• Aucun résultat trouvé

ELECTRONIC AND STRUCTURAL PROPERTIES OF GRAIN BOUNDARIES IN Cz-GROWN SILICON BICRYSTALS

N/A
N/A
Protected

Academic year: 2021

Partager "ELECTRONIC AND STRUCTURAL PROPERTIES OF GRAIN BOUNDARIES IN Cz-GROWN SILICON BICRYSTALS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00221769

https://hal.archives-ouvertes.fr/jpa-00221769

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ELECTRONIC AND STRUCTURAL PROPERTIES OF GRAIN BOUNDARIES IN Cz-GROWN SILICON

BICRYSTALS

J. Werner, H. Strunk

To cite this version:

J. Werner, H. Strunk. ELECTRONIC AND STRUCTURAL PROPERTIES OF GRAIN BOUND-

ARIES IN Cz-GROWN SILICON BICRYSTALS. Journal de Physique Colloques, 1982, 43 (C1),

pp.C1-89-C1-94. �10.1051/jphyscol:1982113�. �jpa-00221769�

(2)

JOURNAL DE PHYSIQUE

CoLZoque C1, supp26rnent uu n o 10, Tome 4 5 , octobre 1982 page Ci-89

ELECTRONIC A N D S T R U C T U R A L PROPERTIES OF GRAIN B O U N D A R I E S IN Cz-GROWN SILICON

BI

CRYSTALS

J . Werner* and H . Strunk*'

*Ma~PLanck-ins tit-ut fur Festkiirperforsckung, Heisenbergstr. 1 , 7000 S t u t t g a r t 80, F.R. C.

**Max-PZanck-Institut fiir WetaLlforsckung, i n s t i t u t fiir Pkysik, Heisenbergsbr. 1 , 7000 S t u t t g a r t 80, F. R. C.

Rhsum6.- Les p r o p r i h t k s k l e c t r o n i q u e s d ' u n j o i n t de g r a i n s d p e t i t angle dans m r i s t a l de s i l i c i u m sont Gtudihes par l a technique de conductance de N i c o l -

l i a n e t Goetzberger. On trouve une d e n s i t e d ' k t a t s continue. La s t r u c t u r e c r i s t a l l o g r a p h i q u e de ce j o i n t de g r a i n s e s t c a r a c t e r i s k e avec un microscope h l e c t r o n i q u e ii transmission. Une comparison des r g s u l t a t s obtenus par ces deux mkthodes ind6pendantes i n d i q u e que l a charge dans l e j o i n t de g r a i n s e s t due aux d i s l o c a t i o n s extrins6ques.

A b s t r a c t .

-

The e l e c t r o n i c p r o p e r t i e s o f a low a n g l e g r a i n boundary i n a s i l i - con b i c r y s t a l a r e i n v e s t i g a t e d by the conductance technique o f N i c o l l i a n and Goetzberger. A continuous d e n s i t y o f s t a t e s i s found. The c r y s t a l l o g r a p h i c s t r u c t u r e o f t h i s g r a i n boundary i s c h a r a c t e r i z e d by transmission e l e c t r o n m i - croscopy. A comparison o f r e s u l t s obtained by these two independent methods i n - d i c a t e s t h a t the charge i n the boundary i s caused by e x t r i n s i c d i s l o c a t i o n s .

1. I n t r o d u c t i o n . A g r e a t number o f experimental techniques was used i n t h e l a s t years f o r the c h a r a c t e r i z a t i o n o f p o l y c r y s t a l l i n e semiconductors. However the c u r - r e n t understanding o f g r a i n boundaries (GB) i n semiconductors s t i l l s u f f e r s from a t l e a s t two f a c t s :

a ) There a r e o n l y very few methods t o evaluate t h e e l e c t r o n i c parameters o f t h e t r a p s t a t e s l o c a t e d a t the GB.

b ) Nearly no attempts have been made so f a r t o c o r r e l a t e t h e c r y s t a l l o g r a p h i c and e l e c t r o n i c s t r u c t u r e o f GB's.

