• Aucun résultat trouvé

PHOTOTHERMAL EXCITATION OF ELASTIC WAVES BY 10 ns LASER PULSES AND DETECTION BY PHOTOELASTIC LASER-BEAM DEFLECTION

N/A
N/A
Protected

Academic year: 2021

Partager "PHOTOTHERMAL EXCITATION OF ELASTIC WAVES BY 10 ns LASER PULSES AND DETECTION BY PHOTOELASTIC LASER-BEAM DEFLECTION"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00223169

https://hal.archives-ouvertes.fr/jpa-00223169

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PHOTOTHERMAL EXCITATION OF ELASTIC WAVES BY 10 ns LASER PULSES AND DETECTION

BY PHOTOELASTIC LASER-BEAM DEFLECTION

G. Wetsel, Jr, S. Stotts, C. Clark

To cite this version:

G. Wetsel, Jr, S. Stotts, C. Clark. PHOTOTHERMAL EXCITATION OF ELASTIC WAVES BY 10 ns LASER PULSES AND DETECTION BY PHOTOELASTIC LASER-BEAM DEFLECTION.

Journal de Physique Colloques, 1983, 44 (C6), pp.C6-67-C6-71. �10.1051/jphyscol:1983610�. �jpa-

00223169�

(2)

JOURNAL DE PHYSIQUE

Colloque C6, suppl6ment au nO1O, Tome 44, octobre 1983 page C6- 67

PHOTOTHERMAL EXCITATION OF ELASTIC W A V E S BY

1 0 n s

LASER PULSES

AND

DETECTION B Y PHOTOELASTIC LASER-BEAM DEFLECTION

G.C. W e t s e l , J r . , S.A. S t o t t s and C.G. C l a r k

Department of Physics, Southern Methodist University, Dallas, Texas 7 5 2 7 5 , U. S. A.

RSsum.6

-

On v g r i f i e expgrimentalement une t h g o r i e d e l ' e x c i t a t i o n photo- thermique d e s ondes S l a s t i q u e s d a n s l a m a t i s r e condensge p a r i m p u l s i o n l a s e r e n u t i l i s a n t l a d g v i a t i o n d ' u n r a y o n l a s e r i n d u i t e p a r e f f e t photo- S l a s t i q u e .

A b s t r a c t - A t h e o r y o f p h o t o t h e r m a l e x c i t a t i o n o f e l a s t i c waves i n condensed m a t t e r by s h o r t l a s e r p u l s e s i s e v a l u a t e d e x p e r i m e n t a l l y u s i n g p h o t o e l a s t i c l a s e r - b e a m d e f l e c t i o n .

The e x c i t a t i o n o f s h o r t e l a s t i c p u l s e s ( h i g h - f r e q u e n c y e l a s t i c waves) by p h o t o t h e r m a l means i s o f c u r r e n t i n t e r e s t b e c a u s e o f i t s r e l e v a n c e t o s e v e r a l a r e a s o f a p p l i e d p h y s i c s , i n c l u d i n g : t h e p h o t o a c o u s t i c microscope / I / , t h e r m a l - wave imaging / 2 / , d e t e r m i n a t i o n o f t h e r m o e l a s t i c m a t e r i a l p a r a m e t e r s , n o n d e s t r u c - t i v e e v a l u a t i o n o f d e v i c e s / 3 / , m o n i t o r i n g o f l a s e r d r i l l i n g /4/, and l a s e r a n n e a l i n g and m e l t i n g phenomena i n s e m i c o n d u c t o r s .

