• Aucun résultat trouvé

RECOVERY PROCESSES IN THE HIGH-TEMPERATURE DEFORMATION OF GERMANIUM, SILICON AND INDIUM ANTIMONIDE

N/A
N/A
Protected

Academic year: 2021

Partager "RECOVERY PROCESSES IN THE HIGH-TEMPERATURE DEFORMATION OF GERMANIUM, SILICON AND INDIUM ANTIMONIDE"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: jpa-00223045

https://hal.archives-ouvertes.fr/jpa-00223045

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

RECOVERY PROCESSES IN THE

HIGH-TEMPERATURE DEFORMATION OF GERMANIUM, SILICON AND INDIUM

ANTIMONIDE

H. Siethoff

To cite this version:

H. Siethoff. RECOVERY PROCESSES IN THE HIGH-TEMPERATURE DEFORMATION OF GERMANIUM, SILICON AND INDIUM ANTIMONIDE. Journal de Physique Colloques, 1983, 44 (C4), pp.C4-217-C4-225. �10.1051/jphyscol:1983426�. �jpa-00223045�

(2)

RECOVERY PROCESSES IN THE HIGH-TEMPERATURE DEFORMATION OF GERMANIUM, SILICON AND INDIUM ANTIMONIDE

H. Siethoff

Physikalisches Institut dev UniversitSt Wiirzbupg, Rontgenving 8, D-8700 Wurzbupg, F.R.G.

RESUME - Les courbes c o n t r a i n t e - d é f o r m a t i o n de Ge, Si e t InSb montrent, indépendam- ment du stade I I I r e s t a u r a t i o n bien connu, e t aux températures élevées, un autre

stade de r e s t a u r a t i o n (stade V ) . Tandis qu'un processus de d i f f u s i o n permet de rendre compte de l ' e x i s t e n c e du stade I I I , un mécanisme de "glissement dévié" a été proposé pour rendre compte de l ' e x i s t e n c e du stade V. Ces i n t e r p r é t a t i o n s sont déduites de l ' a n a l y s e de l a dérivée première des courbes c o n t r a i n t e - d é f o r m a t i o n , c ' e s t à d i r e du c o e f f i c i e n t d'écrouissage e t conduisent f i n a l e m e n t à l a conclusion que l e régime où la l o i - p u i s s a n c e n ' e s t plus s u i v i e e t qui e s t obtenue dans l e stade I I I pour l e s f o r t e s c o n t r a i n t e s , p o u r r a i t également ê t r e gouverné par un phénomène^

de "glissement d é v i é " . Le modèle de traînage des crans de B a r r e t t e t Nix appliqué à l a r e s t a u r a t i o n au stade I I I conduit à des c o e f f i c i e n t s d ' a u t o d i f f u s i o n des mpno- lacunes D = 41 exp ( - 3 , 0 eV/kT) cn^S"1 pour Ge e t D = 0,63 exp (3,7 eV/kTJcni^s"*

pour S i . Ces valeurs c o n f o r t e n t c e l l e s obtenues à p a r t i r d'expériences de d i f f u s i o n de t r a c e u r s .

ABSTRACT - The s t r e s s - s t r a i n curves of Ge, Si and InSb show, besides the well known recovery stage I I I , a t high temperatures a second recovery stage (stage V ) . While stage I I I has been explained i n terms of a d i f f u s i o n - c o n t r o l l e d recovery process, f o r stage V a c r o s s - s l i p mechanism has been proposed. These ideas are corroborated by an a n a l y s i s of the f i r s t d e r i v a t i v e of the s t r e s s - s t r a i n c u r v e s , i . e . the work- hardening c o e f f i c i e n t , which f i n a l l y leads t o the c o n c l u s i o n , t h a t the regime of power-law breakdown, which i s observed i n stage I I I a t high s t r e s s e s , may also be governed by c r o s s - s l i p . The j o g - d r a g g i n g model of B a r r e t t and N i x , when applied t o stage I I I r e c o v e r y , y i e l d s c o e f f i c i e n t s of monovacancy s e l f - d i f f u s i o n of 0=41 exp ( - 0 . 3 eV/kT) cm2 s "1 f o r Ge and D=0.63 exp(3.7 eV/kT) cm2 s "1 f o r S i . These para- meters f a v o r a b l y compare t o those evaluated from t r a c e r d i f f u s i o n experiments.