I n t h i s c o n t r i b u t i o n we want t o show t h a t t h e conductance method o f N i c o l l i a n and Goetzberger [I] o r i g i n a l l y develloped f o r the S i / S i 0 2 i n t e r f a c e , can be t r a n s f e r r e d t o d e s c r i b e t h e behaviour o f a s i n n l e s i l i c o n GB. The e l e c t r i c a l l y a c t i v e GB i s ana- l y z e d by e l e c t r o n microscopy. I t w i l l be shown t h a t t h i s combination o f experimental techniques y i e l d s i n s t r u c t i v e i n s i g h t i n t o t h e r o l e o f t h e GB m i c r o s t r u c t u r e .

15 -3

2. Sample p r e a r a t i o n . Boron doped (NA=l'10 cm ) b i c r y s t a l s ar? grown by a double seed Czochra-l!ki techniaue. The two seeds a r e t i 1 ted around I-1101

.

For t h e e l e c t r i c a l c h a r a c t e r i z a t i o n , samples o f 12x3x0.4mm3 a r e c u t , the GB b i - s e c t i n g t h e l o n g edge [2,3]. Sections o f t h e b i c r y s t a l adjacent t o those f o r the e l e c t r i c a l c h a r a c t e r i z a t i o n a r e prepared f o r t h e e l e c t r o n microscope a n a l y s i s . A f t e r g r i n d i n g t o -50 Hm the specimens a r e i o n - m i l l e d u n t i l a h o l e appears t h a t i n t e r s e c t s t h e GB. High v o l t a g e e l e c t r o n microscopy (650 kV) permits i n s p e c t i o n

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1982113

(3)

C 1-90 JOURUAL DE PHYSIQUE

o f t h e GB o v e r a r e l a t i v e l y l o n g d i s t a n c e . A Siemens 102 (125 kV) i s used f o r h i g h e r r e s o l u t i o n . Due t o t h e s p e c i a l o r i e n t a t i o n o f t h e s e c t i o n s , t h e f o i l s a r e e x p e c t e d t o have t h e i r normal c o i n c i d i n g w i t h t h e t i l t a x i s o f t h e GP and t o c o n t a i n t h e GH p e r p e n d i c u l a r t o t h e s u r f a c e .

3. S t r u c t u r a l o b s e r v a t i o n s . The e x a c t p o s i t i o n o f t h e r o t a t i o n a l a x i s can be d e t e r - mined b y t h e K i k u c h i r n s o f b o t h g r a i n s . The a x i s i s found t o be l o c a t e d i n t h e m i d d l e o f t h e s t e r e o g r a p h i c t r i a n g l e a b o u t 16' o f f C1101 towards 4 1 3 1 1 , i . e . a l m o s t [29,45,101. The boundary p l a n e i s asymmetrical l y s i t u a t e d between t h e two g r a i n s and s h i f t e d t o n e a r [ I 2 1 1 i n one g r a i n . The a n g l e o f r o t a t i o n i s 7.8+0.3'.

F i g . 1 H i g h r e s o l u t i o n m i c r o g r a p h o f t h e i n v e f t i g a t e d GB. Upper g r a i n imaged i n m u l t i b e a m t e c h n i q u e , b r i g h t f i e l d .

F i g u r e 1 shows a h i g h r e s o l u t i o n micrograph. .The up e r g r a i n i s o r i e n t e d such t h a t t h e e l e c t r o n beam i s i n c i d e n t e x a c t l y a l o n g 11101. Decond g r a i n i s imaged v e r y k i n e - m a t i c a l l y . A p a r t f r o m h o r i z o n t a l t h i c k n e s s f r i n g e s a f i n e s t r u c t u r e w i t h a r e p e t i - t i o n d i s t a n c e o f 1.8 nm i s v i s i b l e a l o n g t h e GB. T h i s s t r u c t u r e can be , a t t r i b u t e d t o t h e d i s l o c a t i o n network making up t h i s GB. A c r u d e model f o r a [ I 1 0 1 t i l t boundary f o m d by two s e t s o f d i s l o c a t i o n s w i t h B u r g e r s v e c t o r s o f t y p e 1/2 <011> y i e l d s a d i s t a n c e o f -2.5 nm.