S i n c e p h o t o t h e r m a l l y - g e n e r a t e d u l t r a s o n i c waves c a r r y i n f o r m a t i o n c h a r a c t e r - i s t i c o f t h e g e n e r a t i n g medium and a d j a c e n t media, o n e - d i m e n s i o n a l t h e o r e t i c a l models have been developed w i t h t h e g o a l o f u n d e r s t a n d i n g t h e b a s i c m a t e r i a l e f f e c t s on t h e g e n e r a t i o n p r o c e s s . The i n i t i a l s t u d i e s i n v o l v e d frequency-domain c a l c u l a t i o n s o f s u r f a c e and b u l k h e a t - s o u r c e models / 5 , 8 / . The b u l k - h e a t i n g model c o n s i s t s o f a n o n a b s o r b i n g b a c k i n g m a t e r i a l t h r o u g h which t h e i n c i d e n t l i g h t p r o - p a g a t e s , an a b s o r b i n g f i l m , and a n o n a b s o r b i n g sample. As an a i d i n u n d e r s t a n d i n g t h e e s s e n t i a l p h y s i c s o f t h e phenomenon, a s u r f a c e h e a t i n g model w i t h t h e ab- s o r b i n g f i l m r e p l a c e d by an i n f i n i t e s i m a l s u r f a c e s o u r c e was a l s o t r e a t e d . Calcu- l a t i o n s o f t h e t e m p e r a t u r e , e l a s t i c - d i s p l a c e m e n t a m p l i t u d e and p h a s e , and u l t r a - s o n i c i n t e n s i t y a s f u n c t i o n s o f p o s i t i o n , s t r u c t u r e d i m e n s i o n s , and o p t i c a l ab- s o r p t i o n c o e f f i c i e n t were made f o r s e v e r a l m a t e r i a l c o m b i n a t i o n s . The p r e d i c t i o n s o f t h e s e models a r e i n s u b s t a n t i a l agreement w i t h what e x p e r i m e n t a l e v i d e n c e i s a v a i l a b l e . These one-dimensional models p r e d i c t t h a t t h e e l a s t i c d i s p l a c e m e n t a m p l i t u d e , A , i n t h e sample i n c r e a s e s w i t h i n c r e a s i n g o p t i c a l a b s o r p t i o n c o e f - f i c i e n t , B , u n t i l e s s e n t i a l l y a l l t h e i n c i d e n t l i g h t beam i s a b s o r b e d i n t h e f i l m ; A i n c r e a s e s w i t h f i l m t h i c k n e s s , d , f o r a g i v e n f3 u n t i l d i s e q u a l t o a b o u t 5/B, t h a t i s , about 5 a b s o r p t i o n l e n g t h s . However, A may c o n t i n u e t o i n c r e a s e w i t h f u r t h e r i n c r e a s e s i n d i f t h e f i l m i s t h e r m a l l y t h i n . The f r e q u e n c y dependence o f A i s a f u n c t i o n o f t h e m a t e r i a l p a r a m e t e r s o f t h e backing, f i l m , and sample; how- e v e r , i t i s a d e c r e a s i n g f u n c t i o n o f f r e q u e n c y , and i n i n t e r e s t i n g c a s e s / 7 / i s dominated by w An i m p o r t a n t r e s u l t o f t h i s modeling i s t h a t , f o r t h e most e f - f i c i e n t p h o t o t h e r m a l e l a s t i c - w a v e e n e r a t i o n , e i t h e r sample o r b a c k i n g ( o r b o t h ) s h o u l d have a l a r g e v a l u e o f u ( D ) ~ $ ~ and t h e r e s h o u l d n o t be a g r e a t a c o u s t i c - impedance mismatch of b a c k i n g and sample, where o i s e f f e c t i v e l y t h e thermal-ex- p a n s i o n c o e f f i c i e n t and D i s t h e t h e r m a l d i f f u s i v i t y . With r e g a r d t o thermal-wave imaging, where t h e d e t e c t e d u l t r a s o n i c wave i s i n t e n d e d t o p r o v i d e i n f o r m a t i o n t h a t i s p r i n c i p a l l y c h a r a c t e r i s t i c o f t h e h e a t e d volume o f t h e f i l m o r sample, t h e b a c k i n s h o u l d have r e l a t i v e l y s m a l l v a l u e s o f t h e r e l e v a n t p a r a m e t e r s , v i z . a ) . Thus, thermal-wave imaging measurements might b e s t be made w i t h a vacuum b a c k i n g .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983610

(3)

C6-68 JOURNAL DE PHYSIQUE

The most e f f e c t i v e experimental e v a l u a t i o n of t h e above models of photo- thermal e l a s t i c - w a v e g e n e r a t i o n would make use of t h e frequency domain. This approach i s p r e s e n t l y i m p r a c t i c a l s i n c e i t would i n v o l v e t u n a b l e , broad-band microwave-frequency modulation of l i g h t . Pulsed l a s e r s a r e r e a d i l y a v a i l a b l e , but t h e r i s e time of d e t e c t o r s i s a problem and t h e models must be solved i n t h e time domain. We have r e c e n t l y extended c a l c u l a t i o n s based on models s i m i l a r t o t h e above t o t h e time domain, and have designed a d e t e c t i o n scheme t h a t i s s u f - f i c i e n t l y f a s t t o e x p e r i m e n t a l l y e v a l u a t e t h e t h e o r y .

