• Aucun résultat trouvé

THE IMPORTANCE OF POSITIVE IONS IN OPTOGALVANIC DETECTION WITH THE THERMIONIC DIODE AND THE GLOW DISCHARGE LAMP

N/A
N/A
Protected

Academic year: 2021

Partager "THE IMPORTANCE OF POSITIVE IONS IN OPTOGALVANIC DETECTION WITH THE THERMIONIC DIODE AND THE GLOW DISCHARGE LAMP"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00223305

https://hal.archives-ouvertes.fr/jpa-00223305

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE IMPORTANCE OF POSITIVE IONS IN OPTOGALVANIC DETECTION WITH THE

THERMIONIC DIODE AND THE GLOW DISCHARGE LAMP

L. Pendrill, M. Pettersson, U. Österberg

To cite this version:

L. Pendrill, M. Pettersson, U. Österberg. THE IMPORTANCE OF POSITIVE IONS IN OPTOGAL- VANIC DETECTION WITH THE THERMIONIC DIODE AND THE GLOW DISCHARGE LAMP.

Journal de Physique Colloques, 1983, 44 (C7), pp.C7-489-C7-496. �10.1051/jphyscol:1983748�. �jpa-

00223305�

(2)

THE IMPORTANCE OF P O S I T I V E IONS I N OPTOGALVANIC DETECTION WITH THE THERMIONIC DIODE AND THE GLOW DISCHARGE LAMP

L.R. P e n d r i l l , M. P e t t e r s s o n a n d U . U s t e r b e r g

Fysiska I n s t i t u t i o n e n , ChaZmers Tekniska HijgskoZa, 5-412

96

Giiteborg, Sweden

R6sum6 - L ' i m p o r t a n c e des i o n s p o s i t i f s dans l e f o n c t i o n n e m e n t de deux d6tec- t e u r s o p t o g a l v a n i q u e s : d i o d e t h e r m o i o n i q u e e t lampe a decharge lumineuse c o n t i - nue, e s t d i s c u t e e . Les e f f e t s du temps de r6ponse de ces d e t e c t e u r s p o u r une d e t e c t i o n synchrone s o n t d i s c u t e s e t e x p l i q u e s grace a des r e s u l t a t s e x p e r i - mentaux obtenus s u r l e s signaux o p t o g a l v a n i q u e s en f o n c t i o n du temps e t de l a frequence s p e c t r a l e .

A b s t r a c t - The importance o f p o s i t i v e i o n s i n t h e f u n c t i o n n i n g o f two o p t o - g a l v a n i c d e t e c t o r s , t h e t h e r m i o n i c d i o d e and t h e d.c. glow d i s c h a r g e lamp i s discussed. The r e l e v a n c e o f t h e f i n i t e response t i m e o f t h e d e t e c t o r s t o d e t e c t i o n w i t h l o c k - i n a m p l i f i e r s i s e x e m p l i f i e d w i t h some e x p e r i m e n t a l r e s u l t s on t i m e - and s p e c t r a l l y - r e s o l v e d o p t o g a l v a n i c s i g n a l s .

1. I n t r o d u c t i o n

O p t o g a l v a n i c d e t e c t i o n o f t h e a b s o r p t i o n o f l i g h t by atoms and molecules has become a p o p u l a r a1 t e r n a t i v e t o more c o n v e n t i o n a l d e t e c t i o n methods i n o p t i c a l spectroscopy, such as f l u o r e s c e n c e d e t e c t i o n . However, w h i l e o p t o g a l v a n i c s i g n a l s a r e e a s i l y and s i m p l y d e t e c t e d , t h e p h y s i c a l processes l e a d i n g t o changes i n t h e e l e c t r i c a l p r o - p e r t i e s o f a gas f o l l o w i n g e x c i t a t i o n w i t h r e s o n a n t l i g h t a r e s t i l l l i t t l e understood owing t o t h e i r c o m p l e x i t y .