Another f e a t u r e o f t h e boundary i s documented by t h e f a i n t ' s e m i c i r c u l a r ' c o n t r a s t s v i s i b l e e s p e c i a l l y i n t h e k i n e m a t i c a l l y imaged g r a i n . These c o n t r a s t s and t h e p e r - t a i n i n g s t r u c t u r e i n t h e boundary a r e more pronounced i n F i 9 . 2 where b o t h g r a i n s a r e s e t f o r simultaneous e x c i t a t i o n o f t h e c o r r e s p o n d i n g {2201 d i f f r a c t i o n v e c t o r s .

F i g . 2 E x t r i n s i c d i s l o c a t i o n s i n t h e g r a i n boundary. B o t h g r a i n s f o r s i - multaneous e x c i t a t i o n . g = d i f f r a c t i o n v e c t o r

The observed s t r u c t u r e s a r e t y p i c a l f o r ' e x t r i n s i c ' GB d i s l o c a t i o n s [41 which i n t h i s case a r e c o n s i d e r a b l y 'smeared-out'

.

The U U W ~ Q ~ d i s t a n c e between t h e s e d i s l o - c a t i o n s ( t h a t a c t u a l l y r e p r e s e n t a r r a y s o f d i s t u r b a n c e s i n t h e small s c a l e d i s l o c a - t i o n network o f F i g . l ) i s - 2 5 nm. I t w i l l be shown i n t h e e l e c t r i c a l measurements t h a t f r o m t h e s t a t i s t i c a l model o f charge f l u c t u a t i o n s a t t h e GB, a minimum d i s t a n c e o f charges can be e v a l u a t e d . I f t h e GB charge would be s i t u a t e d i n t h e c l o s e l y spaced d i s l o c a t i o n s , t h i s d i s t a n c e s h o u l d b e comparable t o o r even s m a l l e r t h a n 1,8 nm.

F i g u r e 3 shows t h e GB a t a s m a l l e r m a g n i f i c a t i o n and i n d i c a t e s a quasihomogeneous d i s t r i b u t i o n o f t h e e x t r i n s i c d i s l o c a t i o n s , a t l e a s t o v e r d i s t a n c e s c o r r e s p o n d i n g t o t h e f i e l d o f view, i . e . a few 10 um. I t s h o u l d be n o t e d t h a t no i n d i c a t i o n i s

(4)

Mg.3

Quasihomogeneous d i s t r i b u t i o n o f e x t r i n s i c d i s l o c a t i o n s . Upper g r a i n two beam case, l o w e r g r a i n v e r y k i n e m a t i c a l l y .

found f o r GB p r e c i p i t a t i o n i n t h e range lnm o r l a r g e r . A l s o no l a t t i c e d i s l o c a t i o n s a r e observed.

4. E l e c t r i c a l measurements. R e c e n t l y we have shown [2,3] t h a t t h e z e r o b i a s dc con- ductance and t h e h i g h frequency b e h a v i o r o f a s i n g l e GB can be q u a n t i t a t i w d y e x - p l a i n e d by t h e r m i o n i c emission o f m a j o r i t y c a r r i e r s o v e r a GB p o t e n t i a l b a r r i e r c r e - a t e d by charged t r a p s t a t e s . The response o f t h i s charge t o sub-bandgap l i g h t a l l o w s us t o d e r i v e a d e n s i t y o f s t a t e s . The e l e c t r i c a l measurements r e p o r t e d h e r e a n a l y z e t h e response o f t h e charge on an a p p l i e d ac s i g n a l .