I - INTRODUCTION

At the Hu'nefeld conference the author / l / reported on f i r s t r e s u l t s concerning the recovery mechanism working i n stage I I I of the s t r e s s - s t r a i n curves of Ge and S i . Since t h a t time the understanding of the high-temperature deformation of these m a t e r i a l s has been improved. The development was promoted by the d e t e c t i o n HI of a

h i t h e r t o unknown second recovery stage i n the s t r e s s o r ) - s t r a i n ( a ) curves a t tempe- r a t u r e s above about 0.8 T (T absolute m e l t i n g p o i n t ) , which i s demonstrated f o r Si by curve (a) i n F i g . l : Beyond stage I I I the s t r e s s increases again forming a stage of l i n e a r hardening (stage I V ) , f o l l o w e d by the second recovery stage (stageV).

The curves (c) t o (e) i n F i g . 1 show the usual t h r e e - s t a g e hardening behaviour a t lower temperatures, w h i l e curve (b) i s of an intermediate t y p e .

The usual way t o i n v e s t i g a t e recovery phenomena i n the deformation curves i s t o de- f i n e / 2 , 3 / a s t r e s s a t the beginning of the actual recovery s t a g e s , i . e . T , , r and T ^ ( c f : , F i g . l ) , and t o examine i t s s t r a i n - r a t e and temperature dependences. The r e s u l t s of such experiments f o r Si,Ge,and InSb are presented i n the next two chapters

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983426

(3)

C4-218 JOURNAL DE PHYSIQUE

and a r e d i s c u s s e d i n terms of d i f f u s i o n - c o n t r o l l e d and c r o s s - s l i p r e c o v e r y mechanism f o r

TIII and tv, r e s p e c t i v e l y . An a I t e r n a t i v e methoa /4/ f o r a n a l y s i n g s t r e s s - s t r a i n curves i s t o i n v e s t i g a t e t h e f i r s t d e r i v a t i v e d r / d a a , t h e s o - c a l l e d h a r d e n i n g co- e f f i c i e n t . The a p p l i c a t i o n o f t h i s method t o t h e r e c o v e r y stages I 1 1 and V i n S i and Ge /5/ n o t o n l y c o r r o b o r a t e s t h e c o n c l u s i o n s drawn f r o m ~ 1 1 1 - and r y - a n a l y s i s , b u t a l s o leads t o t h e idea, t h a t t h e regime o f power-law breakdown, w h i c h i s observed i n s t a g e I 1 1 a t h i g h s t r e s s e s , may a l s o b e governed by c r o s s - s l i p . These phenomena w i l l be d e a l t w i t h i n c h a p t e r I V .

F i g . 1 - S t r e s s - s t r a i n curves o f S i a t d i f f e r e n t temperatures and ( i n i t i a l ) s t r a i n r a t e s ; t h e y i e l d p o i n t r e g i o n and s t a g e I a r e o m i t t e d ; t h e d i f f e r e n t d e f o r - m a t i o n stages and t h e s t r e s s e s 50

~III and TV a r e i n d i c a t e d f o r '7

c u r v e ( a ) . E

z E F .

40

Tl°C 1036 15.' l a ) 1300 051

_ I b ) 1200 L 8

I c ) 1000 048 I d ) 1000 1.2 IC) 1000 12

I 1 - ANALYSIS OF THE tIII-DATA

F i g . 2 shows t h e s t r e s s a t t h e o n s e t o f s t a g e 111, n o r m a l i z e d b y t h e shear modulus G, as a f u n c t i o n o f t h e temperature compensated s t r a i n r a t e f o r Ge /2,6,7/, S i /3,8/, and InSb /9,10/. The measurements p r e s e n t e d h e r e c o v e r a temperature range from 0.65 Tm t o t h e me1 t i n g p o i n t ( f o r S i t o 1300 OC) and a s t r a i n - r a t e r a n g e o f more t h a n two o r d e r s o f magnitude. T h i s p l o t i s based on a model /16/ w h i c h o r i g i n a l l y d e s c r i - bes s t e a d y - s t a t e c r e e p o f m a t e r i a l s a t h i g h temperatures by t h e d i f f u s i o n - c o n t r o l l e d c l i m b of edge d i s l o c a t i o n s as t h e u n d e r l y i n g r e c o v e r y mechanism:

DGb Y 3 T n ic = A - (-)

kT Gb . . . . . ( 1 )

Here t h e c r e e p r a t e ic depends on s t r e s s by a power law ( n i s t h e s t r e s s exponent), w h i l e i t s t e m p e r a t u r e dependence i s m a i n l y overned by t h e c o e f f i c i e n t of s e l f - d i f f u s i o n ~ = ~ , e x p ( - Q s D / t ~ ) , where Do and Q s ~ a r e t h e p r e - e x p o n e n t i a l f a c t o r and t h e

(4)

-

lo-4

Gc 5 1 JnSb dD/ev 2.8 3 5 I 5 1lrn3rn~' 75 58 38

F i g . 2 - S t r e s s a t t h e b e g i n n i n g o f s t a g e 111, c o r r e c t e d b y t h e s h e a r modulus G, as a f u n c t i o n o f t h e temperature-compensated s t r a i n r a t e iIII f o r Ge /2,6,7/, S i /3,8/, and InSb /9,10/ i n a d o u b l e - l o g a r i thmi c p l o t a c c o r d i n g t o e q u a t i o n (2);

d e v i a t i o n s f r o m t h e s t r a i g h t l i n e s a t h i g h s t r e s s e s a r e a s c r i b e d t o t h e regime o f power-law breakdown; G = { c ~ ~ ( c ~ ~ - c ~ ~ ) / ~ } ~ / ~ , w i t h t h e e l a s t i c m o d u l i t a k e n f r o m r e f s . 111-13/; s t a c k i n g f a u l t e n e r g i e s y from r e f s . /14,15/.

a c t i v a t i o n energy, r e s p e c t i v e l y , o f s e l f - d i f f u s i o n ( k i s B o l tzmann's c o n s t a n t ) . The c r e e q r a t e i s c o r r e c t e d by t h e s t a c k i n g - f a u l t energy y ( 5 8 m~m-2, 75 m~m-2, and 38 mJm- f o r S i /14/, Ge /14/, and InSb /15/, r e s p e c t i v e l y ) ; b i s t h e magnitude o f t h e Burgers v e c t o r , and A i s a c o n s t a n t .

F o r t h e i n t e r p r e t a t i o n o f s t a g e I11 r e c o v e r y e q u a t i o n ( 1 ) was used /2,3,6/ i n i n v e r - t e d form, r e p l a c i n g T by '111 and ic by iIII ( t h e s t r a i n r a t e a s s o c i a t e d w i t h ~ 1 1 ~ ) :

w i t h A* = ( ~ T / A D , G ~ ) ' / ~ ( G ~ / ~ ) ~ / ~ .

F i g . 2 demonstrates t h a t t h i s f o r m a l i s m s u i t a b l y d e s c r i b e s t h e T ~ ~ ~ - d a t a f o r n e a r l y t h e whole s t r e s s range. Only f o r t h e h i g h e s t s t r e s s e s t h e r e a r e d e v i a t i o n s f r o m t h e power law. T h i s regime o f t h e s o - c a l l e d power-law breakdown, w h i c h i s a l s o observed i n c r e e p experiments f o r most m a t e r i a l s , w i l l b e f u r t h e r d i s c u s s e d i n c h a p t e r I V . E q u a t i o n ( 2 ) has been f i t t e d t o t h e d a t a shown i n F i g . 2 f o r Ge, S i , and InSb.

The o p t i m a l v a l u e s o f QSD and n a r e g i v e n i n Table 1 i n t h e f i r s t 1 i n e (Do cannot b e determined w i t h o u t knowing t h e c o n s t a n t A ) . The magnitude o f t h e s t r e s s exponent n i s i n accordance w i t h t h e creep model used h e r e /16/. The ~ ~ ~ - v a l u e s , w h i c h have a l s o been used f o r p l o t t i n g Fig. 2, a r e i n a s a t i s f a c t o r y , though n o t p e r f e c t agreement w i t h t h e a c t i v a t i o n e n e r g i e s o f monovacancy s e l f - d i f f u s i o n f r o m t r a c e r experiments ( c f . T a b l e 1 ) . As t h e d i f f u s i o n o f t h e I n and Sb atoms i s a s e q u e n t i a l process f o r t h e c l i m b mechanism i n InSb, t h e d i f f u s i o n parameters g o t f r o m t h e ~ 1 1 1 - a n a l y s i s have t o b e a s c r i b e d t o t h e s l o w e s t moving s p e c i e s ( I n ) . F o r S i t h e s e l f - d i f f u s i o n f r o m t r a c e r experiments /17/ a t temperatures above a b o u t 1050 OC shows an a c t i v a t i o n energy n e a r 5 eV, which has been a t t r i b u t e d t o i n t e r s t i t i a l d i f f u s i o n . A change i n mechanism has been found, however, f o r t h e d i f f u s i o n o f Ge i n S i around 1050 OC /19/, w i t h a c t i v a t i o n e n e r g i e s o f 3.93 eV and 4.97 eV f o r t h e low- and t h e h i g h - t e m p e r a t u r e

regime, r e s p e c t i v e l y . The 1 ow-temperature value, w h i c h has been a s c r i b e d t o mono- vacancy d i f f u s i o n , has been adopted i n Table 1. The '111-measurements, which c o v e r t h e temperature range from 800 OC t o 1300 OC, do n o t show any change i n mechanism /8/. Therefore t h e a c t i v a t i o n energy measured h e r e i m p l i e s , t h a t s t a g e 111 r e c o v e r y i s governed by a vacancy mechanism f o r t h e whole t e m p e r a t u r e range.

(5)

C4-220 JOURNAL DE PHYSIQUE

Table 1 - Results o f the ~III- and r ~ ~ ~ ~ - a m l y s i s . A c t i v a t i o n energies f o r mono- vacancy s e l f - d i f f u s i o n from t r a c e r experiments a r e given f o r comparison; f o r InSb t h e value o f t h e ( s l o w e r ) I n - d i f f u s i o n i s used.

Method Ge S i InSb

1

QsD/eV n Ref.

I

QsD/eV n Ref.

I

I?"/ev n Ref

* f i t t o the data from r e f s . /3,8/; ** f i t t o t h e data from r e f s . /9,10/.

r1 I 1- a n a l y s i s '111m- a n a l y s i s tracer diffusion

Measurements o f TI I, though i n l i m i t e d temperature and s t r a i n - r a t e ranges, have a l s o been performea by Alexander and Haasen /21/ (who f i r s t proposed t h e climb mecha- nism) and by Kojima and Sumino /22/ f o r Ge and by Mousset /23/ f o r S i . The accordance w i t h t h e parameters o f Table 1 i s r a t h e r good. The p r e f a c t o r , however, shows l a r g e r v a r i a t i o n s . The reason may be sought i n d i f f e r e n t experimental procedure.

I 1 1 - ANALYSIS OF THE TV*

2.8 3.7 /2/

2.9 3.4 / 5 /

3.0 - 8

The i n t e r p r e t a t i o n o f TV as a f u n c t i o n o f temperature and t h e associated s t r a i n r a t e

i v i s n o t as s t r a i g h t - f o r w a r d as t h a t o f f o r two reasons: The temperature range a c c e s s i b l e t o measurements i s s m a l l e r ( e s p e c ~ a l l y f o r S i ) and t h e s c a t t e r o f t h e data i s increased on account o f t h e specimen d i s t o r t i o n s a t the r e l a t i v e l y h i g h de- formation degrees a t r v . F.ig. 3 shows t h e data f o r Ge /2/ together w i t h creep measurements /24/, which w i l l be discussed l a t e r . I n t h i s double-logarithmic p l o t , the t v ( 6 ~ ) - r e l a t i o n seems t o be curved, i . e . n o t t o obey a power law. I n t h e i r f i r s t paper /2/, however, t h e authors approximated these measurements by s t r a i g h t p a r a l l e l l i n e s ( a procedure n o t u n r e a l i s t i c because o f t h e data s c a t t e r i n g ) and used t h e same formalism f o r t h e i n t e r p r e t a t i o n o f r V ( i V , ~ ) as f o r m e r l y f o r rIII(ciI~~,T). By t h i s way an a c t i v a t i o n energy o f 3.1 eV and a n-value o f 5 was obtained, which arereason- a b l e parameters i n t h e framework o f t h a t formalism ( c f . chapter 11).

F i g . 3 - Double-logarithmic p l o t o f s t r e s s vs. s t r a i n r a t e a t d i f f e r e n t tempera- tures f o r t h e r v ( i V , ~ ) - d a t a /2,25/ and f o r the measurements o f steady-state creep /24/ i n Ge.

3 . 5 3.5 *

3.7 3.4 /5/

3.9 - 1

1.5 3.8 **

- - -

1.8 - /20/

(6)

S i m i l a r i n v e s t i g a t i o n s on S i and InSb, however, q u e s t i o n e d t h i s view, and arguments became e v i d e n t , t h a t s t a g e V m i g h t b e c o n t r o l l e d by a c r o s s - s l i p mechanism /25/.

From t h e two c r o s s - s l i p t h e o r i e s /26,27/, which can b e compared t o macroscopic de- f o r m a t i o n experiments, t h a t o f W o l f /26/ c o u l d be r u l e d o u t f o r t h e i n t e r p r e t a t i o n o f t h e r V ( a v , T ) - d a t a , w h i l e t h e c r o s s - s i i p model o f E s c a i g /27/ seemed t o b e a s u i t - a b l e approach t o t h e s e experiments /25/.

I n E s c a i g ' s model t h e f u n c t i o n r V ( & , T ) may be w r i t t e n as f o l l o w s : Method

e q u a t i o n s ( 3 ) and ( 4 ) c r o s s - s l i p o f s i n g l e screw d i s l o c a t i o n s /28/

a n a l y s i s o f x v /2,25/

a n a l y s i s /25/

o f creep d a t a /4/

a n a l y s i s /25/ o f c r e e p d a t a /29,30/

a n a l y s i s o f TV

t o g e t h e r w i t h h i g h - s t r e s s d a t a

O f =111

w i t h t h e parameters l n ( i o x l s ) = 2 4 + 2 and -co=y/ab (a.3). The maximum c r o s s - s l i p energy E0 i s g i v e n by

Q

G~ b 4 Gb 1/2

E; = ( I n ... ( 4

I n e q u a t i o n ( 3 ) t h e s t r e s s ~v i s p r o p o r t i o n a l t o t h e temperature and t o t h e l o g a r i t h m o f t h e s t r a i n r a t e , i n accordance w i t h t h e c u r v a t u r e of t h e s t r e s s vs. s t r a i n - r a t e r e l a t i o n i n t h e d o u b l e - l o g a r i t h m i c p l o t o f F i g . 3. U s i n g t h e s t a c k i n g - f a u l t e n e r g i e s i n t r o d u c e d e a r l i e r /14/, ~8 and ro can b e c a l c u l a t e d f r o m t h e above e q u a t i o n s and a r e 1 i s t e d i n t h e f i r s t l i n e o f T a b l e 2. F o r comparison, E and ro d e r i v e d f r o m t h e c r o s s - s l i p b e h a v i o r o f s i n g l e screw d i s l o c a t i o n s /28/ a r e i v e n i n t h e second l i n e . E q u a t i o n ( 3 ) has been f i t t e d w i t h t h e t h r e e f r e e parameters EQ, ro and i0 t o t h e rv- d a t a o f Ge /2/ and S i /25/; t h e o p t i m a l values a r e p r e s e n t e d i n t h e t h i r d l i n e o f T a b l e 2. F o r Ge t h e r e i s a f a i r agreement w i t h E s c a i g ' s t h e o r y . F o r S i t h e agreement i s p o o r e r f o r reasons mentioned above; t h i s problem w i l l b e d e a l t w i t h a g a i n i n c h a p t e r I V .

Ge

E;/~V 1 n(;,xls) ro/Nmm -2

4.3 24 62.5

3.9 - 22.7

3.8 27.2 112

3.95 28.9 460

4.5 25.3 349

3.5 24.3 114

Measurements o f s t e a d y - s t a t e creep p u b l i s h e d i n t h e l i t e r a t u r e /24,29,30/ have a l s o been e x p l a i n e d b y c r o s s s l i p /25/. A f i t o f E s c a i g l s model t o these d a t a ( r e p l a c i n g

TV by t h e creep s t r e s s r and iV by t h e creep r a t e ac i n e q u a t i o n ( 3 ) ) y i e l d s t h e parameters a l s o l i s t e d i n T a b l e 2. The h i g h t o - v a l u e s have been e x p l a i n e d /25/ i n terms o f t h e h a r d {Ill) o r i e n t a t i o n o f t h e creep specimens and o f t h e o r i e n t a t i o n dependence h i d d e n i n E s c a i g ' s t h e o r y . F i g . 3 demonstrates t h e c o i n c i d e n c e between TV and one s e t o f t h e s e c r e e p d a t a .

S i

E;/~v l n ( i , x l s ) io/Nmm - 2

7.4 2 4 49.7

6.1 - -

4.4 21 - 9 123

4.9 - 296

5.6 25.3 338

4.9 26.1 152

(7)

JOURNAL DE PHYSIQUE

Fig. 4 - Work-hardening c o e f f i c i e n t a as a f u n c t i o n o f t h e shear s t r e s s f o r S i , s t a r t i n g a t the onset o f stage 111; the corresponding s t r e s s - s t r a i n curves are shown i n F i g . 1; the maximum s t r e s s f o r stage 111, TIII~, i s d e f i n e d by the l i n e a r e x t r a - polation @ - t o .

IV - ANALYSIS OF THE WORK-HARDENING COEFFICIENT

An a1 t e r n a t i v e method t o 3nalyse s t r e s s - s t r a i n curves, f i r s t a p p l i e d t o metals /4/, i s t o i n v e s t i g a t e t h e work-hardening c o e f f i c i e n t O = d d d a . I t w i l l be shown i n t h e following, t h a t t h i s method leads t o an improvement o f the QSD-values obtained from stage I 1 1 a n a l y s i s and o f t h e c r o s s - s l i p parameters f r a n t v - a n a l y s i s f o r S i .

Fig. 4 shows, s t a r t i n g a t t h e onset o f stage 111, e a s a f u n c t i o n o f t h e shear s t r e s s f o r the deformation curves o f F i g . 1. A t h i g h temperatures, i .e. i n the curves ( a ) and (b), one c l e a r l y d i s t i n g u i s h e s between the deformation stages 111, I V , and V.

W i t h i n stage 111 one always f i n d s a r e l a t i o n 8-(1-r/rII g ) f o r S i and Ge, and a maxi- mum s t r e s s f o r stage 111, r l ~ m can be d e f i n e d by the { I n e a r e x t r a p o l a t i o n 0+0. The s r r e r s ~ 1 1 ~ . has been anaiysed i i t h respect t o i t s temperature and s t r a i n - r a t e

( a l l I m ) dependence /5/. The r e s u l t was a s t r i k i n g s i m i l a r i t y w i t h t h e r111-data d i s - cussed i n chapter 11. Therefore, equation ( 2 ) has been compared t o the T~II~(~III~)- data, r e p l a c i n g irII by a I I I m and TIII by 'IIIm; the optimal values o f the f i t s a r e given i n Table 1 i n t h e second l i n e . I t i s s a t i s f a c t o r y t o see t h a t t h e QSD-values obtained f o r S i and Ge a r e now close t o t h e values found i n t r a c e r experiments. The '111~-data, which cover temperature ranges from 640 OC t o 920 OC f o r Ge and from 1000 OC t o 1300 OC f o r S i , a r e shown i n F i g . 5 i n a p l o t s i m i l a r t o F i g . 2. -

The i n v e s t i g a t i o n o f t h e maximum s t r e s s tIIIm thus corroborates the conclusion drawn i n chapter 11, t h a t i n S i and Ge t h e same recovery mechanism, i .e. t h e d i f f u s i o n - c o n t r o l l e d c l i m b o f edge d i s l o c a t i o n s , operates n o t o n l y a t t h e beginning b u t a l s o i n t h e whole stage 111.

R e f e r r i n g again t o F i g . 4, t h e r e i s no l i n e a r r e l a t i o n s h i p between t h e work-harden- i n g c o e f f i c i e n t and the shear s t r e s s i n stage V. I n t h e curves ( c ) and ( d ) stage V enlarges a t t h e expense o f stages I V and V. I n curve (e), f i n a l l y , the beginning of stage I11 seems t o be no longer governed by t h e climb mechanism working i n stage I 1 1 a t h i g h temperatures, b u t by t h e recovery mechanism r e s p o n s i b l e f o r stage V, i .e.

cross s l i p . On the o t h e r hand, TIII evaluated from curve ( e ) (and from o t h e r curves g o t a t h i g h s t r e s s l e v e l s ) belongs t o the regime o f power-law breakdown, which i s

(8)

p l o t according t o equation ( 2 ) ; G and y a s i n F i g . 2 .

Fig. 6 - S t r e s s e s T I I I and

TV as a function of t h e tem- p e r a t u r e a t a f i x e d s t r a i n r a t e f o r Si and Ge. A t low temperatures t h e TI 1 d a t a i n t h e regime of power-Lw break- down approximate t h e 1 i n e a r e x t r a p o l a t i o n of t h e TV-data.

(9)

C4-224 JOURNAL DE PHYSIQUE

shown i r i F i g . 2 a t h i g h s t r e s s e s ( c f . a l s o c h a p t e r I I ) . These f i n d i n g s i m m e d i a t e l y l n a d t o t h e conc!usion, t h a t t h e regime o f power-law breakdown s h o u l d b e governed b y c r o s s s l i p . T h i s i d e a i s c o n f i r m e d by F i g . 6. Here t h e s t r e s s e s TIII and a r e p i o t t e d l i n e a r l y as a f u n c t i o n o f t h e t e m p e r a t u r e a t a f i x e d s t r a i n r a t e . I n Ge t h e -cy(T)-curve i s s t r a i g h t as p o s t u l a t e d by E s c a i g ' s theory, w h i l e t h e TIII(T)-curve n e c e s s a r i ! ~ i s c u r v e d i n t h i s p l o t . A t temperatures below a b o u t 600 OC, where t h e power l a w breaks down, t h e ~ 1 1 1 - d a t a a p p a r e n t l y approximate t h e l i n e a r e x t r a p o l a t i o n t a l o w e r temperatures o f t h e Tv-data, thirs c o r r o b o r a t i n g t h e above i d e a ; f o r S i t h e s i t u a t i o n i s l e s s c l e a r (see, however, b e l o w ) .

Nhat remains t o do i s t o compare E s c a i g ' s t h e o r y , i . e . e q u a t i o n ( 3 ) , t o t h e r v - d a t a t o g e t h e r w i t h t h e ~ 1 1 1 - d a t a from t h e regime of power-law breakdown. I t i s s a t i s f a c - t o r y t o see t h a t such a f i t can b e s u c c e s s f u l l y performed, w i t h t h e parameters g i v e n i n t h e l a s t 1 in e of T a b l e 2. The parameters f o r Ge have n o t changed \jery much, i f compared t o those f r o m t h e T v - a n a l y s i s . The parameters f o r S i , however, have improved a p p r e c i a b l y , t h u s subsequently j u s t i f y i n g t h e e x t r a p o l a t i o n o f t h e r v - d a t a f o r S i i n F i g . 6.

V - THE RECOVERY MODEL OF BARRETT AND NIX

Besides t h e creep t h e o r y used i n c h a p t e r I 1 f o r t h e i n t e r p r e t a t i o n o f t h e ~ 1 1 1 - measurements, i n p r e v i o u s works /2,3,6/ a l s o t h e r e c o v e r y model of B a r r e t t and N i x /31/ has been discussed. T h i s model, which i s based on t h e d i f f u s i o n - c o n t r o l l e d d r a g g i n g o f j o g s on screw d i s l o c a t i o n s , can b e c h a r a c t e r i z e d by t h e f o l l o w i n g r e l a - ti on :

Here h i s t h e average j o g s p a c i n g and m i s a c o n s t a n t . I t has been shown /2,3,6/ t h a t t h i s model p r o v i d e s f o r a s u i t a b l e d e s c r i p t i o n of t h e T ~ I I - d a t a , i n c l u d i n g those f r a n t h e regime o f power-law breakdown. The c o n c l u s i o n s drawn i n t h e p r e c e d i n g chap- t e r , where power-law breakdown has been a s c r i b e d t o c r o s s s l i p , does n o t on p r i n c i p l e d i s c r e d i t t h e t h e o r y o f B a r r e t t and N i x : A f i t o f e q u a t i o n 5 ) t o thetIIIm-data

y i e l d s values f o r t h e a c t i v a t i o n energy of s e l f - d i f f u s i o n Q ~ D o f 3.7 eV and 3.0 eV f o r S i and Ge, r e s p e c t i v e l y , and values f o r t h e p r e - e x p o n e n t i a l f a c t o r Do o f 0.63 cm2s-1 f o r S i and o f 4 1 cmzs-1 f o r Ge. These parameters f a v o r a b l y compare t o those e v a l u a t e d f r o m t r a c e r experiments f o r monovacancy s e l f - d i f f u s i o n /18,19/.

From t h e f i t t h e parameter m emerges t o b e 2.2 f o r b o t h m a t e r i a l s . As t h e s t r e s s term t m e n t e r s e q u a t i o n ( 5 ) v i a t h e d i s l o c a t i o n d e n s i t y , t h i s v a l u e i n d i c a t e s a n e a r l y q u a d r a t i c a l s t r e s s dependence o f t h e d i s l o c a t i o n d e n s i t y , i n accordance w i t h d i r e c t measurements o f t h i s r e l a t i o n s h i p . F i n a l l y , f o r t h e j o g s p a c i n g t h e f i t y i e l d s h = l l b f o r Ge and h = 17b f o r S i .

V I - COMPARISON TO METALS

I n v e s t i g a t i o n s of t h e work-hardening c o e f f i c i e n t of f c c m e t a l s /4,32/ a t h i g h tempe- r a t u r e s r e s u l t e d i n B ( T ) - r e l a t i o n s h i p s , w h i c h were r a t h e r s i m i l a r t o t h o s e found f o r S i and Ge, b u t which were n o t r e a l l y understood u n t i l now. The s i m i l a r i t y o f o ( r ) now i n d i c a t e s t h e s t r e s s - s t r a i n curves o f f c c m e t a l s a l s o t o b e c h a r a c t e r i z e d by f i v e d e f o r m a t i o n stages i n t h e h i g h - t e m p e r a t u r e regime. An e v a l u a t i o n /5/ o f TI^^^ f r o m B(-c)-data f o r g o l d /4/ a c c o r d i n g t o e q u a t i o n ( 2 ) y i e l d e d parameters w h i c h were com- p a t i b l e w i t h a d i f f u s i o n - c o n t r o l l e d r e c o v e r y mechanism. A s i m i l a r c o n c l u s i o n has been reached e a r l i e r /33/ f o r A1 f r o m an e v a l u a t i o n o f TIII from p u b l i s h e d s t r e s s - s t r a i n c u r v e s /34/ a t h i g h temperatures.

V I I - CONCLUDING REMARK

A t temperatures c l o s e t o t h e me1 t i n g p o i n t t h e s t r e s s - s t r a i n curves o f S i and Ge show new f e a t u r e s , w h i c h may b e e x p l a i n e d by t h e occurence o f a t h i r d r e c o v e r y stage.

The narrow range o f temperature and s t r a i n r a t e where t h i s e f f e c t can b e observed, however, does n o t a l l o w any i n t e r p r e t a t i o n .

