n→+∞ SA(s)z weakly inH, ∀s∈[0, t].

SinceA1 is compact, we obtain A1SA(s)zn−−−−−→

n→+∞ A1SA(s)z strongly inH, ∀s∈[0, t].

The strong continuity of (SA0(t))t≥0finally gives SA0(t−s)A1SA(s)zn−−−−−→

n→+∞ SA0(t−s)A1SA(s)z strongly inH, ∀s∈[0, t].

Applying Lebesgue’s dominated convergence theorem, we deduce that Z ·

0

SA0(·−s)A1SA(s)znds −→

n→+∞

Z · 0

SA0(·−s)A1SA(s)znds str. inL2(0, T;U).

This shows thatKT is compact.

Michel Duprez Sur la contrôlabilité de l’équation de la chaleur 13

(15)

Proof of the general theorem

Step 2 :LetT such thatT > T. Letε∈(0, T −T] so thatTεT. Letz∈kerLT,tn→0 and

un:=(SA(tn)zz) tn

.

Letε >0. We havetn< εfor everynN. Then un∈kerLT−ε, ∀n≥N.

Letµρ(A) and the norm on kerLT−ε : kzk−1:=

(µ− A)−1z H. Since (µ− A)−1 andSA(t)commute

(µ− A)−1un=SA(tn)−Id tn

(µ− A)−1z−−−−−→

n→+∞ A(µ− A)−1zinH.

Therefore, (un)n≥N is a Cauchy sequence in kerLT−ε for the normk·k−1. SinceTεTand kerLT−ε is finite dimensional, (un)n≥N is then a Cauchy sequence for the usual normk·kH hence converges for this norm.

ThuszD(A).

(16)

Proof of the general theorem

Step 3 :Letz∈kerLT :

BSA(t)z= 0, ∀t∈[0, T].

SincezD(A), we can differentiate the last equality BSA(t)Az= 0, ∀t∈[0, T], that isAz∈kerLT.

Step 4 :Consequently, the restriction ofA to kerLT is a bounded linear operator from the finite dimensional space kerLT into itself.

Suppose that kerLT6={0}.

Since kerLT⊂kerB,∃λ∈Candφ6= 0 such that Aφ=λφ, Bφ= 0, which is in contradiction with the Fattorini criterion.

Thus

kerLT={0} for everyT > T. Using item (ii) of Peetre Lemma,

∃C >0, kzk2HC Z T

0

kBSA(t)zk2U dt, ∀z∈H.

Michel Duprez Sur la contrôlabilité de l’équation de la chaleur 15

(17)

Problem 2 : Carleman

Let beT >0,ω⊂Ω⊂RN and consider the system (

ty=D∆y+Ay+B1ωu inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω,

(S2)

whereD∈ L(Rn),A∈ L(Rn) andB∈ L(Rm,Rn).

Theorem (see [1])

Let us suppose that the dimensions of the Jordan blocks of the canonical form ofDare≤4.

Then System (S2) is null controllable if and only if rank[λiDA|B] =n.

Proof : same idea as before...

[1] Fernández-Cara, González-Burgos, de Teresa, Controllability of linear and semilinear non-diagonalisable parabolic systems

(18)

Problem 2 : Moment method

Let beT >0,ω⊂Ω⊂RN and consider the system (

ty=D∆y+Ay+B1ωu inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω,

(S2)

whereD∈ L(Rn),A∈ L(Rn) andB∈ L(Rm,Rn).

Theorem (Duprez-Gonzalez-Burgos-Souza, in preparation) Let us suppose that

D:=

d 1 0 0 0

0 d 1 0 0

0 0 d 1 0

0 0 0 d 1

0 0 0 0 d

, A:=

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

andB:=e5.

Then System (S2) is null controllable at timeT.

Michel Duprez Sur la contrôlabilité de l’équation de la chaleur 17

(19)

Problem 3 : Algebraic resolvability

Let beT >0,ω= (a, b)⊂(0, π) and consider the system





ty1=xxy+1ωu in (0, T)×(0, π),

ty2=xxy2+xxy1+ay2 in (0, T)×(0, π), y(·,0) =y(·, π) = 0 on (0, T),

y(0,·) =y0 in (0, π).

(S3)

Theorem

There exists a coefficienta∈ C([0, π]) such that :

• There exists an open interval (a, b)⊂⊂(0, π) such that, for allT >0, System (S3) is null controllable (then approximatively controllable) at timeT.

• There exists an open interval (a, b)⊂⊂(0, π) such that, for allT >0, System (S3) is not approximatively controllable (then not null controllable) at timeT.