F i g u r e 4 shows c a p a c i t a n c e C and conductance G o f t h e GB f o r v a r i o u s dc b i a s a t 260K (ac o s c i l l a t o r l e v e l 10 mV). F o r f r e q u e n c i e s v < l o 6 ~ z t h e b e h a v i o r o f C cannot be ex- p l a i n e d bv t h e small s i g n a l response o f t h e d e p l e t i o n l a y e r w i d t h s ( F i g . 5 ) . W i t h t h i s model t h e huge c a p a c i t a n c e would l e a d o de l e t i o n l a y e r w i d t h s o f - 1 n m , incom- p a t i b l e w i t h known t r a p p e d charge of -1 -10' fe/rm

k

( f r o m h i g h frequency c a p a c i t a n c e ) . The behaviour o f C and

C

w i l l be b r i e f l y discussed here, d e t a i l s w i l l be p u b l i s h e d e l sewhere.

Error bar valid tor all curves from 30 lo 300 Hz

Fig.4. Capacitance C and conductance G f o r v a r i o u s b i a s values a t 260 K.

-

(5)

CI-92 JOURNAL DE PHYSIQUE

The n e t t h e r m i o n i c c u r r e n t o f h o l e s from l e f t t o r i g h t i n F i g . 5 i s :

F o r U=U +6UaC; ~ = @ ~ ~ - 6 @ ; eUdc>ikT; 6 ~ ~ ~ = ~ e j ~ ~ ; 6 @ ~ & j ( ~ ~ + f l = A1+jAZ, t h e measured dc

a d m i t t a n c e Yth=ajth/a6uac, w i t h y=e/k A*T exp(-eg/kT) e ~ p ( - e @ ~ ~ / k T ) can be shown t o be:

E q u a t i o n ( 2 ) shows t h a t t h e c u r r e n t

j t h

i s n o t determined by t h e ac v o l t a g e d i r e c t - l y , b u t by t h e response o f t h e b a r r i e r t o t h e v o l t a g e . A phase l a g between 6+ and 6Uac causes a c a p a c i t i v e t h e r m i o n i c c u r r e n t . The r e a l and i m a g i n a r y p a r t s A1 ,A2 o f t h e b a r r i e r can be c a l c u l a t e d from charge Q and t r a p p i n g c u r r e n t jSs:

w:

Band scheme a t t h e GB

GS and BSS a r e t h e conductance and susceptance of t h e t r a p p i n g process a t t h e GB w ~ t h r e s p e c t t o 6@. From ( 3 ) and ( 4 ) we g e t f i n a l l y :

B =wC BZ=w(C +C ) ; CL and C a r e t h e h i g h frequency c a p a c i t a n c i e s o f t h e l e f t aRd r & h t spa& caarge. The d a s u r e d a d m i t t a n c e can be w r i t t e n :

Yth = G t j B = G t jwC = y ( a , t j a 2 ) ( 6 ) The conductance G,, can be e x t r a c t e d from ( 5 ) and ( 6 ) w i t h t h e f i n a l r e s u l t :

E q u a t i o n ( 7 ) shows t h a t Gss can be c a l c u l a t e d f r o m conductance and susceptance o f t h e t h e r m i o n i c c u r r e n t . Gss may t h e n be a n a l y l e d u s i n g t h e w e l l known methods o f ad- mi t t a n c e spectroscopy f r o m s i n g l e c r y s t a l s o r MOS s t r u c t u r e s [ I ] .

I n F i g . 6 v a l u e s f o r Gs,/w e v a l u a t e d w i t h ( 7 ) from t h e d a t a o f Fig.4 a r e shown i n comparison t o t h e o r e t i c a l G,Jw c h a r a c t e r i s t i c s f o r t h r e e d i f f e r e n t d i s t r i b u t i ns

2

8

o f GB t r a p s t a t e s o v e r energy and space. Curve a ) repres_en_ts G,,/~=C,w~/(ltw T ) Z Z - -

f o r a s i n g l e l e v e l , c u r v e b ) G S S / w = ( e N S s / 2 ~ ~ ) I n ( l + w T ~ ) f o r a d e n s i t y o f s t a t e s (51. I n b o t h cases, t i m e c o n s t a n t % and d e n s i t y o f s t a t e s NSS c o u l d be determined f r o m t h e maximum o f t h e curve.

