• Aucun résultat trouvé

MULTIFRAGMENTATION OF NUCLEI

N/A
N/A
Protected

Academic year: 2021

Partager "MULTIFRAGMENTATION OF NUCLEI"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00226489

https://hal.archives-ouvertes.fr/jpa-00226489

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MULTIFRAGMENTATION OF NUCLEI

C. Ngô, R. Boisgard, J. Desbois, J. Nemeth, M. Barranco

To cite this version:

C. Ngô, R. Boisgard, J. Desbois, J. Nemeth, M. Barranco. MULTIFRAGMENTATION OF NUCLEI.

Journal de Physique Colloques, 1987, 48 (C2), pp.C2-157-C2-163. �10.1051/jphyscol:1987223�. �jpa- 00226489�

(2)

JOURNAL D E PHYSIQUE

Colloque C2, supplkment au n o 6 , Tome 48, juin 1987

MULTIFRAGMENTATION OF NUCLEI

C. N G ~ , R. BOISGARD, J.DESBOIS* , J. N E M E T H * * and M. B A R R A N C O * " * Service de Physique NuclBaire-MBtrologie Fondamentale.

CEN-Saclay, F-91191 Gif-sur-Yvette Cedex, France

" ~ n s t i t u t de Physique ~ u c l B a i r e ( ~ ) , Division de Physique ThBorique, F-91406 Orsay Cedex, France

" " ~ n s t f t u t e for Theoretical Physics, E6tvos UniversitSt, Budapest, Hungary

* * * Universittit de Barcelona, Facultat de Fisica, SP-08028 Barcelona, Spain

R6sum6 - Nous p r b e n t o n s un modgle base s u r l'hydrodynamique i r r o t a t i o n e l l e e t

~ c o l a o l a n q u i permet de d e c r i r e l e ph6nomGne de mu1 t i f r a g m e n t a t i o n obser- v6 dans l e s c o l l i s i o n s e n t r e deux noyaux lourds. Nous c a l c u l o n s l e s c o n d i t i o n s q u i s o n t ngcessaires pour que ce mgcanisme a i l i e u .

A b s t r a c t - We review a model based on i r r o t a t i o n a l hydrodynamics and percola- t i o n which has been a p p l i e d t o t h e study o f h o t and e x c i t e d nucleus disassem- b l y . The d i f f e r e n t c o n d i t i o n s under which an e x c i t e d nucleus breaks up i n several pieces (mu1 ti fragmentation) are given.

When a h i g h energy p r o t o n ( 2 2 GeV) goes through a nucleus i t can break i t up. A s i n i - l a r s i t u a t i o n i s observed w i t h heavy i o n s a t lower bombarding energies per nucleon ( 3 3 0 - 5 0 MeV/u). The process i n which a nucleus breaks up i n several pieces i s c a l l e d m u l t i f r a g m e n t a t i o n . There a r e two t h i n g s one would l i k e t o kndw :

1- why do n u c l e i break up ? 2- how do they break up ?

Apart from emulsion data [l], which show d i r e c t l y p i c t u r e s where a nucleus undergoes m u l t i f r a g m e n t a t i o n , most o f t h e experiments performed so f a r a r e very i n c l u s i v e . One o f t h e i m p o r t a n t observable i s t h e mass d i s t r i b u t i o n o f t h e m u l t i f r a g m e n t a t i o n pro- d u c t s w h i c h f o l l o w s a A-% l a w [2], where A i s t h e fragment mass and 7 an exponent which takes values around 2-3. Several model S [ 3 ] t r y t o d e s c r i b e mu1 t i f ragmentation b u t a f u l l microscopic theory i s n o t y e t a v a i l a b l e . The reason i s t h a t t h e problem i s d i f f i c u l t because one has t o go beyond a mean f i e l d approach. The c o r r e l a t i o n s between several nucleons become i m p o r t a n t and one u s u a l l y r e f e r s t o these as t h e f l u c t u a t i o n s o f t h e mean f i e l d . Most o f t h e models s t a r t w i t h an i n i t i a l e x c i t e d nucleus, i n g l o b a l s t a t i s t i c a l e q u i l i b r i u m , which i s assumed t o be formed i n t h e f i r s t stage o f t h e c o l l i s i o n . These models a r e u s u a l l y a b l e t o reproduce t h e i n c l u - s i v e mass d i s t r i b u t i o n o f t h e m u l t i f r a g m e n t a t i o n products. I n t h i s c o n t r i b u t i o n we s h a l l describe a model which belongs t o t h i s category. It i s based on hydrodynamics t o describe mean f i e l d e f f e c t s , and on a p e r c o l a t i o n approach t o e v a l u a t e t h e f l u c - t u a t i o n s o f t h e mean f i e l d [4]. We have b u i l t i t as simple as p o s s i b l e i n order t o t r y t o p i n down t h e p h y s i c a l e f f e c t s which may be r e s p o n s i b l e o f m u l t i f r a g m e n t a t i o n o f n u c l e i . Indeed, i f one can d e s c r i b e t h i s process t o a l a r g e e x t e n t w i t h minimal assumptions i t would probably i n d i c a t e t h a t they have t o be i n c l u d e d i n any more s o p h i s t i c a t e d model which aim t o d e s c r i b e mu1 t i f r a g m e n t a t i o n .

