• Aucun résultat trouvé

DERIVATION OF AN ACTIVATION ENERGY FORMULA IN THE CONTEXT OF CHARGE DRAINING

N/A
N/A
Protected

Academic year: 2021

Partager "DERIVATION OF AN ACTIVATION ENERGY FORMULA IN THE CONTEXT OF CHARGE DRAINING"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00225902

https://hal.archives-ouvertes.fr/jpa-00225902

Submitted on 1 Jan 1986

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DERIVATION OF AN ACTIVATION ENERGY FORMULA IN THE CONTEXT OF CHARGE

DRAINING

R. Forbes, K. Chibane

To cite this version:

R. Forbes, K. Chibane. DERIVATION OF AN ACTIVATION ENERGY FORMULA IN THE CON- TEXT OF CHARGE DRAINING. Journal de Physique Colloques, 1986, 47 (C7), pp.C7-65-C7-70.

�10.1051/jphyscol:1986712�. �jpa-00225902�

(2)

JOURNAL DE PHYSIQUE

C o l l o q u e C7, s u p p l 6 m e n t au n o 11, Tome 47, Novembre 1 9 8 6

DERIVATION OF AN ACTIVATION ENERGY FORMULA IN THE CONTEXT OF CHARGE DRAINING

R.G. FORBES and K. CHIBANE

University of Surrey, Department of Electronic and Electrical Engineering, GB-Guildford GU2 5XH, Surrey, Great-Britain

Abstract

-

The v a l i d i t y o f a r e l a t i o n between a c t i v a t i o n energy Q and evaporation f i e l d P, previously predicted f o r the charge-hopping mechanism, is re-examined i n the context of the charge-draining mechanism. The forknula seems t o remain s a t i s f a c t o r y as a f i r s t approximation. A new form of p o t e n t i a l diagram i s suggested f o r d e s c r m i n g t h e charge-draining mechanism.

1. Introduction

Some years ago, one o f us derived a new formula f o r t h e a c t i v a t i o n energy ( Q ) of field evaporation [I]. This formula was based on a classical a n a l y s i s o f t h e i n t e r s e c t i o n of p o t e n t i a l energy curves, and h a s t h e form:

where F i s evaporation f i e l d , and Fe its apparent value i n t h e l i m i t o f zero a c t i v a t i o n energy, and S l is a q u a n t i t y that should be approximately constant when P has a value c l o s e t o Fe. I n its simplest proof, eq.(l) is derived by combining two formulae: one r e l a t i n g xP t o 1/F, t h e o t h e r r e l a t i n g Q1/2 t o xP, where xP is t h e d i s t a n c e o f t h e t o p o f the a c t i v a t i o n energy hump from t h e emitter's e l e c t r i c a l surface.

The ion f l u x J emitted from a field-ion spec5Lmen is r e l a t e d t o Q and t o t h e emitter temperature T by t h e emission equation:

where nhr is t h e count o f atoms a t high r i s k o f evaporation, A is t h e f i e l d evaporation pre-exponential, and k is Boltzmann's constant. When e q . ( l ) is combined with the emission equation, it is predicted [2] t h a t f o r any given f l u x value t h e evaporation f i e l d should be r e l a t e d t o t h e evaporation temperature by a

l i n e a r equation o f t h e form:

Linear r e l a t i o n s h i p s o f t h i s type have been found i n t h e experimental data, over a range o f temperature encompassing 80K [2,3].

The mathematical d e r i v a t i o n o f e q . ( l ) uses a curve-intersection formalism.

s t r i c t l y , t h i s formalism corresponds t o the physical assumption t h a t t h e f i e l d

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986712

(3)

JOURNAL DE PHYSIQUE

evaporation escape p r o c e s s i s t a k i n g p l a c e v i a t h e "charge-hopping" mechanism [ 4 ] .

But p h y s i c a l l y it seems more p l a u s i b l e t h a t escape b e t a k i n g p l a c e v i a the

"charge-draining" mechanism. So, s i n c e e q . ( 3 ) seems t o b e compatible w i t h experimental r e s u l t s , at least for some materials, we have i n v e s t i g a t e d whether e q . ( l ) c a n be r e d e r i v e d i n t h e c o n t e x t of the charge-braining mechanism. To begin, it w i l l be h e l p f u l t o make some comment on potential-energy diagrams.