(10)

The a u t h o r i s i n d e b t e d t o P r o f . W. S c h r o t e r and Dr. H. G. B r i o n f o r t h e i r engaged and continuous cooperation, t o P r o f . P. Haasen f o r p r o v i d i n g t h e f a c i l i t i e s o f h i s i n s t i t u t e and t o Dr. W. Blum f o r h i s s u g g e s t i o n t o i n v e s t i g a t e t h e work-hardening c o e f f i c i e n t .

REFERENCES

/1/ S i e t h o f f , H., J. Physique 40 (1979) C6-177.

/2/ B r i o n , H.G., S i e t h o f f , H. , a n d S c h r o t e r , W., P h i l . Mag. A 43 (1981) 1505.

/3/ S i e t h o f f , H. and S c h r o t e r , W., P h i l . Mag. A 37 (1978) 711.-

/4/ Mecking, H., Work Hardening i n Tension and F z i g u e , A. W. Thompson, ed. (TMS- AIME) 1977, p.67.

/5/ S i e t h o f f , H. and S c h r o t e r , W., S c r i p t a Met., March 1983.

/6/ B r i o n , H.G., S c h r o t e r , W., and S i e t h o f f , H., I n s t . Phys. Conf. Ser. 5 (1979) 508.

/7/ Schafer, S., Diploma Thesis, G o t t i n g e n (1963).

/8/ Schroter, W., Srion, H.G., and S i e t h o f f , H., Phys. S t a t . S o l . ( a ) 52 (1979) K165.

/9/ Schafer, S., Alexander, H., and Haasen, P., Phys. S t a t . S o l . 5 ( 1 x 4 ) 247.

/ l o / S i e t h o f f , H. and B r i o n , H.G., unpublished r e s u l t s .

/11/ Burenkov, Yu.A., Nikanorov, S.P., and Stepanov, A.V., Sov. Phys. S o l i d S t . 12

(1971) 1940.

/12/ Burenkov, Yu.A., Nikanorov, S.P., Sov. Phys. S o l i d S t . 16 (1974) 963.

/13/ P o t t e r , R.F., Phys. Rev. 103 (1956) 47.

/14/ G o t t s c h a l k , H., J. P h y s i q u e s (1979) C6-127.

/15/ G o t t s c h a l k, H., Patzer, G., and Alexander, H., Phys. S t a t . S o l . ( a ) 45 (1978) 207.

/16/ Mohamed, F.A. and Langdon, T.G., J. Appl. Phys. 3 (1974) 1965.

/17/ Mayer, H. J., Mehrer, H., and Maier, K., I n s t . Phys. Conf. Ser. 3 1 (1977) 186.

/18/ Widmer, H. and Gunther-Mohr, G.R., H e l v . Phys. Acta 34 (1961) 6 3 .

/19/ H e t t i c h , G., Mehrer, H., and Maier, K., I n s t . Phys. E n f . Ser. 46 (1979) 500.

/20/ Eisen, F.H. and B i r c h e n a l l , C.E., A c t a Met. 5 (1957) 265.

/21/ Alexander, H., and Haasen, P., A c t a Met. 9 (T961) 1001.

/22/ Kojima, K. and Sumino, K., C r y s t a l L a t t i c e D e f e c t s 2 (1971) 147; and p r i v a t e connnunication.

/23/ Mousset, C., Thesis, P o i t i e r s (1979).

/24/ B e t e k h t i n , V . I . and Bakhtibaev, A.N., Sov. Phys. Dokl. - 14 (1970) 1007.

/25/ S i e t h o f f , H., P h i l . Mag. A (1983), i n t h e p r e s s . /26/ Wolf, H., Z. N a t u r f o r s c h g . 15a (1960) 180.

/27/ Escaig, B., D i s l o c a t i o n Dynamics, A.R.Rosenfield e t a l . , eds., (McGraw H i l l ) 1968. o. 655.

/28/ ~ o l l e r ; H.-J., Ewaldt, H., and Haasen, P., Phys. S t a t . S o l . ( a ) 55 (1979) 469.

/29/ Myshlyaev, M.M., N i k i t e n k o , V. I., and Nesterenko, V.I., Phys. S t a t . S o l . 2

(1969) 89.

/30/ ~ y s h l y a e v , M.M. and Khodos, I.I., Phys. S t a t . S o l . ( b ) 3 (1971) 83.

/31/ B a r r e t t , C.R. and Nix, W.D., Acta Met. 13 (1965) 1247.

/32/ N i c k l a s , B. and Mecking, H., Proc. ICSMA-5, P. Haasen e t a l . , eds. (Pergamon) 1979, p. 351.

/33/ S i e t h o f f , H., Phys. S t a t . S o l . ( a ) 62 (1980) K13.

/34/ Howe, S., Liebmann, B., and Lucke, iTT, Acta Met. - 9 (1961) 625.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to