I t can be seen t h a t b o t h curves do n o t f i t t h e measured c u r v e even c l o s e l y . Time c o n s t a n t d i s p e r s i o n i s f a r broader. The t i m e c o n s t a n t -im i s r e l a t e d t o thermal ve- l o c i t y < v t h > , c a p t u r e c r o s s s e c t i o n ~ t h , g r a i n c a r r i e r c o n c e n t r a t i o n pG and t h e b a r r i e r h e i g h t @B by:

T~ = e ~ p ( e @ ~ / k T ) / < v > t h O t h

hi

( 8 )

(6)

F i g . 6

-

Gss/w evaluated from the data o f F i g . 4.

Comparison t o t h r e e d i f - f e r e n t models f o r t h e d i s t r i b u t i o n o f t r a p s t a t e s i n energy and over space.

x

lo-'

6

Equation ( 8 ) shows t h a t small f l u c t u a t i o n s o f @ due t o s p a t i a l f l u c t u a t i o n s o f charge l e a d t o a d i s p e r s i o n o f time constants and t h e r e f o r e broaden GSS/w. This was taken i n t o account by N i c o l l i a n and Goetzberger i n t h e i r paper about the Si/Si02 i n - t e r f a c e by a s t a t i s t i c a l model o f the f l u c t u a t i o n s [ l l . For t h e p r o b a b i l i t y o f po- t e n t i a l s a Gaussian d i s t r i b u t i o n p ( @ ) was used.

-

---f r a n measured &lo l a 3 5 V )

I n t h e framework o f t h i s we1 1 i n t r o d u c e d model Nss, o t h and the standard d e v i a t i o n as o f the p o t e n t i a l can be evaluated from exact s o l u t i o n s o f the i n t e g r a l ( 9 ) 1 6 , 7 J . We use t h e procedure given by Simonne [ 7 ] which r e q u i r e s the values o f t h e measured Gss/w a t the maximum o f the curve and a t t h e frequency 5umax.

0) single level

b l continuum 01 states [51 c t statistical model [ I ]

h r m i 1sr.l El 0518 .Y N,

.

13- 10"/crn'.v

loZ

m3 m4 m5 m6

To t e s t the a p p l i c a b i l i t y o f the model the i n t e g r a l i s then n u m e r i c a l l y c a l c u l a t e d f o r t h e whole frequency range. The agreement over the wide frequency range ( F i g . 6 )

proves t h a t the charge i n the GB i s d i s t r i b u t e d ~ ~o v a n p c e 5and c o v r t i - ~ ~ y

~ 1 ~ 1 o u ~ l . y i n energy.

6. Minimum d i s t a n c e o f charges a t the GB. Analyzing t h e model o f charge f l u c t u a t i o n s i n a general way, Brews 181 found the standard d e v i a t i o n as t o be r e l a t e d t o the mi- nimum distance o f charges. This d i s t a n c e

x

can be c a l c u l a t e d f o r a GB by:

x

= (ea-I)-'/* b, (10)

We c a l c u l a t e from our data a bias-independent minimum distance o f

X

= 752 nm.

7. Density o f s t a t e s , capture cross s e c t i o n and standard d e v i a t i o n . For the energy range o v+

.

e t o e cgbresgon i n g t e {QS j a ues o f F i g . l ) , t h e den- s i t y 0 f ~ s : a t ~ s ~ : ~ c ~ e a s e ~ ~ ; \ : ~ 6 1 . ~ . ! D /cm eYdto 1.: 1:

/cm

e:. The capture cross s e c t i o n i s (2.5+0.5) 1014cm

.

The standard d e v i a t i o n f o r a l l b i a s values i s ( 1 . 8 3 . 5 ) kTfe St the temperature o f 260 K.

Conclusions. The dec,Cticd p r o p e r t i e s o f the i n v e s t i g a t e d GB can be analyzed i n t h e framework o f the model o f p o t e n t i a l f l u c t u a t i o n s o r i g i n a l l y devel opped by N i c o l l i a n and Goetzberger [I] f o r the Si/SiOz i n t e r f a c e . I t provides a d e s c r i p t i o n o f t h ob-

%

served behavior o f the conductance and capacitance i n the frequency range 5-10 Hz.