(20)

Proof

Fictitious control method :

Letωb⊂⊂ω. Consider (by,bu) a solution to









tyb1=xxyb1+1ωbu1 inQT,

tyb2=xxyb1+xxby2+aby2+1ωbu2 inQT, by= 0 on ΣT, by(·) =y0, y(·, T) = 0 in Ω, Supp(bu)⊂⊂bω×(0, T).

If we find a solution to

tz1=xxz1+az+v+bu1 inQT,

tz2=xxz1+xxz2+az2+bu2 inQT, Supp(z, v)⊂⊂ω×(0, T),

(1)

then(byz,−v)will be a solution of the initial problem.

Michel Duprez Sur la contrôlabilité de l’équation de la chaleur 19

(21)

Proof

Algebraic problem : Rewrite (1) as

L(z, v) =bu Let us search a differential operatorMsuch that

L ◦ M=Id (2) Thus (z, v) :=M(bu) will be a solution to (1).

Remark :buhave to be regular enough.

We will solve the formal adjoint to (2) :

M◦ Lψ=ψ (3) where

L(ψ) = L1ψ L2ψ L3ψ

!

=

−∂tψ1xxψ1xxψ2

−∂tψ2xxψ22

−ψ1

! .

(22)

Proof

Resolution of the algebraic problem :

We recall the expression toL: L(ψ) =

L1ψ L2ψ L3ψ

!

=

−∂tψ1xxψ1xxψ2

−∂tψ2xxψ22

−ψ1

! .

We have

L4ψ:=−L1ψ+ (∂t+xx)◦ L3ψ=xxψ2. The commutator ofL4 andL2 is :

L5ψ:= [L4:L2]ψ= 2∂x(a)∂xψ2+xx(a)ψ2. Moreover

L6ψ:=x◦ L5ψ−2∂x(a)L4ψ= 3∂x(a)∂xψ2+xxx(a)ψ2

So

L7ψ:= 3∂x(a)L5ψ−2∂x(a)L6ψ= [3∂x(a)∂xx(a)−2∂x(a)∂xxx(a)]ψ2.

Michel Duprez Sur la contrôlabilité de l’équation de la chaleur 21

(23)

Proof

Thus

M1◦ L1+M2◦ L2=Id, if

3∂x(a)∂xx(a)−2∂x(a)∂xxx(a)6= 0.

That is

a6∈ h1, x, e3x/2i.

We have proved that system





ty1=xxy+1ωu in (0, T)×(0, π),

ty2=xxy2+xxy1+ay2 in (0, T)×(0, π), y(·,0) =y(·, π) = 0 on (0, T),

y(0,·) =y0 in (0, π).

(S3)

is null controllable if

a6∈ h1, x, e3x/2i.

(24)

Fattorini Criterion

Let Ω := (0, π),ω:= (5π/12,7π/12) and the system





ty1=xxy1+1ωu inQT,

ty2=xxy2+xxy1+ay2 inQT,

y= 0 on ΣT,

y(0,·) =y0 in Ω,

(S3)

whereuL2(QT) is the control andaC(Ω) will be specified later.

Theorem

System (S3) isapproximately controllableon the time interval (0, T), if and only if for everys∈Cand everyϕD(∆), we have

−∂xxϕxxψ= in Ω

−∂xxψ= in Ω

ϕ= 0 inω

⇒(ϕ, ψ) = (0,0).

Michel Duprez Sur la contrôlabilité de l’équation de la chaleur 23

(25)

Proof

The idea will be to construct the functionψas a perturbation of x7→sin(3x). Considerψa function ofC(Ω)∩D(∆) satisfying

ψ(x) = sin(2x) +C1θ1+C2θ2+C3θ3+C4θ4

for allx∈[0,4π/12]∪[8π/12, π], ψ(x) =−2xfor allxω,

whereθ1, θ2, θ3, θ4 are three nontrivial functions ofC(Ω) which will be chosen later on satisfying













Supp(θ1)⊂⊂(π/12,2π/12), Supp(θ2)⊂⊂(2π/12,3π/12), Supp(θ3)⊂⊂(8π/12,9π/2), Supp(θ4)⊂⊂(9π/12,10π/12), θ1, θ2, θ3, θ4>0 in Ω,

ε >0 small enough andC1, C2, C3, C4 are four positive constants to determined

(26)

Proof

The functionψwill have one of the two following forms

0 0.5 1 1.5 2 2.5 3

−1 0

1 sin(2x)

π−2x

Figure– Example of functionψ on [0, π]

Michel Duprez Sur la contrôlabilité de l’équation de la chaleur 25

(27)

Proof

For aα∈Rto determined, the functionϕ∈ C(Ω) defined for allx∈Ω by ϕ(x) := αsin(2x)−12

Z x 0

sin(3(x−y))∂xxψ(y)dy is solution to

−∂xxϕxxψ= 2ϕ.

We searchC1,C2 andαsuch thatϕ= 0 inω. Sinceψ=π−2xinω, ϕ(x) =

α+ 1−cos(6)−sin(6 )π6 + 2 Z 5π/12

0

cos(2y)ψ(y)dy

sin(2x) +

sin(6 ) + cos(6 )π6 + 2 Z 5π/12

0

sin(2y)ψ(y)dy

cos(2x), for allxω.

(28)

Proof

Let us distinguish two cases :

1 If sin(5π

6 )+cos(5π 6 )π

6+2 Z 4π/12

0

cos(2y) sin(2y)dy+2 Z 5π/12

4π/12

sin(2y)ψ(y)dy (1) is negative, since sin(2x), cos(2x)>0 in (2π/12,3π/12), forC2= 0, one can choseC1 such that

sin(5π

6 ) + cos(5π 6 )π

6+ 2 Z 5π/12

0

sin(3y)ψ(y)dy= 0. (2)

2 If the quantity (1) is positive, since sin(2x)>0 and cos(2x)<0 in (3π/12,4π/12), forC1= 0, one can choseC2>0 such that (2) holds.

Thus, forαgiven by α:=−1 + cos(5π

6 ) + sin(5π 6 )π

6 −2 Z 5π/12

0

cos(2y)ψ(y)dy, we obtainϕ= 0 inω.

Michel Duprez Sur la contrôlabilité de l’équation de la chaleur 27

(29)

Proof

By definition ofϕ, we haveϕ(0) = 0.

Now we searchC2, C3such thatϕ(π) = 0.

We remark that

ϕ(π) = 2 Z π

0

sin(2y)ψ(y)dy.

Let us distinguish two cases :

1 If

1 3

Z 8π/12 0

sin(2y)ψ(y)dy+1 3

Z π 8π/12

sin(2y) sin(2y)dy (3) is positive, then, using the fact that sin(2x), cos(2x)<0 for all x∈(8π/12,9π/12), one can chooseC4:= 0 and find some some C3>0 such thatϕ(π) = 0.

2 If now the quantity (3) is negative, since sin(2x)>0 and cos(2x)<0 for allx∈(9π/12,10π/12), one can chooseC3:= 0 and find some someC4>0 such thatϕ(π) = 0.

(30)

Proof

We define the functiona∈ C(Ω) as follows a:=−∆ψ−4ψ

ψ ∈ C(Ω).

Thus the three functionsϕ,ψ,a∈ C(Ω) satisfy













−∂xxϕxxψ= 4ϕ in Ω,

−∂xxψ= 4ψ in Ω,

ϕ(0) =ϕ(π) =ψ(0) =ψ(π) = 0,

ϕ= 0 inω,

(ϕ, ψ)6= 0 in Ω.

(4)

Using Fattorini Criterion, System (S3) is not approximately controllable on the time interval (0, T).

Michel Duprez Sur la contrôlabilité de l’équation de la chaleur 29

(31)

Open problems

Problem 1 :

å Is System (S1) always null controllable ? å Carleman inequality

Problem 2 :

å Is (S2) null controllable (resp. approx. contr.) if and only if rank[λiDA|B] =n?

Problem 3 :

å Necessary and sufficient conditions å Minimal time of controllability

(32)

Conclusion

To be continued !

Michel Duprez Sur la contrôlabilité de l’équation de la chaleur 31

Références

Documents relatifs

In a second step, through an example of partially controlled 2 × 2 parabolic system, we will provide positive and negative results on partial null controllability when the

Control theory; degenerate parabolic partial differential equations; minimal null control time; moments method; biorthogonal families; spectral analysis of harmonic oscillator..

In the even more recent work [10], it was shown that it can be necessary not only to look at the condensation of the eigenvalues but also to the associated eigenfunctions to obtain

In this section, we will apply the general framework introduced above to prove the φ(h) null controllability properties for semi-discrete versions of the boundary control problem of

case of a constant diffusion coefficient with two different Robin parameters (point 2 of Theorem

La Suisse offre aux produits français le traitem ent de la nation la plus favorisée, qui per met à l’Allemagne, à l’Autriche- IIoDgrie, à l’Italie, à

Au cours de mes différents stages ainsi qu’en séminaire, j’ai eu plusieurs fois l’occasion d’observer et d’analyser cette pédagogie. J’ai même pu la

Null controllability of the Grushin equation : non-rectangular control regionM. Koenig