I n t h i s paper, we p r e s e n t a s t u d y o f two t y p e s o f o p t o g a l v a n i c d e t e c t o r , namely, t h e d.c. glow d i s c h a r g e and t h e space-charge l i m i t e d t h e r m i o n i c diode. S p e c i a l emphasis i s p l a c e d on t h e i m p o r t a n c e o f p o s i t i v e i o n s i n t h e p r o d u c t i o n o f t h e s i g n a l s . E x p e r i - mental r e s u l t s showing unexpected d i s t o r t i o n s o f a t o m i c s p e c t r a l p r o f i l e s m o n i t o r e d o p t o g a l v a n i c a l l y a r e d i s c u s s e d here i n terms o f t h e f i n i t e response t i m e o f t h e gas t o a change i n e x c i t a t i o n c o n d i t i o n s .

2. Comparison o f Two O p t o g a l v a n i c D e t e c t o r s

The t h e m i o n i c d i o d e and t h e d.c. glow d i s c h a r g e lamp a r e two v e r y d i f f e r e n t t y p e s o f o p t o g a l v a n i c d e t e c t o r . The p r i n c i p a l d i f f e r e n c e s i n opei-ation o f t h e s e d e t e c t o r s a r e summarised i n a s i m p l e way i n f i g u r e s 1 and 2. The p h y s i c a l c o n s t r u c t i o n can be, how- ever, q u i t e s i m i l a r .

The t h e r m i o n i c d i o d e i s b e l i e v e d t o work i n t h e f o l l o w i n g way / 1 , 2 / : a p o s i t i v e i o n c r e a t e d somewhere between t h e cathode and anode d r i f t s s l o w l y towards t h e " v i r t u a l "

cathode, t h e minimum i n d i o d e p o t e n t i a l i n t h e n e g a t i v e space charge. The l a t t e r i s formed o f t h e r m i o n i c a l l y - e m i t t e d e l e c t r o n s f r o m t h e h o t w i r e cathode,the temperature o f w h i c h i s a d j u s t e d f o r maximum l i m i t a t i o n o f t h e d i o d e c u r r e n t . The i o n i s t r a p p e d i n t h e space charge and, b e f o r e recombination, can p e r t u r b up t o 106 e l e c t r o n s . The response t i m e o f t h e d i o d e i s o f t h e o r d e r o f t e n t h s o f a second, m a i n l y l i m i t e d b y t h e i o n i c d r i f t v e l o c i t y i n t h e weak e l e c t r i c f i e l d s o f t h e d i o d e ( t y p i c a l l y of t h e o r d e r o f one v01 t ) .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983748

(3)

JOURNAL

DE PHYSIQUE

I. Thermionic Diode.

I I I l

I

cathode grid anode

F i g u r e 1.

11.

Glow Discharge Lamp,

- - - - - - - - p----

+

Space Chargel + ! ,-,

Y A +

, ,

/ + , -=- - -

F i g u r e 2.

On i n c r e a s i n g t h e anode-cathode p o t e n t i a l t o s e v e r a l hundred v o l t s ( h e a t i n g o f t h e

cathode i s no l o n g e r a n e c e s s i t y ) a d i s c h a r g e w i l l s t r i k e . A t t h e l o w e s t v o l t a g e s a t

which t h e d i s c h a r g e burns, l i g h t i s p r i n c i p a l l y e m i t t e d f r o m t h e n e g a t i v e glow

r e g i o n c l o s e t o t h e cathode. As shown i n f i g u r e 2, t h e s t r o n g e s t e l e c t r i c f i e l d s i n

t h e d i s c h a r g e a r e t o be f o u n d across t h e cathode d a r k space, T h i s i s a r e s u l t of a

p o s i t i v e space charge which b u i l d s up as many p o s i t i v e i o n s produced f r o m t h e gas on

breakdown accumulate a f t e r b e i n g a t t r a c t e d t o t h e cathode. The c y c l i c a l process o f

e l e c t r o n s produced b y bombardment o f t h e cathode by p o s i t i v e i o n s produced f r o m

(4)

d r i f t t i m e ) a f f e c t s t h e p o s i t i v e space charge c l o s e t o t h e cathode.