Photothermal g e n e r a t i o n was accomplished u s i n g 8 n s , % 400 kW p u l s e s from a Molectron W22 Ng f a s e r with a v a r i a b l e p u l s e - r e p e t i t i o n frequency up t o 100 H z . This "pump" l a s e r was focused on s o l i d s and l i q u i d s having o p t i c a l a b s o r p t i o n a t

337 nm. Because o f t h e r i s e time (%3ns) of t h e l a s e r p u l s e , it would be necessary t o have f a s t - r i s e t i m e t r a n s d u c e r s and e l e c t r o n i c s t o d e t e c t t h e u l t r a s o n i c waves i n t h e u s u a l way. The requirement of broad brandwidth, t h e f e a t u r e of i n t e g r a t i n g a s opposed t o l o c a l i z e d d e t e c t i o n , and t h e u l t r a s o n i c bonding problem argue a - g a i n s t t h e use o f e l e c t r o m e c h a n i c a l t r a n s d u c e r s . T h e r e f o r e , t h e u l t r a s o n i c p u l s e s were d e t e c t e d u s i n g a probe l a s e r (Ar+) beam d i r e c t e d p e r p e n d i c u l a r t o t h e d i - r e c t i o n o f wave p r o p a g a t i o n . The probe beam i s d e f l e c t e d by t h e p h o t o e l a s t i c e f f e c t when t h e e l a s t i c wave t r a v e l s through t h e probed r e g i o n of t h e sample. A f a s t (c0.5 ns r i s e t i m e ) photodiode placed behind an a p e r t u r e o r k n i f e edge de- t e c t e d t h e d e f l e c t i o n s i g n a l , which was connected t o a T e k t r o n i x 7854 waveform- d i g i t i z i n g o s c i l l o s c o p e . The o s c i l l o s c o p e i n t e r f a c e d with a Hewlett-Packard 9825T computer and 9872B g r a p h i c s p l o t t e r t o produce a permanent r e c o r d of t h e s i g n a l s .

An example o f t h e p r o b e - l a s e r d e f l e c t i o n s i g n a l a s a f u n c t i o n of time is shown i n F i g . 1 f o r a q u i n i n e s u l f a t e s o l u t i o n i n 0.04 M HC1,a good t e s t sample w i t h s t r o n g a b s o r p t i o n a t t h e pump-laser wavelength of 337 nm but r e l a t i v e l y t r a n s p a r e n t a t t h e p r o b e - l a s e r wavelength of 514 nm. Propagation of t h e photo- t h e r m a l l y generated d i s t u r b a n c e was s t u d i e d by t r a n s l a t i n g t h e sample p a r a l l e l t o t h e d i r e c t i o n of pump-laser beam p r o p a g a t i o n . By measurement of t h e time d e l a y of t h e probe-beam d e f l e c t i o n s i g n a l a s t h e sample was t r a n s l a t e d , i t was d e t e r - mined t h a t t h e d e l a y i s c h a r a c t e r i s t i c of t h e compressional wave v e l o c i t y i n

a

' ( u

* m

Q)

a

(U

*

(D

rn m

d d d

r( c( r( r( a

c j

T I E <WImas€mms

Fig. 1. Probe-beam d e f l e c t i o n s i g n a l v s . time f o r q u i n i n e s u l f a t e i n 0.04 M H C 1 ; pump-laser p u l s e width = 8 n s , p h o t o s i g n a l width '2 80 n s .

(4)

water and t h u s t h a t t h e primary probe-beam d e f l e c t i o n was due t o a t r a v e l i n g e l a s t i c wave i n t h e sample. Secondary s i g n a l s c h a r a c t e r i s t i c of echoes i n t h e q u a r t z w a l l s o f t h e c u v e t t e c o n t a i n i n g t h e sample were a l s o observed.

A one-dimensional model c o n s i s t i n g of two s e m i - i n f i n i t e media, a t r a n s p a r e n t backing and an o p t i c a l l y absorbing sample, was developed f o r purposes of analyzing photothermal g e n e r a t i o n and propagation of e l a s t i c p u l s e s i n t h e time domain. A bulk h e a t source c h a r a c t e r i z e d by o p t i c a l a b s o r p t i o n c o e f f i c i e n t , 6, was t r e a t e d a s t h e source term i n t h e t h e r m a l - d i f f u s i o n e q u a t i o n , i n t h e usual way / 7 / . The t h e r m a l - d i f f u s i o n and e l a s t i c - w a v e e q u a t i o n s along with t h e concomitant boundary- value problem were s o l v e d i n t h e Laplace transform domain. The e l a s t i c s t r a i n i n t h e sample was computed a s a f u n c t i o n of time by numerical Laplace i n v e r s i o n . Some p r e l i m i n a r y r e s u l t s of c a l c u l a t i o n s of t h e e f f e c t s of B , m a t e r i a l parameters, and propagation a r e shown i n F i g s . 2 - 4 . I n each c a s e , t h e absorbed l a s e r i n - t e n s i t y was assumed t o v a r y with time a s s i n 2 ( = t / . r ) , where T = 10 n s , f o r Ozt5-c;

t h e a c t u a l l a s e r p u l s e i s approximated by t h i s f u n c t i o n . The m a t e r i a l parameters were t a k e n from t h e l i t e r a t u r e / 7 / .