(''~aboratoire associb au C.N.R.S.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987223

(3)

C2-158 JOURNAL DE PHYSIQUE

Although one can address t h i s problem by s i m i l a r methods, we s h a l l n o t consider h e r e p r o t o n induced mu1 t i f ragmentation. Indeed t h i S process i S more r e 1 a t e d t o a cascade o f t h e p r o t o n i n s i d e t h e t a r g e t nucleus, which leads t o an e j e c t i o n o f nucleons and f i n a l l y t o a break up o f t h e t a r g e t i n t o several pieces. We s h a l l r a t h e r r e s t r i c t ourselves t o t h e simple f o l l o w i n g problem which i s i m p o r t a n t f o r heavy i o n c o l l i - sions a t i n t e r m e d i a t e bombarding energies, namely : what happens t o an e x c i t e d and compressed nucleus i n g l o b a l s t a t i s t i c a l e q u i l i b r i u m ?

Central and medium impact parameters heavy i o n c o l l i s i o n a t i n t e r m e d i a t e bombarding energies can be r o u g h l y decomposed i n two main phases :

- I n t h e f i r s t one, t h e p r o j e c t i l e and t a r g e t i n t e r a c t very deeply. T h e i r r e l a t i v e v e l o c i t y suddenly decreases and a l o t o f e x c i t a t i o n energy i s deposited i n t o t h e i r common p a r t . S t a t i s t i c a l e q u i l i b r i u m i s n o t achieved i n e a r l y stages and e n e r g e t i c p a r t i c l e s a r e emitted. A p r e e q u i l i b r i u m mode developed i n [ r e f . 5 ] shows t h a t one needs about 10-22s t o reach g l o b a l thermal e q u i l i b r i u m . Furthermore, we have p e r f o r - med [6], f o r head-on c o l l i s i o n s , a hydrodynamical c a l c u l a t i o n based on a t h r e e f l u i d component model : t h e p a r t i c i p a n t s and t h e two s p e c t a t o r s o f t h e p r o j e c t i l e and t a r g e t . F o r t h e Ca + Pb system a t 52 MeV/u, f o r instance, we found t h a t i n any r e - g i o n o f t h e system, t h e d e n s i t y never exceds 20 % o f t h e c e n t r a l ground s t a t e densi- t y value. Consequently, i n heavy i o n c o l l i sions a t i n t e r m e d i a t e bombarding energies i t i s o n l y p o s s i b l e t o o b t a i n moderate compressions.