3. Time-resolved O p t o g a l v a n i c S i g n a l s : I o n M o b i l i t y Measurements

I n s e v e r a l experiments performed r e c e n t l y i n t h e Atomic P h y s i c s group i n Goteborg, s t u d i e s have been made o f t h e s t r o n g o p t o g a l v a n i c s i g n a l s a s s o c i a t e d w i t h t h e orange and r e d o p t i c a l t r a n s i t i o n s 3s t o 3p i n Ne i n commercial hollow-cathode lamps. A d i s c u s s i o n o f t h e s i z e and s i g n o f t i m e - r e s o l v e d s i g n a l s f o l l o w i n g r e s o n a n t e x c i t a - t i o n o f a Ne d i s c h a r g e w i t h s h o r t (nsec) p u l s e s o f l i g h t f r o m NZ- o r excimer l a s e r pumped dye l a s e r s has been i n d e p e n d e n t l y r e p o r t e d / 5 / . Here we c o n s i d e r opto- g a l v a n i c s i g n a l s r e s u l t i n g f r o m a chopped c o n t i n u o u s wave s i n g l e mode dye l a s e r / 6 / .

Signal

Light F i g u r e 3.

F i g u r e 3 shows t h e time-dependence o f t h e o p t o g a l v a n i c s i g n a l a s s o c i a t e d w i t h t h e t r a n s i t i o n 3 s / 3 / 2 1 J = l t o 3p1 1/21J=1 i n neon a t an a i r wavelength o f 724.5 nm (upper t r a c e ) t o g e t h e r w i t h t h e modulated l a s e r i n t e n s i t y ( l o w e r t r a c e ) c o r r e s p o n d i n g t o a 1.3 kHz chopping frequency. The d i s c h a r g e v o l t a g e was 320 V, c u r r e n t 2.0 mA. The e l e c t r i c a l c i r c u i t (shown i n F i g u r e 2 ) measures o n l y changes i n t h e d i s c h a r g e voltage.

The s i g n a l i s t h u s expected t o r e t u r n i n z e r o (equili-after each change i n e x c i t a t i o n c o n d i t i o n s .

F i g u r e 4 ( a ) shows s i g n a l s f r o m t h e same t r a n s i t i o n a t a much l o w e r d i s c h a r g e v o l t a g e (145 V, d i s c h a r g e c u r r e n t 0.1 mA) i n w h i c h t h e neon lamp i s r u n n i n g i n t h e n e g a t i v e glow d i s c h a r g e mode. F i g u r e 4 ( b ) i s drawn i n a way t o i n d i c a t e how a s u p e r p o s i t i o n o f s l o w p o s i t i v e ( l a s e r o n ) and n e g a t i v e ( l a s e r o f f ) components can r e c o n s t r u c t t h e observed s i g n a l .

A s i m i l a r l e n g t h e n i n g of t h e response t i m e o f t h e d i s c h a r g e t o a change i n l a s e r

i n t e n s i t y was a l s o observed when, a t a g i v e n e l e c t r i c f i e l d t h e p o i n t o f l a s e r ir-

(5)

JOURNAL DE

PHYSIQUE

,- - -

, - - - - _ ,

- - J

-

Zero Signal

,

l

.---/ .

-

-Zero Light

d Time

F i g u r e 4.

r a d i a t i o n was s h i f t e d f u r t h e r f r o m t h e cathode.

These o b s e r v a t i o n s s u p p o r t e d t h e i n t e r p r e t a t i o n of t h e p r o d u c t i o n o f o p t o g a l v a n i c s i g n a l s as a r i s i n g f r o m l a s e r - i n d u c e d changes i n p o s i t i v e Ne i o n p o p u l a t i o n . The slow response t i m e o f t h e d i s c h a r g e was o f t h e same o r d e r o f magnitude as expected f o r neon i o n s t o d r i f t ( t h e i o n m o b i l i t y i n neon. i s known t o be 6.5 cm2 V - 1 s - l / 7 / ) i n t h e ( r a t h e r p o o r l y determined) d i s c h a r g e v o l t a g e , f r o m i o n p r o d u c t i o n i n t h e l a s e r beam t o " d e t e c t i o n " i n t h e n e g a t i v e glow around t h e cathode.