E s p e c i a l l y the observed broad d i s p e r s i o n o f the time constants o f t r a p p i n g processes a t t h e GB can be explained by a colztinuoub d e n s i t y o f s t a t e s caused by charges d i s - t r i b u t e d b 2 a X h f i c & y i n space. The a t t r i b u t i o n o f a ningte l e v e l t o t h e GB i s no-t

(7)

C 1-94 JOURNAL DE PHYSIQUE

a p p l i c a h l e . As i n t h e case o f t h e S i / S i 0 2 i n t e r f a c e t h e p o t e n t i a l f l u c t u a t i o n model y i e l d s t h e d e n s i t y o f s t a t e s , NSS, t h e c a p t u r e c r o s s section,oth, and t h e s t a n d a r d

d e v i a t i o n o f p o t e n t i a l s , u s .

T h i s a n a l y s i s p e r m i t s t h e c o r r e l a t i o n o f e l e c t r o n i c p r o p e r t i e s w i t h t h e c h y n ~ o - g&uSic s t r u c t u r e o f t h e GB:

The s t a n d a r d d e v i a t i o n o

,

as o b t a i n e d from t h e p o t e n t i a l f l u c t u a t i o n model, y i e l d s a

m W w n

d i s t a n c e betwaen t h e s t a t i s t i c a l l y d i s t r i b u t e d charges o f 7+2 nm. The ob- s e r v a t i o n s on t h e e x t r i n s i c d i s l o c a t i o n s a r e c o m p a t i b l e w i t h t h i s anaTysis. They have an a v u a g e d i s t a n c e o f -25 nm and are,, c o n t r a r y t o t h e r e g u l a r a r r a y o f t h e n a r r o w l y spaced d i s l o c a t i o n s , &egu.eahey d i s t r i b u t e d i n t h e GB. T h i s comparison thus l e a d s t o t h e c o n c l u s i o n t h a t t h e charges a r e caused by and l o c a t e d a t t h e ex- t r i n s i c d i s l o c a t i o n s i n t h e i n v e s t i g a t e d g r a i n boundary.

Acknowledgments. The a u t h o r s a r e g r a t e f u l t o P r o f . H.J. Q u e i s s e r f o r h i s c o n t i n u o u s s u p p o r t e s p e c i a l l y by h e l p f u l d i s c u s s i o n s and s u g g e s t i o n s d u r i n g t h e course o f t h e work. They a l s o acknowledge f r u i t f u l d i s c u s s i o n s w i t h R. B a r t o n and M. P e i s l ( S i e - mens AG). Thanks a r e due t o E. Schonherr und E. K i s e l a and t h e i r groups f o r t h e growth and p r e p a r a t i o n o f t h e b i c r y s t a l s . U. Heinz, S. S a u t e r , and A. Vierhaus were o f i n d i s p e n s a b l e h e l p d u r i n g t h e p r e p a r a t i o n o f t h e m a n u s c r i p t .

References.

1 NICOLLIAN E.H., GOETZBERGER A., Be1 1 S y s t . Techn. 3.

46

(1967) 1055

2 WERNER J., JANTSCH W., FROEHNER K.H., QUEISSER H. J .

,

I n ' G r a i n Boundaries i n Semiconductors", ed. by H.J. Leamy, G.E. Pike, and C.H. Seager, North-Holland, New York (1982), p. 99

3 WERNER J., JANTSCH W., QilEISSER H.J., S o l i d S t a t e Corn.

42

(1982) 415 4 BALLUFFI R.W., KOMEM Y., SCHOBER T., S u r f a c e S c i . 3_1 (1972) 68 5 LEHOVEC K., A p p l . Phys. L e t t e r s

8

(1966) 48

6 GOETZBERGER A., KLAUSMANN E., SCHULZ

M.J.,

C r i t . Rev. S o l i d S t a t e S c i . f.i(l976) 1 7 SIMONNE J.J., S o l i d S t a t e E l e c t r o n . 16 (1973) 121

8 BREWS J.R., J . Appl

.

Phys.

43

( 1 9 7 2 ) 7 3 0 6

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to