- I n the second phase t h e e x c i t e d nucleus, which i s formed previously, expands and c o o l s down. Two s i t u a t i o n s can occur depending on t h e amount o f e x c i t a t i o n energy o f t h e nucleus. There can be a succession of o s c i l l a t i o n s around a mean c o n f i g u r a t i o n w h i l e t h e system evaporates p a r t i c l e s . I n t h i s case t h e nucleus de-excite normally by p a r t i c l e emission a n d l o r f i s s i o n . T h i s occurs i f t h e e x c i t a t i o n energy i s n o t t o o large. Above a c e r t a i n e x c i t a t i o n energy value t h e nucleus expands so much t h a t t h e mean f i e l d f l u c t u a t i o n s become suddenly very large. I n such a s i t u a t i o n , which oc- c u r s a t l a r g e e x c i t a t i o n energies, t h e r e i s a m u l t i f r a g m e n t a t i o n o f t h e nucleus. It i s t h i s second phase o f a heavy i o n c o l l i s i o n t h a t we want t o describe w i t h i n a schematic p i c t u r e .

1 - F l u c t u a t i o n s o f t h e mean f i e l d

The i n t e r a c t i o n between two nucleons has a s h o r t r e p u l s i v e range and a l o n g a t t r a c - t i v e one. However, i n t o t a l , nuclear forces a r e o f s h o r t range compared t o t h e Cou- lomb forces. I n o r d e r t o understand t h e importance o f nucleon c o r r e l a t i o n s i n n u c l e i l e t us consider a volume V i n which we p u t A nucleons, neutrons and protons. I f V i s o f t h e o r d e r o f t h e v01 ume o f o r d i n a r y n u c l e i , each nucleon can i n t e r a c t by n u c l e a r f o r c e s w i t h a l l i t s neighbours. The physics o f t h i s system can be described, t o a l a r g e extent, by t h e mean f i e l d c r e a t e d by t h e whole s e t o f nucleons.

If t h e volume i s bigger, each nucleon can no l o n g e r i n t e r a c t by n u c l e a r f o r c e s w i t h a l l i t s neighbours because o f t h e s h o r t range o f t h i s i n t e r a c t i o n . C l u s t e r o f nu- cleons w i l l be formed and t h e physics o f each o f them i s dominated by t h e i r own mean f i e l d . However, t h e physics o f t h e whole system i s no l o n g e r dominated by t h e mean f i e l d o f t h e t o t a l system because t h e Coulomb f i e l d , which has a l o n g range, w i l l push t h e c l u s t e r s a p a r t from each other. T h i s w i l l l e a d t o a break-up o f t h e i n i t i a l system (mu1 i fragmentation).

I n t h e f i r s t s i t u a t i o n , where t h e physics o f t h e system i s dominated by t h e mean f i e l d o f t h e whole nucleus, one says t h a t t h e f l u c t u a t i o n s o f t h e mean f i e l d a r e small while, i n t h e second case, one says t h a t they a r e large. When t h e f l u c t u a t i o n s are large, i n s t a b i l i t i e s develops exponential l y and t h e system undergoes mu1 t i f r a g - mentation. When they a r e small, c l u s t e r s m i g h t be present i n t h e n u c l e a r medium b u t t h e i r p r o b a b i l i t y i s small. The r e s t o f t h e nucleus can then be viewed a a b i g c l u s - t e r whose mean f i e l d i s p r a c t i c a l l y i d e n t i c a l t o t h e one o f t h e t o t a l system. The p r o p o r t i o n o f small c l u s t e r s , which gives an o r d e r o f magnitude o f t h e f l u c t u a t i o n s , i s small.

(4)

The d i f f e r e n c e between small and l a r g e mean f i e l d f l u c t u a t i o n s t e l l s us about t h e c o r r e l a t i o n d i s t a n c e i n t h e n u c l e a r medium ( t h e c o r r e l a t i o n d i s t a n c e i s d e f i n e d here i n a d i f f e r e n t way from t h e c o r r e l a t i o n l e n g t h used i n p e r c o l a t i o n theory : one i n c l u d e s a1 l c l u s t e r s i n c l u d i n g t h e l a r g e s t one) : when they a r e small, t h e c o r r e l a - t i o n d i s t a n c e i s l a r g e and t h e i n f o r m a t i o n about t h e n u c l e a r i n t e r a c t i o n can propa- g a t e through t h e whole nucleus. On t h e contrary, i f they a r e l a r g e , t h e c o r r e l a t i o n d i s t a n c e suddenly decreases and t h e i n f o r m a t i o n about t h e n u c l e a r f o r c e s i s trapped w i t h i n c l u s t e r s . C l u s t e r s can " t a l k " t o o t h e r c l u s t e r s o n l y through t h e Coulomb

f i e l d which has a tendency t o p u l l them apart.

I n s t e a d o f t r e a t i n g a s i n g l e nucleus and f o l l o w i n g t h e nucleons which move i n s i d e o f it, one can a l t e r n a t i v e l y consider, as i n s t a t i s t i c a l physics, an ensemble o f seve- r a l n u c l e i w i t h f i x e d nucleons d i s t r i b u t e d i n such a way t h a t t h e i r g l o b a l proper- t i e s a r e i d e n t i c a l t o t h e one we study. Then one has t o p o s t u l a t e t h a t t h e time average o f macroscopic q u a n t i t i e s o f t h e f i r s t system a r e equal t o t h e i r ensemble average ( e r g o d i c hypothesis). I f one does t h i s , one can n o t i c e t h a t t h e e v a l u a t i o n o f t h e f l u c t u a t i o n s i s i d e n t i c a l t o a p e r c o l a t i o n problem i n which p a r t i c l e s a r e connected t o t h e i r c l o s e neighbours.

2 - P e r c o l a t i o n

P e r c o l a t i o n i s one o f t h e s i m p l e s t s t a t i s t i c a l approach which a l l o w s t o describe c r i t i c a l phenomena i n v a r i o u s areas. I t has been a p p l i e d t o several problems i n s o l i d s t a t e physics l i k e b i n a r y a l l o y s , s o l - g e l t r a n s i t i o n s , complex r e s i s t o r net- works, p o l y m e r i s a t i o n r e a c t i o n s , etc... It has a l s o been used i n a g r e a t v a r i e t y o f o t h e r f i e l d s l i k e t h e extension o f f o r e s t f i r e s o r t h e propagation o f diseases.

A p e r c o l a t i o n system i s e s s e n t i a l l y d e f i n e d by two i n g r e d i e n t s : a c o l l e c t i o n o f p o i n t s and a r u l e t o connect them. The, p e r c o l a t i o n model t h a t we have used t o evalu- a t e t h e f l u c t u a t i o n s o f t h e mean f i e l d i s a site-bond p e r c o l a t i o n model [4,7] based on a cubic l a t t i c e . The two b a s i c parameters o f t h i s approach a r e : i ) p, t h e r a t i o between t h e number o f occupied s i t e s and t h e t o t a l number o f s i t e s .

ii q, t h e r a t i o o f t h e number o f bonds l e f t , t o t h e i n i t i a l number o f bonds avai- l a b l e t o t h e nucleus i n i t s ground state.

F o r d i f f e r e n t values o f p and q t h i s model leads t o two s i t u a t i o n s which a r e i l l u s - t r a t e d i n f i g . 1 :

a r e l a r g e and t h e nucleus t o which one a p p l i e s t h i s model breaks up (mu1 t i f r a g - mentation).

0.0

l

The t r a n s i t i o n between r e g i o n s I and I1 0.0 0.5 1 .o

occurs smoothly here because we have a P

f i n i t e system. For an i n f i n i t e system t h e

t r a n s i t i o n i s very sharp. I t has been F i g u r e 1 checked t h a t t h e r e s u l t s obtained w i t h a

c u b i c l a t t i c e a r e n o t t o o d i f f e r e n t from those obtained i n a continuous medium per- c o l a t i o n . As a m a t t e r o f f a c t t h e approximation i s analogous t o t h e f i n i t e d i f f e r -

- i f p and q a r e c l o s e t o u n i t y ( r e g i o n 1.0 I ) one always g e t a b i g fragment c a l l e d p e r c o l a t i o n c l u s t e r , and small c l u s t e r s .

i s correspon S o t h e case where t h e ::uctuations ofd th: mean f i e l d a r e small.

Then, a mean f i e l d t h e o r y can describe t h e dynamical e v o l u t i o n o f t h e system.