2. The Charge-draining Potential-energy diagram

I n the charge-hopping mechanism it is p o s t u l a t e d that a n e l e c t r o n ( o r two e l e c t r o n s ) d e p a r t from the evaporating atom i n a s i n g l e "hop", a t a p a r t i c u l a r n u c l e a r p o s i t i o n ; i n the charge-draining mechanism it is p o s t u l a t e d that the e l e c t r o n d r a i n s o u t g r a d u a l l y , as the e v a p o r a t i n g atomic nucleus moves away from the surface.

W e must a l s o assume that at a charged s u r f a c e a p r o t r u d i n g atom is i n some s e n s e p a r t i a l l y charged: t h i s is necessary from Gauss' t h e o r y , i n o r d e r t o s u s t a i n t h e e x t e r n a l e l e c t r i c field.

We t h u s have a p i c t u r e o f t h e escape p r o c e s s as follows. The e v a p o r a t i n g atom i n its i n i t i a l bound state is a partially charged object. As it moves away from the s u r f a c e it g e t s i n c r e a s i n g l y charged; it goes o v e r the a c t i v a t i o n energy hmp still i n a p a r t i a l l y charged state; as it moves f u r t h e r away from t h e s u r f a c e more e l e c t r o n i c charge d r a i n s o u t u n t i l the atom p o s s e s s e s an i n t e g r a l nurnber o f elementary charges. T h i s p i c t u r e c o n s t i t u t e s the charge-draining mechanism.

The diagram r e p r e s e n t i n g t h i s p r o c e s s is o f t e n drawn as shown i n F i g . l a , b u t there is a n i n h e r e n t ambiguity about it. The right-hand p o r t i o n o f t h e "atomic" curve c l e a r l y corresponds t o a p o l a r i s e d n e u t r a l atom i n free space. The prqblem concerns w i t h the left-hand p o r t i o n , t h a t r e p r e s e n t s the bound s t a t e . If we assume t h a t t h e left-hand p o r t i o n is the "continuation across t h e i n t e r s e c t i o n g ' o f t h e right-hand p o r t i o n ( a s t h e d o t t e d l i n e s would s u g g e s t ) , t h e n we presrrmably must regard the left-hand p o r t i o n as a l s o corresponding t o a n e u t r a l atom. But t h i s is incompatible w i t h the s t a t e m e n t above that the left-hand p o r t i o n corresponds t o a p a r t i a l l y charged o b j e c t .

On the o t h e r hand, i f we accept that the left-hand p o r t i o n of the "atomic" c u r v e corresponds t o a p a r t i a l l y - c h a r g e d object and t h e right-hand p o r t i o n t o a n e u t r a l o b j e c t , t h e n one must query whether it is correct t o j o i n the c u r v e s across the i n t e r s e c t i o n region, even by a d o t t e d l i n e .

Fig.- s u g g e s t s a s o l u t i o n t o t h i s problem of s a t i s f a c t o r y r e p r e s e n t a t i o n . D i s t a n t from t h e s u r f a c e the p o t e n t i a l energy c u r v e s correspond t o w e l l - d e f i n e d charge states. W e presume t h a t t h e s e c u r v e s c a n b e continued inwards as c u r v e s corresponding t o h y p o t h e t i c a l " p o l a r i s e d n e u t r a l w and "pure i o n i c " states. A c u r v e corresponding t o the a c t u a l ( p a r t i a l l y - c h a r g e d ) e l e c t r o n i c ground-state is also drawn, and j o i n s on t o t h e p u r e i o n i c c u r v e at a n a p p r o p r i a t e d i s t a n c e from the s u r f a c e .