O f course, p o s i t i v e i o n p r o d u c t i o n i s n o t t h e o n l y process capable o f c a u s i n g opto- g a l v a n i c s i g n a l s . The v a r i o u s r d l e s o f m e t a s t a b l e atoms (e.g. i n Penning i o n i z a t i o n ) , o f e l e c t r o n s and o f t h e p h o t o e l e c t r i c e f f e c t ( e s p e c i a l l y f r o m t h e UV Ne resonance r a d i a t i o n ) have been d i s c u s s e d b y v a r i o u s workers /8-10/. The response o f t h e d i s - charge d i s c u s s e d h e r e emphasises t h e d i r e c t ( f i r s t o r d e r ) importance o f Ne i o n s i n o p t o g a l v a n i c s i g n a l p r o d u c t i o n .

O f d i r e c t p r a c t i c a l importance i n spectroscopy, t h e s e delayed o p t o g a l v a n i c s i g n a l s

have a p r o f o u n d e f f e c t on t h e f u n c t i o n n i n g o f a l o c k - i n a m p l i f i e r (phase s e n s i t i v e

d e t e c t o r ) . S i g n a l s , such as shown i n F i g u r e 5 ( a ) , a r e delayed i n phase w i t h r e s p e c t

t o t h e r e f e r e n c e s i g n a l ( t h e chopped l a s e r l i g h t ) and a r e i n t e r p r e t e d b y t h e l o c k - i n

a m p l i f i e r as s i g n a l o f o p p o s i t e s i g n , u n l e s s t h e phase o f t h e a m p l i f i e r i s manually

r e a d j u s t e d t o r e g a i n t h e o r i g i n a l s i g n a l . F i g u r e 5 ( b ) shows how an a m p l i f i e d s i g n a l

o f z e r o can r e s u l t f r o m a non-zero o p t o g a l v a n i c s i g n a l delayed b y 900 w i t h r e s p e c t t o

t h e reference. The l o c k - i n a m p l i f i e r can t h u s b e used as an i n d i c a t o r o f t h e t i m e -

dependent b e h a v i o u r o f t h e s i g n a l s . T h i s f a c t i s used i n t h e n e x t s e c t i o n where we

d i s c u s s t h e e f f e c t s o f magnetic f i e l d s on t h e d i s c h a r g e and t h e r m i o n i c diode.

(6)

- - - - - - - -

b'

A-zero +

I I sign.

I I

_ _ j Time

F i g u r e 5.

4. Magnetic F i e l d E f f e c t s i n Discharge Lamps and Thermionic Diodes

I n t h i s s e c t i o n we show how a h i g h - r e s o l u t i o n s p e c t r o s c o p i c s t u d y o f t h e Zeeman e f f e c t i n atoms may be hampered b y i n i t i a l l y unexpected p e r t u r b a t i o n s o f t h e o p t o - g a l v a n i c s i g n a l " c a r r i e r s " . A t t h e same t i m e , t h e experiments r e v e a l some p o t e n t i a l l y i n t e r e s t i n g e f f e c t s f o r t h e s t u d y o f c o l l i s i o n a l i o n i z a t i o n , and f o r sub-Doppler spectroscopy.

F i g u r e 6 shows t h e l o c k - i n a m p l i f i e d o p t o g a l v a n i c s i g n a l s r e s u l t i n g f r o m t h e e x c i t a - t i o n o f t h e t r a n s i t i o n 3s13/21J=O t o 3p[1/21 J = l a t 743.89 nm i n Ne w i t h l a s e r l i g h t p o l a r i z e d l i n e a r l y p a r a l l e l t o a magnetic f i e l d a p p l i e d p a r a l l e l t o t h e d i s c h a r g e a x i s . The f r e q u e n c y o f t h e s i n g l e mode l a s e r l i g h t i s e l e c t r o n i c a l l y swept t h r o u g h t h e

a

component o f t h e a t o m i c resonance. The d i s c h a r g e v o l t a g e i s , as above, t h a t c o r r e s p o n d i n g t o j u s t above breakdown, i n t h e n e g a t i v e glow mode.