- if p and q belong t o r e g i o n 11 t h e r e i s 0.5 no l o n g e r a p e r c o l a t i o n c l u s t e r b u t seve- r a l small o r medium s i z e c l u s t e r s . I n t h i s case t h e f l u c t u a t i o n s o f t h e mean f i e l d

-

Multifraqmentation reqion

(5)

C2-160 JOURNAL DE PHYSIQUE

ence methods used i n numerical a n a l y s i s where one a l s o works on a l a t t i c e . We s h a l l see below how one r e l a t e s t h e two parameters p and q t o t h e p r o p e r t i e s o f t h e nucle- us.

3 - The i s e n t r o p i c expansion model

Before going i n t o a more i n v o l v e d model i t i s u s e f u l t o study w i t h i n t h e framework o f an elementary model what happens t o an i n i t i a l nucleus which i s suddenly heated up w h i l e keeping i t s d e n s i t y p r o f i l e f i x e d . I n order t o do t h i s we have modeled a nucleus by a l i q u i d drop w i t h c o n s t a n t d e n s i t y and sharp edges. The energy o f t h i s drop has been c a l c u l a t e d u s i n g t h e energy d e n s i t y formal ism which a l l o w s t h e energy t o be c a l c u l a t e d even f o r non e q u i l i b r i u m c o n f i g u r a t i o n s . It i s reasonable and cascade c a l c u l a t i o n s c o n f i r m i t [8], t o assume t h a t t h e e v o l u t i o n o f t h e nucleus w i l l f o l l o w an isentrope. Then, as proposed by Cugnon [ g ] , one can f i n d t h e equation o f motion o f t h e d e n s i t y by u s i n g t h e c o n t i n u i t y and energy conservation equations o f t h e f l u i d only.

I f we heat up suddenly a nucleus w h i l e keeping t h e d e n s i t y f i x e d , and l e t evolve t h i s system, i t w i l l expand. The process we have i n mind i s s c h e m a t i c a l l y d i s p l a y e d i n fig.2 : as t h e nucleus expands t h e number o f nucleons remains p r a c t i c a l l y constant, a p a r t from those few e m i t t e d by evaporation o r p r e e q u i l i b r i u m emission.

However, t h e packing no l o n g e r remains c o n s t a n t and empty c e l l S become a v a i l able.

Therefore, t h e r a t i o between t h e number o f occupied c e l l s and t h e t o t a l number o f c e l l s decreases n o t because nucleons a r e emitted, b u t because new s i t e s a r e created.

I f t h e expansion i s s u f f i c i e n t , several small and medium s i z e c l u s t e r s a r e formed : one has a mu1 t i f r a g m e n t a t i o n o f t h e system.

F i g u r e 2

I n o r d e r t o use t h e p e r c o l a t i o n approach, one has t o d e f i n e p and q i n terms o f q u a n t i t i e s associated t o the expanding nucleus. We have made t h e f o l l o w i n g choices

( t )

1 - p ( t ) = , where p. i s t h e d e n s i t y a t t i m e t = 0 and p ( t ) i s t h e same q u a n t i t y P 0

a t t i m e t- A t t = 0 one has p = 1. As t h e nucleus expands p decreases since, accor- d i n g t o o u r p i c t u r e , new s i t e s a r e created.

2 - The parameter q ( t ) i s r e l a t e d t o t h e s t r e n g t h o f t h e bonding between nucleons.

For a nucleus w i t h zero thermal e x c i t a t i o n energy q = 1. I n c r e a s i n g 'the e x c i t a t i o n e n e r g y p e r n u c l e o n , E$, decreases t h e s t r e n g t h o f t h e bonds which vanishes comple- t e l y when E * becomes e q i a l t o t h e b i n d i n g energy. Therefore, we assume t h a t : q ( t ) =

T

E *

1- 2, where B i s t h e b i n d i n g energy per nucleon a t time t = 0.

B

p ( t ) and q ( t ) being defined, one can now e v a l u a t e t h e f l u c t u a t i o n s o f t h e mean f i e l d a t each stage o f t h e expansion [10]. As soon as they become l a r g e one stops t h e dynamical model, because the nucleus breaks up, and c a l c u l a t e t h e p r o p e r t i e s o f t h e fragments u s i n g t h e p e r c o l a t i o n model.

(6)

The above model, which i s very simple, has been s t u d i e d i n d e t a i l s i n r e f . [ l O ] . For a l l t h e r e s u l t s i t was p o s s i b l e t o o b t a i n e i t h e r a n a l y t i c a l o r f i t t e d expressions which can be used very e a s i l y . L e t us quote two i m p o r t a n t r e s u l t s :

1 - the c r i t i c a l energy value, above which a nucleus undergoes m u l t i f r a g m e n t a t i o n , i s equal t o 70 % o f t h e b i n d i n g energy o f t h e ground state.

2 - the mass d i s t r i b u t i o n o f t h e products, a t t h e p o i n t where t h e " s u s c e p t i b i l i t y "

o f t h e medium i s maximum, goes l i k e A - ~ ' ~ . I f one r e q u i r e s , as i n ref.[4], t h a t mu1 t i f r a g m e n t a t i on i s d e f i n e d when t h e mass o f t h e p e r c o l a t i o n c l u s t e r i s s m a l l e r than ha1 f o f t h e i n i t i a l nucleus, t h e exponent -C o f A ' i s a b i t l a r g e r .

4 - The t i m e dependent Thomas Fermi approach.

It i s now i n t e r e s t i n g t o study t h e same problem w i t h i n a more r e a l i s t i c approach. I n r e f . [ l l ] a time dependent Thomas-Fermi model has been proposed t o study t h e evolu- t i o n o f h o t and compressed s p h e r i c a l n u c l e i . T h i s model i s e s s e n t i a l l y an i r r o t a - t i o n a l hydrodynamical approach i n which one evaluates t h e i n t e r n a l energy w i t h t h e Thomas-Fermi approximation u s i n g a Skyrme force. Thi S d e s c r i p t i o n i S assumed t o g i v e a reasonable d e s c r i p t i o n of the expansion o f t h e nucleus and has been checked by c a l c u l a t i n g t h e p r o p e r t i e s o f t h e i s o s c a l a r g i a n t monopol e resonance [12]. Since one can vary independently t h e thermal and compressional e x c i t a t i o n energies, one can compare t h e i r i n f l u e n c e on t h e s t a b i l i t y o f n u c l e i towards mu1 t i f r a g m e n t a t i o n . As i t has been done above, one evaluates t h e f l u c t u a t i o n s o f t h e mean f i e l d a t each stage o f t h e dynamical e v o l u t i o n o f t h e system u s i n g t h e p e r c o l a t i o n model described i n s e c t i o n 2. The two parameters p ( t ) and q ( t ) a r e now d e f i n e d as :

p ( t ) = 522- and q ( t ) = l - - €7

<PO' B(t=O)

where <p> and < p > a r e t h e average d e n s i t y a t t i m e t and t = 0 r e s p e c t i v e l y ; and B ( t - 0 ) i s t h e b i n s i n g energy p e r nucleon o f t h e nucleus a t t i m e t = 0. L e t us now discuss a few r e s u l t s :

3 I I I I l I l I 1 I

I

Multifraqmentation

Normal de-excitation

F i g u r e 3

- I n f i g . 3 we d i s p l a y a k i n d o f phase diagram, f o r 208Pb, showing t h e r e g i o n of m u l t i f r a g m e n t a t i o n i n s t a b i l i t y as a f u n c t i o n o f E * ~ , t h e thermal e x c i t a t i o n energy p e r nucleon, and E * ~ , t h e compressional e x c i t a t i o n energy p e r nucleon. I f 0 one needs E * ~ = 1.5 MeV only. T h i s shows t h a t , f o r t h e same amount o f e x c i t a t i o n energy, one breaks up a nucleus more e a s i l y by compression than by thermal e x c i t a t i o n .

(7)

C2-162 JOURNAL DE PHYSIQUE

- F o r two v a l u e s o f EC we have c a l c u l a t e d t h e r a t i o between t h e e x c i t a t i o n energy per nucleon ( E * = ET + ~ e ) , and t h e b i n d i n g energy p e r nucleon ,B, o f t h e nu'clei i n t h e i r ground state, above which a nucleus undergoes m u l t i f r a g m e n t a t i o n . ( f i g . 4 ) . I f t h e r e i s no c o m p r e s s i o n one observes t h a t t h e maximum ET value t h a t a nucleus can s u s t a i n w i t h o u t b r e a k i n g up i s equal t o 70 % o f B. T h i s r e s u l t s i s t h e same as t h e one deduced i n t h e p r e v i o u s section.

F i g u r e 4

- A t t h e p o i n t where a nucleus breaks up i t i s i n t e r e s t i n g t o n o t e t h a t t h e nucleus has n o t expanded t o o much. T h i s i s i l l u s t r a t e d f o r a t y p i c a l example i n f i g . 5 which shows t h e i n i t i a l d e n s i t y p r o f i l e ( f u l l l i n e ) and t h e one where mu1 t i f r a g m e n t a t i o n takes p l a c e (dashed l i n e ) . One sees t h a t , i n t h i s l a t t e r case, t h e c e n t r a l d e n s i t y i s s t i l l 0.1 nucleon/fm3. The mean square r a d i u s <r2>"2 has changed from = 4.94 fm, f o r t h e i n i t i a l d e n s i t y t o 6.2 fm a t t h e p o i n t o f i n s t a b i l i t y . F o r t h i s p a r t i c u l a r example t h e volume o f t h e system has doubled.

F i g u r e 5

(8)

Conclusion

L e t us now summarize t h e m a j o r - r e s u l t s o f our approach t o t h e disassembly o f h o t and e x c i t e d n u c l e i .

- M u l t i f r a g m e n t a t i o n i s a r e s u l t o f t h e f l u c t u a t i o n s o f t h e mean f i e l d which become l a r g e .

- Compression i s more e f f i c i e n t t o break n u c l e i than thermal e x c i t a t i o n .

- F o r a system a t normal d e n s i t i e s one needs a thermal e x c i t a t i o n l a r g e r than 70 % o f t h e b i n d i n g energy i n o r d e r t h a t i t breaks up.

- A t t h e i n s t a b i l i t y p o i n t , t h e d e n s i t y i s o f t h e o r d e r o f 0.1 nucleon/fm3 i n t h e case o f t h e *@Pb nucleus.

References

[l] R. Jakobsson, G. Jonsson, B. L i n d k v i s t and A. Oskarsson, Z. Phys. A307 (1982) 293 ;

C.J. Waddington and P.S. F r e i e r , Phys. Rev. C31 (1985) 888.

[ 2 ] J.E Finn, S. Agarwal, A. Bujak, J. Chuang, LT Gutay, A.S. Hirsch,

R.W. Minich, N.T. P o r i l e , R.P. Scharenberg, B.C. S t r i n g f e l l o w and F. Turkot, Phys. Rev. L e t t . 49 (1982) 1321.

[ 3 ] G. F a i and J. ~ a n d r u ~ , Nucl. Phys. A231 (1982) 557 ; D.H.E. Gross, L. Satpathy, Meng Ta-Chung and M. Satpathy, Z. Phys. A309 (1982) 41.

J. A i c h e l i n and 3 . Hiifner, Phys. L e t t . 1368 (1984) 1 5 ; P.J. Siemens, Nature 305 (1983) 410 ;

and c o n t r i b u t i o n s a t t h i s conference.

[ 4 ] J. Nemeth, M. Barranco, J. Desbois and C.Ng6, Z. Phys. A325 (1986) 347 [ 5 ] C. C e r r u t t i , J. Desbois, C. Ng6, J. Nemeth and J. Natowitz, t o be published.

[ 6 ] J. Nemeth, C. Ng6, J. Desbois and M. Barranco, t o be published.

[ 7 ] J. Desbois, Nucl. Phys. A, i n press.

[ 8 ] G. Bertsch and J. Cugnon, Phys. Rev. C24 (1981) 2514.

[ g ] J. Cugnon, Phys. L e t t . 135B (1984) 374. -

101 J. Desbois, R. Boisgard, C. Ng6, J. Nemeth, submitted t o Z. Phys. A.

111 J. Nemeth, M. Barranco, C. Ng6 and E. Tomasi, Z. Phys. A323 (1986) 419.

121 M. Pi, M. Barranco, J. Nemeth, C. Ng6 and E. Tomasi, Phys. L e t t . 166B (1986) 1.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to