W e have a l s o included on t h i s diagram a c u r v e corresponding t o a n e u t r a l atom i n z e r o f i e l d . I n s p e c t i o n of t h e r e s u l t i n g diagram makes it clear t h a t the field-dependent i n c r e a s e i n bonding energy, which we normally now write i n t h e £ o m ( 1 / 2 ) 5 + , is t o be considered as p a r t l y due t o o r b i t a l p o l a r i s a t i o n , p a r t l y due t o partial i o n i z a t i o n . T h i s reflects a conclusion w e r e p o r t e d elsewhere 151.

There a l s o has t o be a change i n t h i n k i n g about how the diagram v a r i e s w i t h field s t r e n g t h . The o l d e r assumptions o r approximations have been: first, that the p o s i t i o n o f the bonding w e l l does n o t v a r y much w i t h f i e l d ; second, that t h e shape shape of the bonding w e l l does n o t v a r y much w i t h field; and, third, that the main effect of the f i e l d is t o "shift down" the whole bonding w e l l a b s o l u t e l y i n energy, by an amount that is dependent on t h e f i e l d s t r e n g t h b u t is independent o f p o s i t i o n .

(4)

Schematic diagrams used t o represent t h e charge-draining mechanism of f i e l d evaporation.

l a ) (Alongside )

Diagram as o f t e n drawn i n t h e l i t e r a t u r e .

lb) (Below)

suggested a l t e r n a t i v e form.

For d e t a i l e d explanations s e e text.

>-

0

cr

\ hypothetical pure- ion[= curve

n e u t r a l curve (zero Cield

\

polari sed- neutral curve

-electronic curve ("actual curve")

These approximations are appropriate t o t h e s i t u a t i o n of a genuinely n e u t r a l atom a t a charged surface, and hence may be adequate i n the case of helium f i e l d adsorption (though even t h i s has r e c e n t l y been c h a l l e n g e

-

Kreutzer, p r i v a t e communication). But they cannot r e a l l y be s a t i s f a c t o r y i n the case of f i e l d evaporation: the making of such assumptions i n t h e context of the charge-hopping escape mechanism has been a matter merely of convenience. The assumptions are q u i t e untenable i n the context of t h e charge-draining mechanism: i n t h i s case it h a s t o be assumed that both t h e shape of t h e w e l l and the p o s i t i o n of its base w i l l change. A recent paper i n d i c a t e s t h e general nature of the changes involved [61.

The lowering i n absolute energy o f the w e l l base can, however, still be expressed i n t h e form ( I / Z ) C ~ F ~ , provided t h a t c, is NOT i d e n t i f i e d as a c o e f f i c i e n t associated with t h e o r b i t a l p o l a r i s a t i o n of a n e u t r a l atom i n f r e e space.

The o r i g i n a l proof of eq.(l) was, f o r convenience, based on the "older assumptions"

described above. What we must now do is t o examine how the proof and/or its i n t e r p r e t a t i o n changes i f we adopt new assumptions about t h e behaviour of t h e bonding w e l l .

(5)

C7-68 JOURNAL DE PHYSIQUE

3. Implications f o r proving t h e activation-energy formula 3.1 The r e l a t i o n s h i p between xP and F

For the charge-draining mechanism, t h e r e l a t i o n s h i p between evaporation f i e l d F and the parameter xP ( t h e d i s t a n c e of t h e t o p of t h e a c t i v a t i o n energy hump from t h e e m i t t e r ' s electrical s u r f a c e ) is i l l u s t r a t e d schematically i n Fig.2. This shows the ground-state curves i n t h e s i t u a t i o n s : ( 1 ) f o r zero classical a c t i v a t i o n energy, with the evaporation f i e l d denoted by Fe and t h e +value denoted by ae;

( 2 ) a t a f i e l d F s l i g h t l y less than Fe. A t the right-hand s i d e t h e curves go over i n t o long-range e l e c t r o s t a t i c terms o f the form -nePx; projected back, these curves meet a t the n a t u r a l reference f o r such terms, namely a point a t the p o s i t i o n of t h e e l e c t r i c a l reference surface, a t an energy Hn-n@ above t h e reference zero.

(Here ne i s t h e ion charge state immediately a f t e r escape,

I+

is the relevant l o c a l work-function, and Hn is t h e energy needed t o c r e a t e an n-fold ion i n remote field-free space, given by t h e sum o f t h e first n free-space i o n i z a t i o n energies.) The o u t e r end o f each "triangle" shown is obtained by drawing a l i n e parallel t o the energy a x i s , a t p o s i t i o n xP ( o r a e ) , u n t i l it i n t e r s e c t s t h e e l e c t r o s t a t i c term. The energy parameter h ( o r h e ) represents t h e height o f t h e t r i a n g l e .

I n g e n e r a l terms the parameter h i s given by:

h = ( A

+

Hn

-

n@)

-

"chemical termsw

-

Q ( 4 )

where t h e "chemical terms" r e l a t e t o i n t e r a c t i o n s between t h e evaporating atom and t h e surface, and are functionally dependent on F. I n t h e context of t h e charge draining mechanism it is not y e t possible t o give a specific expression f o r these

"chemical terms"; this is i n c o n t r a s t t o t h e corresponding s i t u a t i o n f o r t h e charge-hopping mechanism, where an (approximate) c l a s s i c a l a n a l y s i s is p o s s i b l e i n p r i n c i p l e [l]

.

I t i s a l s o c l e a r from a "triangle" i n t h e diagram that:

Assumptions involved i n deriving a Simple r e l a t i o n s h i p between xP and F are t h a t Q is small i n comparison with h; and t h a t

-

i n the v i c i n i t y o f f i e l d Fe

-

the v a r i a t i o n i n h as a function of F i s small i n comparison with the value of h. I f t h e s e assumptions a r e v a l i d , then we can put h he, and hence obtain the r e l a t i o n s h i p :

The argument above i s r e a l l y j u s t t h e equivalent f o r f i e l d evaporation o f t h e discussion i n t h e theory o f helium f i e l d i o n i z a t i o n t h a t leads t o t h e elementary formula f o r critical distance:

The p o i n t is that i n both cases t h e simple first approximation is t h a t d i s t a n c e XP is proportional t o t h e r e c i p r o c a l of f i e l d F.

The e s s e n t i a l question is whether t h e assumption, t h a t h i s approximately constant over the range of f i e l d of i n t e r e s t , is adequately v a l i d . I n t h e context of charge hopping (and, f o r that matter, o f helium i o n i z a t i o n ) it is possible t o demonstrate t h a t t h i s i s s o by a c l a s s i c a l approximate analysis. I n the case of charge draining, no s a t i s f a c t o r y approximate a n a l y s i s y e t e x i s t s . Simple-minded considerations lead u s t o think t h a t t h i s assumption is not p a r t i c u l a r l y good b u t is probably good enough as a rough first approximation, p a r t i c u l a r l y f o r the more r e f r a c t o r y metals with t h e i r r e l a t i v e l y high values of (A

+

Hn). W e propose t o d i s c u s s these considerations i n more depth elsarhere.

(6)

TO i l l u s t r a t e t h e d e r i v a t i o n To i l l u s t r a t e how t h e r e l a t i o n s h i p o f equation ( 6 )

.

between Q and xP needs t o be found

3.2 The r e l a t i o n s h i p between p and xE'

-

I n the o r i g i n a l proof o f e q . ( l ) , the "old" assumption was made that the w e l l shape was more o r less independent o f f i e l d , and consequently t h e r e l a t i o n s h i p between Q and x was a q u e s t i o n o f approximating t h i s w e l l shape. A p a r a b o l a was assumed as a first approximation, u s i n g the form:

where K is t h e force-constant f o r t h e bonding w e l l . This e q u a t i o n , combined w i t h e q . ( 6 ) above, l e a d s t o e q . ( l ) .

W i t h t h e charge-draining mechanism, the d e r i v a t i o n o f a r e l a t i o n s h i p between Q and xP is far less simple. The procedure that must i n p r i n c i p l e be used is i l l u s t r a t e d i n Fig.3. The ground-state curves are drawn for a range o f v a l u e s o f F. The c u r v e s are t h e n " s l i d " p a r a l l e l t o the energy axis u n t i l a l l t h e i r bases are a l i g n e d a t a c o n s t a n t l e v e l . A l o c u s is t h e n drawn through t h e p o s i t i o n s of t h e t o p s o f the humps. T h i s l o c u s is the c u r v e o f Q v e r s u s xP.

(7)

C7-70 JOURNAL DE PHYSIQUE

We have not been able t o f i n d any simple arguments t h a t would enable us t o p r e d i c t the shape o f this curve with confidence. The best that we can s a y a t present is that it seems not implausible that, over a range o f p o s i t i o n s , the curve should be

"concave upwards", as shown i n the diagram. I n this case, t h e parabola would be the obvious Simple approximation. So it i s not s u r p r i s i n g t h a t an assumed locus o f t h e form ( 8 ) above should f i t experimental r e s u l t s over a range o f f i e l d values.

The i n t e r p r e t a t i o n o f the parameters K and ae must be modified, however [?I. I t is no longer possible t o i n t e r p r e t K as a force-constant, though i f the locus i n sow general sense "follows t h e shape o f a bonding curve" then it is not t o o s u r p r i s i n g t h a t the K-values deduced from experiment [8, 91 are of the order of magnitude t h a t one would expect f o r atomic force-constants.

W i t h the parameter ae, it is necessary t o remember t h a t the bonding w e l l p o s i t i o n probably changes as a function o f f i e l d . If t h e locus is a parabola "all the way down t o zero", then ae has t o be i n t e r p r e t e d as t h e bonding d i s t a n c e (measured from t h e e l e c t r i c a l reference s u r f a c e ) i n t h e l i m i t of high evaporation f i e l d Fe, not the bonding d i s t a n c e f o r a n e u t r a l atom on a surface. I f the locus is not a parabola all the way down t o zero, then a e i n e f f e c t become a f i t t i n g parameter i n a regression analysis, and becomes an i n d i c a t o r rather than an estimator of bonding distance.

Our main conclusion is t h a t , even though the escape mechanism i n f i e l d evaporation be charge-draining r a t h e r than charge-hopping, it is not s u r p r i s i n g t h a t the experimental r e s u l t s f o r t h e more r e f r a c t o r y metals should approximately f i t eq. ( 1 ) . I n t h e Charge-draining mechanism, however, because o f the d i f f i c u l t i e s o f formulating demonstrably s a t i s f a c t o r y t h e o r e t i c a l analyses, e q . ( l ) has a somewhat weaker s t a t u s than i n t h e charge-hopping mechanism (where it is a provable approximate r e s u l t )

.

I t is possibly more u s e f u l now t o work t h e argument baclwards. Because t h e r e is a degree o f f i t between e q . ( l ) and experimental r e s u l t s , a t l e a s t as regards functional form, we may perhaps t a k e t h i s as an i n d i c a t i o n that the r e l a t i o n s h i p s between xP and 1/F and between and Q and xP assumed above are more-or-less s a t i s f a c t o r y f i r s t approximations. I f t h i s is so, then e q . ( l ) may represent a form t o which the r e s u l t s of m o r e detailed quantum mechanical treatments of charge draining should reduce upon s i m p l i f i c a t i o n , and may be u s e f u l as a signpost i n t h e developaent of the good quantum-mechanical t h e o r i e s that are urgently needed i n t h i s s u b j e c t area.

One of us (KB) thanks t h e Nuffield Foundation f o r personal f i n a n c i a l support.

FORBES, R.G., Surface Sci. 116 (1982) L195.

CHIBANE, K . , PORBES,R.G., Surface Sci. U 2 (1982) 191.

WADA, M., KONISI, M., NISHIKAWA, O., Surface SCi. 100 (1980) 439.

FORBES, R.G., Surface S c i . 102 (1981) 255.

F O ~R.G., , CHIBANE, K., Surface Sci. 125 (1982) 275.

KINGRAM, D.R., J. de Physique 47 (1985), C 0 1 1 0 q ~ e C2, p.11.

CHIBANE, K., P ~ . D . Thesis, University o f Aston i n Birmingham, 1985.

ERNST, N . , Surface Sci. 87 (1979) 469.

FOREES, R.G., CHIBANE, K . , ERNST, N., Surface S c i . 191 (1984) 319.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to