The c a l c u l a t e d e l a s t i c s t r a i n i s shown i n F i g . 2 a s a f u n c t i o n of time f o r 5 v a l u e s of x , where x i s t h e d i s t a n c e i n t h e sample (water) from t h e i n t e r f a c e with t h e backing ( q u a r t z ) . The o p t i c a l a b s o r p t i o n c o e f f i c i e n t of t h e sample i s assumed t o be 1 0 0 c m - ~ , which corresponds t o an a b s o r p t i o n l e n g t h ( 6 - I ) of 0 . 1 mm.

The s t r a i n p u l s e s h i f t s from b i p o l a r toward u n i p o l a r a s i t p r o p a g a t e s , with a g r a d u a l change i n shape. The e v e n t u a l shape of t h e p u l s e i s f a i r l y well e s - t a b l i s h e d a f t e r it has propagated about 5 a b s o r p t i o n l e n g t h s , o r about 0.5 mm, i n t h i s c a s e .

The c a l c u l a t e d s t r a i n , d i v i d e d by 6, i s shown i n F i g . 3 a s a f u n c t i o n of time f o r w a t e r / q u a r t z f o r s e v e r a l v a l u e s of B. The v a l u e of x f o r t h e s e calcu- l a t i o n s i s 0 . 5 mm, which corresponds t o a t l e a s t 5 a b s o r p t i o n l e n g t h s f o r each value of 6; t h u s , t h e e v e n t u a l p u l s e shape should be w e l l approximated. I t should be n o t i c e d t h a t t h e s t r a i n amplitude i n c r e a s e s with i n c r e a s i n g 6 over t h i s

TIME CNANOSEcomS)

Fig. 2. T h e o r e t i c a l s t r a i n v s . time f o r s e v e r a l v a l u e s of x , 6 = 100 cm-I, peak absorbed l i g h t i n t e n s i t y = 1 . 0 w/m2, .c = 10 n s , sample = water, backing = q u a r t z .

(5)

JOURNAL DE PHYSIQUE

T I E

<NANOSECONDS)

F i g . 3 . T h e o r e t i c a l s t r a i n / B v s . t i m e f o r s e v e r a l v a l u e s o f B i n cm-l, x = 0 . 5 mm, peak a b s o r b e d l i g h t i n t e n s i t y = 1 . 0 h'/m2, ~ = 1 0 n s , s a m p l e = w a t e r , b a c k i n g = q u a r t z .

12

3 93 8

CI

a 8 8 tB

r(

2

r(

T I E -

F i g . 4 . T h e o r e t i c a l s t r a i n v s . t i m e f o r s e v e r a l v a l u e s o f B i n cm-l, x = 0 . 1 mm, peak a b s o r b e d l i g h t i n t e n s i t y = l . O w / r n 2 , ~ = 1 0 n s , s a m p l e = w a t e r , b a c k i n g = a i r .

(6)

r a n g e o f 6. F u r t h e r m o r e , t h e pulsi: w i d t h d e c r e a s e s a s 6 i n c r e a s e s . For t h e p u l s e s shown, t h e f u l l - w i d t h a t o n e - h a l f t h e maximal s t r a i n i s o f t h e o r d e r o f

(BV) l , where v i s t h e c o m p r e s s i o n a l wave v e l o c i t y o f t h e sample.

The e f f e c t o f d i f f e r e n t boundary c o n d i t i o n s i s shown i n F i g . 4 , where s t r a i n i s shown a s a f u n c t i o n o f t i m e f o r 4 v a l u e s o f B . I n t h i s c a s e , t h e b a c k i n g m a t e r i a l i s assumed t o b e a i r , which i s a l a r g e a c o u s t i c impedance mismatch f o r w a t e r .