F i r s t l y , we n o t e t h a t t h e a m p l i f i e d s i g n a l s change s i g n . F o l l o w i n g t h e d i s c u s s i o n i n

t h e p r e v i o u s s e c t i o n , t h i s may be i n t e r p r e t e d as an i n c r e a s i n g d e l a y i n t h e response

o f t h e d i s c h a r g e t o a change i n l a s e r i r r a d i a t i o n w i t h i n c r e a s i n g magnetic f i e l d s .

T h i s i s n o t unexpected, s i n c e p o s i t i v e i o n s o f neon w i l l be o b l i g e d by t h e magnetic

f i e l d t o e x e c u t e Larmor o r b i t s ( o f about a mm r a d i u s ) p e r p e n d i c u l a r t o t h a t f i e l d .

The t i m e t a k e n f o r an i o n t o reach t h e cathode w i l l t h u s be lengthened, s i n c e t h e i o n

w i l l encounter more (charge t r a n s f e r ) c o l l i s i o n s on i t s l o n g e r s p i r a l under t h e

combined e f f e c t s o f t h e magnetic and e l e c t r i c f i e l d s .

(7)

JOURNAL DE PHYSIQUE

Laser

frequent;

&%Nwl-#www

T M H z

Figure 6 .

P- -. 4

L..., Il.q".nS"

-

F i g u r e 7 .

(8)

atoms whose component o f v e l o c i t y p a r a l l e l w i t h t h e l a s e r beam (perpendicular t o t h e magnetic f i e l d ) i s greater. This behaviour i s c o n s i s t e n t w i t h t h e above model, i f one assumes t h a t t h e i o n produced from t h e c o l l i s i o n o f the l a s e r - e x c i t e d atom takes up t h a t atom's v e l o c i t y a t the moment o f c o l l i s i o n : ions w i t h h i g h e r v e l o c i t y components perpendicular t o t h e magnetic f i e l d w i l l f o l l o w l a r g e r Larmor o r b i t s .

I t has been suggested by Series /11/ t h a t optogalvanic s i g n a l s should show a depend- ence on t h e alignment o f t h e e x c i t e d atoms since one expects t h a t t h e c o l l i s i o n a l i o n i z a t i o n p r o b a b i l i t y should vary according t o whether the atom i s a l i g n e d p a r a l l e l o r perpendicular t o t h e discharge a x i s . While i t i s d i f f i c u l t t o demonstrate e x p e r i - m e n t a l l y a d i f f e r e n c e i n amplitude o f

0

and

II

Zeeman components o f the optogalvanic s i g n a l s (owing t o , e.g. d e p o l a r i z a t i o n i n the c e l l windows), F i g u r e 7 shows t h a t t h e d i f f e r e n t Zeeman components change phase a t d i f f e r e n t magnetic f i e l d s . T h i s suggests t h a t ions produced from atoms a l i g n e d p a r a l l e l t o the magnetic f i e l d (and discharge a x i s ) are slower than those a1 igned perpendicular ( w i t h corresponding g r e a t e r c o l 1 i- s i o n cross-section, a t l e a s t g e o m e t r i c a l l y ) . We note t h a t these observations a r e d i f f e r e n t m a n i f e s t a t i o n s o f p o l a r i z a t i o n e f f e c t s i n optogalvanic s i g n a l s from those already r e p o r t e d by o t h e r workers /12-14/.

Other aspects o f t h e same phenomena were f i r s t observed i n p a r t o f an experimental

i n v e s t i g a t i o n /J-C Gay and L R P e n d r i l l ) o f t h e spectra o f Rydberg atoms i n s t r o n g

magnetic f i e l d s , performed a t t h e E.N.S. i n Paris. Figure 8 reproduces unpublished

s p e c t r a l curves o f t h e fundamental s e r i e s i n atomic caesium recorded when y e l l o w

l i g h t from a CW s i n g l e mode dye l a s e r was shone i n t o a thermionic diode placed co-

a c i a l l y i n t h e bore o f a superconducting magnet. D e t a i l s o f t h e experimental arrange-

ment may be found i n r e f /15/. I n a d d i t i o n t o l a r g e diamagnetic s h i f t s and broadening

(9)

C7-496 JOURNAL DE PHYSIQUE

o f t h e t r a n s i t i o n s t o h i g h Rydberg s t a t e s , t h e l o c k - i n a m p l i f i e d s i g n a l s a r e observed t o change s i g n w i t h i n c r e a s i n g magnetic f i e l d . The phase s h i f t s o f t h e o p t o g a l v a n i c s i g n a l s o c c u r a t l o w e r magnetic f i e l d s f o r t r a n s i t i o n s t o i n t e r m e d i a t e p r i n c i p a l quantum numbers (40<n<60) than h i g h e r and l o w e r members (n>60, n>30) o f t h e funda- mental s e r i e s o f CS.

As d i s c u s s e d above, t h e response t i m e o f t h e t h e r m i o n i c d i o d e i s l i m i t e d t o a few t e n t h s o f a second, m a i n l y due t o t h e t i m e t a k e n f o r p o s i t i v e i o n s ( C S ~ ' , formed by a s s o c i a t i v e i o n i z a t i o n Cs++Cs+Cs2++e-) t o d r i f t from t h e i r c r e a t i o n i n t h e l a s e r beam t o " d e t e c t i o n " i n t h e space charge s u r r o u n d i n g t h e cathode. T i m e - o f - f l i g h t measure- ments u s i n g a p u l s e d r u b y l a s e b Popescu e t a1 /16/ have shown t h a t cs2+ i o n s have a m o b i l i t y o f about 0.28 cm2"-'S-' i n t h e i r p a r e n t vapour.

References

:

1. Foote P D and Mohler F L, Phys. Rev. 26, 195 (1925)

2. Popescu I, G h i t a C, Popescu A and MusTG, Annalen d e r Physik 18, 103 (1966) 3. Loeb L. Fundamental Processes o f E l e c t r i c a l Discharges i n Gases, Chap. X I ,

J. W i l e y & Sons Inc., New York (1939)

4. Gerstenberger D C, S o l a n k i R and C o l l i n s

G

J , IEEE

I.

Quant. E l e c t . QE-16, 820 (1980)

5. Caesar T and H e u l l y J-L, Opts. Comm. 45, 258 (1983)

6. P e n d r i l l L R, P e t t e r s s o n M and D s t e r b G g U, Phys. Scr. 27, 306 (1983) 7. Massey H, Burhop E and G i l b o d y H, E l e c t r o n i c and I o n i c I m p a c t Phenomena 111,

1995 Clarendon, Oxford (1971)

8. Smyth K, K e l l y e r R and Crim F. Chem. Phys. L e t t s . 55, 473 (1978)

9. Smyth K, Bentz B, Bruhn C and H a r r i s o n W, J . Am. CGm. Soc. E, 797 (1979) 10. K r a v i s S and Haydon S, J. Phys. D. 14, 151 (1981)

11. S e r i e s G W, Comm. Atom. Molec. Phys-IQ, 199 (1981) 12. Hannaford P and S e r i e s G W, J. Phys. E, L661 (1981) 13. B e v e r i n i N and I n g u s c i o M, Nuov. Cim. L e t t . 9. 10 (1980) 14. J u l i e n L and P i n a r d M, J. Phys. E, 2881 (1982)

15. Delande D, Chardonnet C, Gay J-C, Opt. Commun. 42, 25-8 (1982)

16. Popescu I, N i c u l e s c u N and Popescu A, J. Phys. 0. 1, 313 (1968)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to