The p h o t o e l a s t i c a l l y - d e f l e c t e d probe-beam s i g n a l shown i n F i g . 1 h a s a f u l l - w i d t h a t o n e - h a l f t h e maximum a m p l i t u d e (FWHM) o f a b o u t 80 n s . The e x c i t i n g l a s e r p u l s e had a FWHM o f 8 n ? . Thus, t h e r e i s s u b s t a n t i a l b r o a d e n i n g o f t h e e l a s t i c p u l s e r e l a t i v e t o t h e h e a t i n g p u l s e , a s p r e d i c t e d by t h e t h e o r y . A c c u r a t e q u a n t i t a t i v e comparison o f e x p e r i m e n t a l and t h e o r e t i c a l e l a s t i c p u l s e s h a p e s i s hampered a t t h e moment by a l a c k o f p r e c i s e knowledge o f t h e B o f t h e sample.

F u r t h e r m o r e , one must b e c a r e f u l t o e l i m i n a t e t h e e f f e c t o f t h e d e t e c t i o n geometry on d e t e c t e d p u l s e s h a p e .

I n c o n c l u s i o n , we have developed a o n e - d i m e n s i o n a l model o f p h o t o t h e r m a l g e n e r a t i o n o f s h o r t e l a s t i c p u l s e s i n t h e t i m e domain. The t h e o r y p r e d i c t s t h a t t h e p u l s e s h a p e changes a s it p r o p a g a t e s from t h e p h o t o t h e r m a l g e n e r a t i o n volume, o b t a i n i n g i t s e v e n t u a l s h a p e i n a b o u t 5 a b s o r p t i o n l e n g t h s , and o b t a i n i n g a n e v e n t u a l FWHM o f t h e o r d e r o f (vB) l . The s h a p e and w i d t h o f t h e e l a s t i c p u l s e a l s o depends on t h e boundary c o n d i t i o n s a t t h e sample-backing i n t e r f a c e . P h o t o e l a s t i c l a s e r - b e a m d e f l e c t i o n a p p e a r s t o be a good t e c h n i q u e f o r e x p e r i m e n t a l s t u d y of p h o t o t h e r m a l e l a s t i c - w a v e g e n e r a t i o n / 9 / .

1. WICKFWWSINGHE, H. K . , BRAY, R.C., JIPSON, V. QUATE, C . F . and SALCEDO, J . R . Appl. Phys. L e t t .

33,

923 ( 1 9 7 8 ) .

2. ROSENCWAIG, A. and BUSSE,G.,Appl. Phys. L e t t .

36,

724 (1980);

C . S . C a r g i l l 111, N a t u r e 286, 69 ( 1 9 8 0 ) .

3 . von GUTFELL), 1T.J. a r d MELCHER, R . L . , Mater. E v a l .

35,

97 (1977).

4 . YEACK, C.E., MELCHER, R . L . and KLAUSER, H.E., Appl. Phy. L e t t .

41,

1043 ( 1 9 8 2 ) .

5 . WETSEL, G , C

.

J R . , (1980 U l t r a s o n i c s Symposium P r o c e e d i n g s , p p . 645-648, pp. 645-648, p u b l . ~-EE, N . Y . ( 1 9 8 0 ) .

6 . WETSEL, G . C . J R . ,

1981

U l t r a s o n i c s Symposium P r o c e e d i n g s , pp. 810-814, p u b l . by IEEE, N . Y . ( 1 9 8 1 ) .

7 . WETSEL, G.C. J R . , Appl. Phys. L e t t .

41,

511 ( 1 9 8 2 ) .

8 . WETSEL, G . C . J R . , "Ultrasonic-Wave G e n e r a t i o n by S u r f a c e and Bulk H e a t i n g i n M u l t i m a t e r i a l S t r u c t u r e s " , Proc. 1 2 ' t h I n t e r . Symp.

on A c o u s t i c Imaging, Plenum, London (1982).

-

9 . D e t e c t i o n o f c o m p r e s s i o n a l waves i n l i q u i d s by t h i s method h a s a l s o

been r e p o r t e d by ZAPKA, W . and TNI, A.C.,

a.

Phys. L e t t . 40, 310 ( 1 9 8 2 ) .

Références

Documents relatifs

ماعلا جاتنتسلاا 106  :ماعلا جاتنتسلاا عمتجملا ليثمتل تريتخا يتلا ةنيعلاو ،ةساردلا جئاتن هترهظأ ام دودحو هفادهأو ثحبلا تايضرف ءوض يف يتلا

�e mathematical model analysed in this work describes several aspects of phenotypic heterogeneity in Pseudomonas �uorescens switchers: the temporal variation of the

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated