• Aucun résultat trouvé

Demixing Alkyl piperidines for CO2 capture : A thermodynamic approach

N/A
N/A
Protected

Academic year: 2021

Partager "Demixing Alkyl piperidines for CO2 capture : A thermodynamic approach"

Copied!
239
0
0

Texte intégral

(1)Demixing Alkyl piperidines for CO2 capture : A thermodynamic approach Alexander Rowland Lowe. To cite this version: Alexander Rowland Lowe. Demixing Alkyl piperidines for CO2 capture : A thermodynamic approach. Other. Université Blaise Pascal - Clermont-Ferrand II, 2016. English. �NNT : 2016CLF22772�. �tel01511965�. HAL Id: tel-01511965 https://tel.archives-ouvertes.fr/tel-01511965 Submitted on 21 Apr 2017. HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés..

(2)  1ƒG¶2UGUH  81,9(56,7(%/$,6(3$6&$/ 8)56FLHQFHVHW7HFKQRORJLHV (&2/('2&725$/('(66&,(1&(6)21'$0(17$/(6 1ƒ  7+Ê6(  3UpVHQWpHSRXUREWHQLUOHJUDGHGH '2&7(85'¶81,9(56,7(  6SpFLDOLWp&KLPLH3K\VLTXH 3DU$OH[DQGHU5RZODQG/RZH 0DVWHURI6FLHQFH 8QLYHUVLW\RI*XHOSK&DQDGD

(3)  . . $ON\OSLSpULGLQHGpPL[DQWHVSRXUOHFDSWDJHGX&2$SSURFKH WKHUPRG\QDPLTXH 'HPL[LQJ$ON\O3LSHULGLQHVIRU&2&DSWXUH $7KHUPRG\QDPLF$SSURDFK 6RXWHQXHSXEOLTXHPHQWOHGpFHPEUHGHYDQWODFRPPLVVLRQG¶H[DPHQ.  ([DPLQDWHXUV &KULVWRSKH&RTXHOHW3URIHVVHXU(FROH1DWLRQDOH6XSpULHXUHGHV0LQHV3DULV7HFK)RQWDLQHEOHDX 3UpVLGHQW GH-XU\

(4)  $OLQH$XURX['LUHFWULFHGH5HFKHUFKH(PpULWH,5&(/<21/\RQ 5DSSRUWHXUH

(5)  ,OKDP0RNEHO0DvWUHGH&RQIpUHQFHV8QLYHUVLWp-HDQ0RQQHW6W(WLHQQH8QLYHUVLWpGH/\RQ 5DSSRUWHXUH

(6)  'HQLV/RXUGLQ'LUHFWHXUGH5HFKHUFKH,15$$QJHU1DQWHV ([DPLQDWHXU

(7)   'LUHFWHXUVGH7KqVH .DULQH%DOOHUDW%XVVHUROOHV,QJpQLHXUHGH5HFKHUFKH&156&OHUPRQW)HUUDQG -HDQ<YHV&R[DP0DvWUHGH&RQIpUHQFHV8QLYHUVLWp%ODLVH3DVFDO&OHUPRQW)HUUDQG  &R(QFDGUDQW <RKDQQ&RXOLHU,QJpQLHXUGH5HFKHUFKH&156&OHUPRQW)HUUDQG. .

(8)  1HZ3UHVWLJH&ODVV 'RFWRURI3K\VLFDO&KHPLVWU\'RFWHXUGH&KLPLH3K\VLTXH  4XRWHVIURPSDVWVFLHQWLVWVZKRLQVSLUHGPHNHHSOHDUQLQJ ³,OQ HVWSDVFHUWDLQTXHWRXWVRLWLQFHUWDLQ´%ODLVH3DVFDO  ³7KHUPRG\QDPLFVLVDIXQQ\VXEMHFW7KHILUVWWLPH\RXJRWKURXJKLW\RXGRQ WXQGHUVWDQGLWDWDOO7KH VHFRQGWLPH\RXJRWKURXJKLW\RXWKLQN\RXXQGHUVWDQGLWH[FHSWIRURQHRUWZRVPDOOSRLQWV7KHWKLUG WLPH\RXJRWKURXJKLW\RXNQRZ\RXGRQ WXQGHUVWDQGLWEXWE\WKDWWLPH\RXDUHVRXVHGWRLWVRLWGRHVQ W ERWKHU\RXDQ\PRUH´$UQROG6RPPHUIHLOG . .  .

(9)  5pVXPp  / DXJPHQWDWLRQ GH OD FRQFHQWUDWLRQ GH GLR[\GH GH FDUERQH &2

(10)  GDQV O DWPRVSKqUH GHSXLV OD UpYROXWLRQ LQGXVWULHOOHDFRQGXLWjO DXJPHQWDWLRQGHODWHPSpUDWXUHPR\HQQHGXJOREH3RXUOLPLWHUO¶DFFURLVVHPHQWGHVWHPSpUDWXUHV DWPRVSKpULTXHV PR\HQQHV OD TXDQWLWp GH GLR[\GH GH FDUERQH pPLVHGDQV O DWPRVSKqUHGRLWrWUHUpGXLWH8QH GHV VROXWLRQV HQYLVDJpHVXUOHVVRXUFHVIL[HVHVWOHFDSWDJHHWOHVWRFNDJHGX&2 &HSURFpGpG¶DEVRUSWLRQGpVRUSWLRQELHQFRQQXGDQVOH WUDLWHPHQWGXJD]QDWXUHOHVWRQpUHX[HWSHXHIILFDFHSRXUOHWUDLWHPHQWGXJD]GHVVRXUFHVIL[HVHWGRLWrWUHRSWLPLVp /DVROXWLRQSURSRVpHV¶DSSXLHVXUO¶XWLOLVDWLRQGHVROYDQWVGpPL[DQWVSUpVHQWDQWXQHVpSDUDWLRQGHSKDVHpTXLOLEUHOLTXLGH OLTXLGH //(

(11) HQVROXWLRQDTXHXVHHQIRQFWLRQGHODWHPSpUDWXUH&HPDQXVFULWSUpVHQWHXQHpWXGHUpDOLVpHSRXUODIDPLOOHGHV DON\OSLSpULGLQHVFRQQXHVSRXUVHVVpSDUDWLRQVGHSKDVH&HWWHpWXGHSHUPHWWUDG¶pYDOXHUO¶LQIOXHQFHGHODWDLOOHGHODSRVLWLRQ HWGXQRPEUHGHVXEVWLWXDQWVVXUOHVSURSULpWpVWKHUPRG\QDPLTXHVG¶LQWpUrWSRXUOHSURFpGp 3RXU pWXGLHU OHV //( GHV VROXWLRQV DTXHXVHV GpPL[DQWHV HQ SDUWLFXOLHU GDQV OH FDV GHV VROXWLRQV FKDUJpHV HQ JD] GHX[ LQVWUXPHQWVRQWpWpPLVDXSRLQW,ODpWpSRVVLEOHGHGpPRQWUHUTXHOHVFKDQJHPHQWVRSpUpVVXUOHVGLDJUDPPHVGHSKDVHGHV DPLQHVVRQWOLpVDX[UpDFWLRQVFKLPLTXHVPLVHVHQMHXORUVGHODGLVVROXWLRQGX&2 3RXUOHVDON\OSLSpULGLQHVWHUWLDLUHRQ REVHUYHODWHPSpUDWXUHGHGpPL[WLRQGLPLQXHDYHFO¶DGGLWLRQGH&2DOODQWDYHFODIRUPDWLRQGHFDUERQDWHV$YHFOHVDON\O SLSpULGLQHVVHFRQGDLUHV OD WHPSpUDWXUH GH GpPL[WLRQ DXJPHQWH FH TXL HVW OLp j OD SUpVHQFH HQ VROXWLRQ GH FDUEDPDWHV TXL VWDELOLVHQWODVROXWLRQDTXHXVH/HFRPSRUWHPHQWGHVDPLQHVVHFRQGDLUHVWUqVHQFRPEUpHVTXLQHSHXYHQWGRQFSDVIRUPpHV GHFDUEDPDWHVHVWVLPLODLUHjFHOXLGHVDPLQHVWHUWLDLUHVFHTXLHVWFRKpUHQWDYHFOHVFRQFOXVLRQVSUpFpGHQWHV 8QHpWXGHDSSURIRQGLHVGHVSURSULpWpVWKHUPRG\QDPLTXHVG¶H[FqV 9(&S(HW+(

(12) GHVDON\OSLSpULGLQHVHQVROXWLRQDTXHXVHD pJDOHPHQWSHUPLVGHGpPRQWUHUGHVUHODWLRQVVWUXFWXUH SURSULpWpV/DSRVLWLRQGXVXEVWLWXDQWVXUOHF\FOHSLSpULGLQHDXQH LQIOXHQFH FRQVLGpUDEOH HW SUpYLVLEOH VXU O¶LQWHQVLWp GHV SURSULpWpV G¶H[FqV DORUV TXH OD QDWXUH GH O¶DPLQH VHFRQGDLUH RX WHUWLDLUH

(13) YDLQIOXHQFHUODSRVLWLRQGHO¶H[WUHPXPGHFHWWHSURSULpWp (QILQ XQH PRGpOLVDWLRQ WKHUPRG\QDPLTXH ULJRXUHXVHV GHV VROXELOLWpV HW GHV HQWKDOSLHV GH GLVVROXWLRQ GX &2  GDQV OHV VROXWLRQV DTXHXVHV GH SLSpULGLQHV D SHUPLV GH GpWHUPLQHU OHV FRQVWDQWHV GH IRUPDWLRQ GHV FDUEDPDWHV GDQV OHV VROXWLRQV DTXHXVHVGHHWPpWK\OSLSpULGLQHV  $EVWUDFW7KHLQFUHDVHRIFDUERQGLR[LGH &2

(14) FRQFHQWUDWLRQLQWKHDWPRVSKHUHVLQFHWKHLQGXVWULDOUHYROXWLRQKDVOHGWRWKH ULVHLQWKHDYHUDJHJOREDOFOLPDWHWHPSHUDWXUH7RSUHYHQWWKHHVFDODWLRQRIJOREDOFOLPDWHWHPSHUDWXUHVWKHDPRXQWRI&2  HPLWWHG LQWR WKH DWPRVSKHUH PXVW EH UHGXFHG 2QH VROXWLRQ LV FDUERQ FDSWXUH DQG VHTXHVWUDWLRQ ZKLFK UHPRYHV &2  IURP IL[HG VRXUFHV 7KH DEVRUSWLRQGHVRUSWLRQ F\FOH LV ZHOO NQRZQ IRU WKH WUHDWPHQW RI DFLG JDV EXW LV H[SHQVLYH DQG QRW DV HIILFLHQWIRUWKHWUHDWPHQWRIJDVIURPIL[HGLQGXVWULDOVRXUFHV $VROXWLRQWRWKLVSUREOHPLVWKHXVHRIDTXHRXVGHPL[LQJDPLQHVROYHQWVZKLFKSUHVHQWDOLTXLGOLTXLGSKDVHHTXLOLEULXP //(

(15)  DV D IXQFWLRQ RI WHPSHUDWXUH 7KLV PDQXVFULSW SUHVHQWV D VWXG\ GRQH WR PHDVXUH WKH //( DQG WKHUPRG\QDPLF SURSHUWLHVRIWKHDON\OSLSHULGLQHIDPLO\ZKLFKFDQEHXVHGIRUFDUERQFDSWXUHSURFHVVHV7KLVZRUNHYDOXDWHVWKHHIIHFWRI WKHVL]HSRVLWLRQDQGQXPEHURIDON\OVXEVWLWXHQWVRQWKHWKHUPRG\QDPLFSURSHUWLHVRILQWHUHVWLQWKHFDUERQFDSWXUHSURFHVV 7RVWXG\WKH//(RIDTXHRXVGHPL[LQJVROXWLRQVSDUWLFXODUO\JDVORDGHGVROXWLRQVWZRQRYHODSSDUDWXVHVZHUHGHYHORSHG 7KH UHVXOWV GHPRQVWUDWH WKDW WKH FKDQJHV LQ WKH DPLQH SKDVH GLDJUDPV DUH UHODWHG WR WKH FKHPLFDO UHDFWLRQV LQYROYHG ZLWK GLVVROXWLRQRI&27KHWHUWLDU\DON\OSLSHULGLQHVGLVSOD\HGUHGXFHGGHPL[LQJWHPSHUDWXUHZLWKWKHDGGLWLRQRI&2 GXHWRWKH IRUPDWLRQRIFDUERQDWHVSHFLHV7KHVHFRQGDU\DON\OSLSHULGLQHVGLVSOD\DQLQFUHDVLQJGHPL[LQJWHPSHUDWXUHZKLFKLVUHODWHG WRWKHIRUPDWLRQRIFDUEDPDWHVSHFLHVZKLFKVWDELOL]HVWKHVROXWLRQ6HFRQGDU\DON\OSLSHULGLQHVWKDWDUHVHYHUHO\VWHULFDOO\ KLQGHUHG ZKLFK FDQQRW SURGXFH FDUEDPDWHV EHKDYH VLPLODUO\ WR WKH WHUWLDU\ DPLQH ZKLFK LV FRKHUHQW ZLWK WKH SUHFHGLQJ FRQFOXVLRQ 7KHVWUXFWXUH SURSHUW\ UHODWLRQVKLS FRQFHUQLQJ WKH H[FHVVWKHUPRG\QDPLF SURSHUWLHV 9(&3( DQG +(

(16)  RI DTXHRXVVROXWLRQV ZHUHVWXGLHGLQGHSWK7KLVUHYHDOHGWKDWWKHSRVLWLRQRIWKHVXEVWLWXHQWVRQWKHF\FOLFULQJKDVDFRQVLGHUDEOHDQGREYLRXV LQIOXHQFH RQ WKH LQWHQVLW\ RI WKH H[FHVV SURSHUWLHV DORQJ ZLWK WKH FODVV RI WKH DPLQH ZKHWKHU VHFRQGDU\ RU WHUWLDU\ ZLOO LQIOXHQFHWKHSRVLWLRQVRIWKHH[WUHPDRIWKHH[FHVVSURSHUW\ 7RFRQFOXGHDULJRURXVWKHUPRG\QDPLFPRGHOEDVHGRQWKH&2VROXELOLW\DQGWKHHQWKDOS\RIVROXWLRQIRU&2LQDTXHRXV VROXWLRQV RI DON\O SLSHULGLQH DOORZHG IRU WKH GHWHUPLQDWLRQ RI WKH FDUEDPDWH IRUPDWLRQ FRQVWDQWV RI  DQG  PHWK\OSLSHULGLQH  .  .

(17)  0RWVFOpV.H\ZRUGV&DSWDJHGX&2&2FDSWXUH$PLQHVGpPL[DQWHV'HPL[LQJDPLQHVeTXLOLEUHGHSKDVH3KDVH HTXLOLEULD (QWKDOSLHV GH VROXWLRQ  (QWKDOS\ RI 6ROXWLRQ 6ROXELOLWpV GH &2  &2 6ROXELOLW\ 9ROXPHV 0RODLU  0RODU YROXPHV 'HQVLWp  'HQVLW\ &DSDFLWp FDORULILTXH PRODLU  0RODU KHDW FDSDFLW\ (QWKDOSLHV PRODLU G¶H[FqV  ([FHVV PRODU HQWKDOS\DON\OSLSpULGLQHDON\OSLSHULGLQH.  .

(18)  Acknowledgements / Remercîments Back in 2011 I read a journal article from my main thesis supervisor during my master’s degree. I then had the opportunity to meet her when she visited and little did I know then that I would have the opportunity to be her Ph.D student. Since that time I have now completed my Ph.D at the Université de Blaise Pascal, now Université Clermont Auvergne, as her student. From her I have learned that there are many different points of view in science particularly the way of looking at data and evaluating them. Her energy and intensity are limitless and served as motivation during my studies. My thesis co-supervisor I met in 2013 during my masters during a visit at the laboratory in Guelph. His insight in chemical thermodynamics and theory and data helped me further understand chemical thermodynamics and the relationships between what we observe in the nature of materials. The discussions I have had with him have helped me interpret my data and expand my understanding of molecular interactions. To Dr. Karine Ballerat-Busserolles and Dr. Jean-Yves Coxam, I would like to sincerely thank you both for the three year spent working with you and learning from you, it has been a privilege. The reporters and examiners in my Ph.D defence: Prof. Christophe Coquelet (Centre thermodynamique de Procedee, Dr. Aline Auroux (Ircelyon), Dr. Ilham Mokbel (Univ. Claude Bernard) and Dr. Denis Lourdin (INRA Nates). It was a pleasure to have you examine me and hold me accountable to my work. Your comments and suggestions have giving me insight into the areas which I need to improve my knowledge. None of my time here would have been possible without Dr. Yohann Coulier. I met him back in 2012 as a postdoc and I am happy for his recommendation to the group. He helped me to the best of his ability and I am happy for his efforts and to know him. His ability to focus on complex task is an admirable trait, exemplified by his marathon running. To my fellow student, Barbara Liborio (soon to be Dr. Liborio), sharing this experience with you has been a pleasure. The back and forth help we gave each other help me better understand the problems engineers face and gave me motivation to finish degree. I would also like to give a special thank you to Nicole Nénot, for her cheerful demeanour and encouragement. The boys of CALNESIS, Dr. Mickael Simond and Dr. Jean-Claude Neyt, I would like to thank you both for the early years getting started. In both learning french and learning where to go for a drink and beer, i.e. Nota Bene, the campus bar with the best atmosphere I have been to, run by the best barkeep, Fred Gaume. The few games of pool we had during the first year were great. The TIM group is a fantastic group of scientists and technicians who have helped me in one way or another throughout the program. Some of which have offered advice or a small distraction from work at the after lunch coffee or celebration of a grand achievement. Working with you has been a pleasure: Dr. Jean-Micheal Andanson, Dr. Margarida Costa Gomes, Dr. Alain Dequidt, Julien Devemy, Dr. Florent Gujon, Dr. Passcale Husson, Prof. Patrice Malfreyt, Prof. Agilio Padua, Laure Pison, Dr. Sabine Sarraute. While not part of the TIM group but part of the building I would like to thanks Professor Jean-Pierre Grolier, for sharing the history of chemical thermodynamics between Canada and France. The organic chemists of chemistry 4 with who I would like to thank are Dr. Arnaude Gautier, Dr. Frederico Cisnetti, Dr. Gettano Angelici, Dr. Clémentine Gibrad, Dr. Jacob Hansen, Dr. Egon Heuson, Dr. Geoffrey Dumonteil and most importantly Radhe Shyam. It was a pleasure to meet you and get to know you. You are a great group of organic chemists and beer drinkers. Learning french was both a challenge with you guys and a pleasure. To the bureaux d’Auvergne Société Chimique de France Club Jeunes, Audrey Diouf-Lewis, Dr. Amira Farhaoui and Dr. Yannick Esvan. The club we managed to run produced a few good events for everyone. The Christmas party, le journée scientifique, and student oral competition. It was nice working with you and you are great group of people. To my fellow pre docs and post docs and no doc, who was part of the journey. Many thanks to Emilie Bordes, Thibaud Dreher, Joao Franca, Ludovic Garnier, Kevin Kempfer, Dr. Leila Moura, Dr. Makha Ndao, Dr. Inès Otero Fernandez, Dr. Yarick Grosu, Sven Plappert, Pablo Sanchez, Laura Sivet, Dr. José Solano, Gunjita Singh, Dr. Dusan.  .

(19)  Stosic, Dr. Joana Szala-Bilnik, Dr. Julian Tay and Darius Yeadon. Many of you are still on your journey I hope you find the end of it soon thank you for the time I got to spend with you. Meeting you was great way to learn of new cultures and new and different sciences. Outside of the ICCF and school I would like to thank Jessica Addley, Chantel Nguyen, David Alberti Morales, David Roberti, AntoineTavin, Meghana Upadhyaya, Nathanael Lampe (soon to be Dr), Martyna Zidonis, Dr. Ben Pesch. Meeting and getting to knowing each of you has been a big enjoyment in my life and the helpful distractions have helped me recover from hard weeks of work to get back into the next week. I would also like to thank the international collaborators Dr. John Carroll, Dr Jenny Cox, Dr. Peter Tremaine, Dr. Olivia Fandiño Torres, and Christine McGregor. Finally my parents, Geoffrey and Linda Lowe, and brothers Andrew and Christopher, thank you for your support over the past few years. I would also family in grandparents Joan and Stanley Lowe, my aunt Barbra Roberts and Mike Roberts for letting me spend the holidays with them in Manchester. As well as my aunts, uncles and cousins in Scotland who I had the opportunity to visit. There are many things in life which add complexity to daily tasks. Balancing work and personal relationships is difficult thing to do. Learning how is even harder, I would like to thank you all very much. Merci beaucoup. I apologise for not writing any acknowledgements in French, for I know I would not be able to full express my gratitude to all of you adequately. Mais encore, merci beaucoup à tout le monde pour trois grandes années..  .

(20)   7DEOHRI&RQWHQWV 0. 1. Résumé en Française .................................................................................................................................. 26 0.1. Équilibre de phase liquide-liquide ................................................................................34. 0.2. Les systèmes aqueux binaires ......................................................................................36. 0.3. Les systèmes aqueux ternaires ....................................................................................37. 0.4. Les propriétés thermodynamiques des solutions aqueuses ..........................................40. 0.5. Enthalpies de solution du dioxyde de carbone dans les solutions aqueuses de 4-MPD et 3-MPD 42. 0.6. Conclusion ...................................................................................................................45. Introduction ................................................................................................................................................ 48 1.1. 1.1.1. Increasing Temperature of the Earth .................................................................................................. 48. 1.1.2. Technological Solutions ....................................................................................................................... 49. 1.2. DACOOTA Project ........................................................................................................52. 1.2.1. The Data to Collect .............................................................................................................................. 53. 1.2.2. Recent Bibliography on Phase-Change Solvent ................................................................................... 55. 1.3. The Alkyl Piperidine Family .........................................................................................56. 1.3.1. Molecular Structure ............................................................................................................................. 57. 1.3.2. Thermodynamic Properties ................................................................................................................. 58. 1.4 2. Environmental Context ................................................................................................48. Thesis Goals ................................................................................................................59. Review of Thermodynamic Theory ............................................................................................................. 59 2.1. Chemical Equilibrium ...................................................................................................59. 2.1.1. Vapour-Liquid Equilibrium ................................................................................................................... 61. 2.1.2. Liquid-Liquid Equilibrium ..................................................................................................................... 63.  .

(21)  2.2. Maxwell’s Relations of Thermodynamic Properties .....................................................65. 2.2.1 2.3. 3. Partial Molar Properties and Excess Molar Properties ........................................................................ 66. Thermodynamic Models for Phase Equilibrium. ..........................................................71. 2.3.1. The Kent and Eisenberg Model ............................................................................................................ 72. 2.3.2. Ion interaction model from Pitzer modified by Edwards .................................................................... 72. 2.3.3. Deshmukh-Mather............................................................................................................................... 74. 2.3.4. Electrolyte-Non Random two Liquid Model / E-NRTL ......................................................................... 74. 2.3.5. Extended Universal Quasichemial Model / Extended UNIQUAC ......................................................... 77. Liquid-Liquid Equilibrium of Piperidine ....................................................................................................... 81 3.1. Introduction ................................................................................................................81. 3.2. Experimental ...............................................................................................................81. 3.2.1. Cloud Point Method ............................................................................................................................ 81. 3.2.2. Overview of the Methods .................................................................................................................... 82. 3.2.3. Thar Equilibrium Cell............................................................................................................................ 84. 3.2.4. Sapphire cell ........................................................................................................................................ 86. 3.2.5. Comparison of the Equilibrium Cells ................................................................................................... 88. 3.2.6. Alternative Mixing Method ................................................................................................................. 89. 3.3. Results and Discussion .................................................................................................91. 3.3.1. Cloud Point Visualization ..................................................................................................................... 91. 3.3.2. Liquid-Liquid Equilibrium of Alkyl piperidines ..................................................................................... 92. 3.3.3. Mathematical Regressions for Binary Liquid-Liquid Equilibrium Curves ............................................. 97. 3.3.4. Aqueous Solutions of Alkyl-Piperidine with Carbon Dioxide ............................................................... 98. 3.3.5. Discussion .......................................................................................................................................... 108. 3.4. Conclusions ............................................................................................................... 110.  .

(22)  3.5 4. Appendix for Chapter 3 ............................................................................................. 111. Thermodynamic Properties of Alkyl-Piperidines. ...................................................................................... 120 4.1. Introduction .............................................................................................................. 120. 4.2. Chemicals and Solution Preparation .......................................................................... 120. 4.3. Experimental Instrumentation. ................................................................................. 120. 4.3.1. Densities of Amine Solutions ............................................................................................................. 120. 4.3.2. Differential Scanning Calorimeter ..................................................................................................... 123. 4.3.3. Enthalpies of Mixing Experiments ..................................................................................................... 125. 4.3.4. Cell Calibration and Solution Measurement ...................................................................................... 127. 4.4. Results and Discussion ............................................................................................... 129. 4.4.1. Densities and Excess Molar Volumes................................................................................................. 129. 4.4.2. Excess Molar Enthalpies of Methyl Piperidines ................................................................................. 140. 4.4.3. Specific Heat Capacities and Excess Molar Heat Capacities .............................................................. 145. 4.5. Conclusions ............................................................................................................... 150. 4.6. Appendix for Chapter 4 ............................................................................................. 151. 5 Enthalpy of Carbon Dioxide Dissolution in Aqueous 3-methylpiperidine and 4-methylpiperidine; A Solubility Model ............................................................................................................................................................ 177 5.1. Experimental ............................................................................................................. 177. 5.1.1. Technic and Procedure ...................................................................................................................... 177. 5.1.2. Results ............................................................................................................................................... 178. 5.2. Thermodynamic Framework...................................................................................... 182. 5.2.1. Modelling Speciation and Absorption ............................................................................................... 182. 5.2.2. Modelling Enthalpies ......................................................................................................................... 190. 5.2.3. Modelling Strategy ............................................................................................................................ 192.  .

(23)  5.2.4. Model Results .................................................................................................................................... 192. 5.3. Conclusions ............................................................................................................... 197. 5.4. Appendix for Chapter 5 ............................................................................................. 198. 6. Conclusions ............................................................................................................................................... 224. 7. Lingering Questions and Future Work ....................................................................................................... 226. 8. Research Acknowledgments ..................................................................................................................... 227. 9. References ................................................................................................................................................ 228.  . .  .

(24)  7DEOHRI)LJXUHV FIGURE 0-1 SCHEMA DE PRINCIPE D’UNE UNITE DE CAPTAGE POST-COMBUSTION DE DIOXYDE DE CARBONE. ................ 28 FIGURE 0-2: SCHEMA DU PROCEDE UTILISANT LES SOLUTIONS D’AMINES DEMIXANTES (GOMEZ ET AL., 2014) ............... 29 FIGURE 0-3: SCHEMA PHYSICO-CHIMIQUE DU PROCEDE DE CAPTAGE DE CO2 ................................................................... 30 FIGURE 0-4: STRUCTURE DES ALKYL-PIPERIDINES ETUDIEES DANS CE LE PROJET: (A) PIPERIDINE, (B) NMETHYLPIPERIDINE, N-MPD (C) 2-METHYLPIPERIDINE, 2-MPD (D) 3-METHYLPIPERIDINE, 3-MPD (E) 4METHYLPIPERIDINE (F) N-ETHYLPIPERIDINE, N-EPD (G) 2,6-DIMETHYLPIPERIDINE, 2,6-DPD (H) 3,5DIMETHYLPIPERIDINE, 3,5-DP, (I) 2-ETHYLPIPERIDINE, 2-EPD. .................................................................................. 32 FIGURE 0-5: ILLUSTRATION DE LA VISUALISATION DE LA SEPARATION DE PHASE LORS DE L’AUGMENTATION DE TEMPERATURE. ........................................................................................................................................................ 35 FIGURE 0-6: PHOTO DE GAUCHE: L’INSTRUMENT DE THAR INSTRUMENTS ; A DROITE: CELLULE EN SAPHIR (CTP). ........... 35 FIGURE 0-7: DIAGRAMMES DE PHASES DES SYSTEMES BINAIRES ETUDIES :A GAUCHE : AMINES TERTIAIRES : N-MPD ( ,. ) ET N-EPD (. ,. ,. FLASCHNER, 1909;. ,. ) 3,5-DPD ( ,. ,. )(. CE TRAVAILLE,. COULIER Y ET AL. 2010,. FLASCHNER AND MACEWEN, 1908;. STEPHENSON, 1993) ; A DROITE : AMINES SECONDAIRES : 4-MPD, ( ). (. ,. CE TRAVAILLE,. ,. FLASCHNER AND MACEWEN, 1908;. ). 3-MPD, (. FLASCHNER, 1909;. ,. STEPHENSON, 1993)......................................................................................................................................... 37. FIGURE 0-8: LLE EN FONCTION DU TAUX DE CHARGE EN CO2, POUR LES SOLUTIONS AQUEUSES DE 2-MPD (GAUCHE) ET NMPD (DROITE). LES SYMBOLES SONT :. 10 WA%, (. ,. ) 20 WA % ET + 40 WA%, ................................................. 38. FIGURE 0-9: PROPRIETES THERMODYNAMIQUES DES METHYL-PIPERIDINES EN SOLUTION AQUEUSE; (A) VOLUME MOLAIRE D’EXCES A 25°C; (B) ENTHALPIE MOLAIRE D’EXCES A 40°C (C) CAPACITE CALORIFIQUE MOLAIRE D’EXCES A 35°C. ......................................................................................................................................................................... 41 FIGURE 0-10: ENTHALPIES DE SOLUTION PAR MOLE DE CO2 (COURBE DE GAUCHE) ET PAR MOLE D’AMINE (COURBE DE DROITE) EN FONCTION DU TAUX DE CHARGE EN CO2, DANS UNE SOLUTION AQUEUSE DE 4-MPD A 40% EN MASSE, ET POUR TROIS PRESSIONS :. (0.43 MPA),. (0.95 MPA), ET. (1.45 MPA)........................................................ 43. FIGURE 1-1: SCHEMATIC REPRESENTATION OF POST-COMBUSTION PROCESS. ................................................................. 50.  .

(25)  FIGURE 1-2 : SIMPLIFIED REPRESENTATION OF POST-COMBUSTION CARBON DIOXIDE CAPTURE UNIT............................. 51 FIGURE 1-3: LIQUID-LIQUID PHASE SEPARATION FOR TERNARY SOLUTION {WATER + AMINE + CARBON DIOXIDE}. ......... 52 FIGURE 1-4: SIMPLIFIED SCHEMATIC REPRESENTATION OF THE INDUSTRIAL PROCESS USING A DEMIXING AMINE. (GOMEZ ET AL., 2014) ............................................................................................................................................... 53 FIGURE 1-5: THERMODYNAMIC AND PHYSICO-CHEMICAL REPRESENTATION OF THE PROCESS. ........................................ 54 FIGURE 1-6: STRUCTURES OF THE ALKYL PIPERIDINES INVESTIGATED (A) PIPERERIDINE, (B) N-METHYLPIPERIDINE, N-MPD (C) 2-METHYLPIPERIDINE, 2-MPD (D) 3-METHYLPIPERIDINE, 3-MPD (E) 4-METHYLPIPERIDINE(F) N-ETHYLPIPERIDINE, N-EPD (G) 2,6-DIMETHYLPIPERIDINE, 2,6-DPD(H) 3,5-DIMETHYLPIPERIDINE, 3,5-DPD (I) 2-ETHYLPIPERIDINE, 2-EPD. ................................................................................................................................................................................. 57 FIGURE 2-1: EXAMPLE DIAGRAM OF LIQUID-LIQUID PHASE EQUILIBRIUM. ....................................................................... 64 FIGURE 3-1: OVERALL EXPERIMENTAL SET-UP OF LIQUID-LIQUID EQUILIBRIUM CELLS FOR SOLUTIONS CONTAINING DISSOLVED GAS. .............................................................................................................................................................. 83 FIGURE 3-2 : GENERAL OBERVIEW OF THE SPM 20 THAR EQUILIBRIUM APPARATUS. (1) WATER PUMP; (2) CO2 PUMP (3) INJECTION LOOP; (4) SIX WAY VALVE; (5) INJECTION PORT FOR AQUEOUS AMINE; (6) MIXING UNIT; (7) ISOTHERMAL BATH; (8) MEASUREMENT CELL; (9) PRESSURE GAUGES; (10) THERMOCOUPLE; (11) BUFFER VOLUME AND BACK PRESSURE REGULATOR; (12) WASTE BOTTLE. .............................................................................................. 84 FIGURE 3-3 : SAPPHIRE LIQUID-LIQUID EQUILIBRIUM CELL. (1) TITANIUM BLOCKS; (2) SAPPHIRE CELL; (3) SPHERICAL STIRRER; (4) K-TYPE THERMOCOUPLE; (5) O-RING. ........................................................................................................ 86 FIGURE 3-4 : GENERAL OVERVIEW OF THE LIQUID-LIQUID EQUILIBRIUM SAPPHIRE APPARATUS. (1) WATER PUMP; (2) CO2 PUMP; (3) INJECTION LOOP (4) SIX-WAY VALVE; (5) INJECTION PORT FOR AQUEOUS AMINE; (6) DELAY LOOP; (7) MIXING UNIT; (8) SAPPHIRE EQUILIBRIUM CELL; (9) JACKETED GLASS REACTOR VESSEL; (10) THERMOCOUPLE; (11) PRESSURE GAUGES; (12) BUFFER VOLUME AND BACK PRESSURE REGULATOR; (13) WASTE BOTTLE. ........................ 87 FIGURE 3-5 : GENERAL OVERVIEW OF THE SAMPLE CELL: (1) DIRECTION OF NITROGEN FLOW FROM ISCO PUMP (2) PRESSURE GAUGE (3) 3-WAY BALL VALVE (4) SOURCE OF WATER FLOW FROM ISCO PUMP (5) SAMPLE LOOP (6) SIXWAY VALVE (7) INJECTION PORT FOR SOLUTION. (8) SAMPLE CYLINDER, WITH STIR BAR INSIDE (9) ICE BATH. (10) DIRECTION OF SOLUTION FLOW TO THE THAR CELL. ..................................................................................................... 90.  .

(26)  FIGURE 3-6 : CCD CAMERA PICTURES OF THE INTERNAL CHAMBER OF THE THAR INSTRUMENT MEASURING CELL. (A) TRANSPARENT HOMOGENOUS SOLUTION; (B) CLOUD POINT; (C) OPAQUE HETEROGENEOUS MIXTURE.................. 91 FIGURE 3-7 : PICTURE OF PHASE TRANSITION IN THE SAPPHIRE EQUILIBRIUM CELL. (A) TRANSPARENT HOMOGENOUS SOLUTION (B) CLOUD POINT (C) DECANTED TWO PHASE MIXTURE. ............................................................................ 92 FIGURE 3-8: COMPARISON OF THE LLE FOR TERTIARY ALKYL PIPERIDINES: N-MPD DATA ( (STEPHENSON,1993) , WORK),. (O.FLASCHNER, 1908),. (STEPHENSON 1993),. (COULIER ET AL 2010),. (SCALING FIT THIS WORK) ) AND N-EPD DATA (. (O.FLASCHNER, 1908),. (SCALING FIT THIS WORK) ) ..................................... 94. FIGURE 3-9: COMPARISON OF THE LLE FOR SECONDARY HINDERED ALKYL PIPERIDINES: LLE OF 2-MPD, ( AL. 2010), WORK),. (STEPHENSON 1993) , (STEPHENSON 1993),. (THIS. FLASCHNER AND MACEWAN 1908), (SCALING FITS) ) AND 2-EPD (. (COULIER ET. (SCALING FITS) ) 2,6-DPD, (. (THIS WORK),. (THIS. (STEPHENSON 1993),. (SCALING FITS)) DATA. ..................................................................................................................................................... 95 FIGURE 3-10: COMPARISON OF THE LLE FOR SECONDARY ALKYL PIPERIDINES: LLE OF 4-MPD, ( (STEPHENSON, 1993) , (STEPHENSON 1993), (STEPHENSON 1993),. (FLASCHNER, 1909), (FLASCHNER, 1909),. (SCALING FIT THIS WORK) ). 3-MPD, (. (THIS WORK), (THIS WORK),. (SCALING FIT THIS WORK) ) 3,5-DPD DATA (. (THIS WORK),. (SCALING FIT THIS WORK)). ................................................................................................. 96. FIGURE 3-11: THE LLE TEMPERATURE WITH RESPECT TO THE INCREASING LOADING CHARGE OF CO2 IN SOLUTIONS OF NMPD USING THE SAPPHIRE CELL. (. 10WA% / XA=0.0198) SOLUTIONS, (. WA% SOLUTIONS AT 2 MPA, (+ 40WA% / XA=0.1080), SOLUTIONS. 20WA% / XA=0.0434) SOLUTIONS,. 20. 20WA% SOLUTIONS MEASURED USING THAR. CELL. THE SOLID LINES ARE POLYNOMIAL FITS FOR A VISUAL AID. THE SIZES OF THE MARKERS REPRESENT THE UNCERTAINTY IN THE TEMPERATURE. ......................................................................................................................... 100 FIGURE 3-12 : LLE TEMPERATURE OF N-MPD WITH INCREASING MOLAR FRACTION OF AMINE IN SOLUTION AT A CONSTANT LOADING CHARGE OF 0.17: SOLUTION,. CO2 LOADED N-MPD SOLUTION,. UNLOADED N-MPD SOLUTION,. POLYNOMIAL FIT TO LOADED. SCALING FIT TO UNLOADED. THE WEIGHT PERCENT OF LOADED. SOLUTION WERE INCREASED 10 WA% STARTING FROM 10 WA% (XA=0.0198) TO 40 WA% (XA=0.1080) ................... 102 FIGURE 3-13: LLE TEMPERATURE VERSUS INCREASING LOADING CHARGE OF CARBON DIOXIDE, IN AQUEOUS 2-MPD SOLUTIONS MEASURED USING THE THAR CELL. (+ 40 WA%/XA=0.1080),(.  . 20 WA%/ XA=0.0434). .......................... 103.

(27)  FIGURE 3-14: LLE TEMPERATURE OF A 2-MPD SOLUTION VERSUS MOLAR FRACTION WITH A CONSTANT LOADING CHARGE OF 0.2 OF CO2. (. UNLOADED 2-MPD SOLUTIONS), (. SOLUTION LOADED TO 0.20), (. SCALING FIT TO 2-MPD DATA), (. 2-MPD. POLYNOMIAL FIT TO THE LLE DATA). THE WEIGHT PERCENT OF LOADED. SOLUTION INCREASES FROM 10WA% (XA=0.0198) TO 30 WA%(XA=0.0722) INCREASING EVER 5 WA%. THE LAST SQUARE IS 40 WA%(XA=0.1080) ..................................................................................................................................... 104 FIGURE 3-15: LLE TEMPERATURE VERUSUS CO2 LOADING OF 2,6-DPD IN SOLUTION AT A CONSTANT WEIGHT PERCENT MEASURED USING THE SAPPHIRE CELL.. (5WA% / XA=0.0083),. (10WA% / XA=0.0173),. (20WA% / XA=0.0382) SOLUTION MIXED PREPARED USING A STATIC MIXING UNIT,. (20WA% / XA=0.0382),. (30 WA% / XA=0.0959). THE. SOLID LINES ARE POLYNOMIAL FITS TO THE DATA. ..................................................................................................... 105 FIGURE 3-16: LLE TEMPERATURE OF 2,6-DPD VERSUS MOLAR FRACTION OF AMINE AT A CONSTANT LOADING CHARGE 0.21: (. CO2 LOADED AQUEOUS 2,6-DPD SOLUTIONS),(. AQUEOUS 2,6-DPD SOLUTION),(. DATA LINE TO GUIDE THE EYE), (. UNLOADED. SCALING FIT TO UNLOADED DATA). THE CORRESPONDING WEIGHT PERCENT. OF SOLUTION FROM MOLE FRACTION ARE (5WA% / XA=0.0959), (10WA% / XA=0.0959), (20WA% / XA=0.0383), (30WA% / XA=0.0959) ..................................................................................................................................................... 106 FIGURE 3-17: LLE TEMPERATURE OF N-EPD VERSUS CO2 LOADING CHARGE. THE SOLUTIONS ARE PREPARED IN A SAMPLE CYLINDER (. 5 WA%/, XA=0.0083) (. THE FLOW MIXING UNIT IS LABELLED (. 10 WA%/ XA=0.0173), (. 20 WA% XA=0.0959) . THE SOLUTION PREPARED BY. 5 WA%/ XA=0.0083), THE LINES ARE POLYNOMIAL FITS TO THE DATA. THE. SIZE OF THE MARKERS REFLECTS THE UNCERTAINTY IN THE DATA. ........................................................................ 107 FIGURE 3-18: CARBON 13 NMR SPECTRA OF PRECIPITATED 3,5-DIMETHYLPIPERIDINE IN D2O SOLVENT. THE CHEMICAL SHIFTS BETWEEN 10 AND 55 PPM ARE PART OF THE RING STRUCTURE. THE DOWN FIELD SHIFTS BETWEEN 160 AND 170 PPM ARE CARBONATE, BICARBONATE AND CARBAMATE SALTS. .................................................................... 119 FIGURE 4-1: EXAMPLE OF CALIBRATION AND MEASUREMENT OF THE PERIOD OF VIBRATION. ........................................ 121 FIGURE 4-2: DIAGRAM OF THE MIXING CHAMBER WITH ZOOM UP TO THE MIXING POINT. (A) STAINLESS STEEL INJECTION TUBES (B) MIXING POINT OF THE CELL (C) MIXING CHAMBER MADE OF STAINLESS STEEL TUBING. ........................ 126 FIGURE 4-3: COMPARISON OF THE MOLAR VOLUMES OF PURE ALKYL-PIPERIDINES: 3-MPD,. 2-MPD (COULIER ET AL., 2010),. 4-MPD,. N-MPD (COULIER ET AL., 2010),.  . PIPERIDINE (AFZAL ET AL., 2008), 3,5-DPD,. N-EPD,.

(28)  2,6-DPD. SOLID LINES ARE POLYNOMIAL FITS. THE SIZE OF THE MARKERS REFLECTS THE UNCERTAINTY OF THE DATA. ............................................................................................................................................................................. 130 FIGURE 4-4 AND FIGURE 4-5: EXCESS MOLAR VOLUMES OF 4-MPD (LEFT) AND 3-MPD (RIGHT) MEASURED AT ATMOSPHERIC PRESSURE, WITH REDLICH KISTERS FITS TO THE DATA. ( , 308.15 K) ( ,. 318.15K) ( ,. 288.15 K) ( ,. 298.15 K) ( ,. 328.15 K). THE SIZES OF THE MARKERS REFLECT THE UNCERTAINTY IN THE. DATA. ............................................................................................................................................................................. 132 FIGURE 4-6 AND FIGURE 4-7: EXCESS MOLAR VOLUMES OF 2,6-DPD (LEFT) AND 3,5-DPD (RIGHT) MEASURED AT ATMOSPHERIC PRESSURE WITH REDLICH KISTERS FITS AND POLYNOMIAL FITS TO THE DATA. ( , 298.15 K) ( ,. 308.15 K) ( ,. 288.15 K) ( ,. 318.15K). THE SIZE OF THE MARKERS REFLECTS THE UNCERTAINTY IN THE. DATA. ............................................................................................................................................................................. 133 FIGURE 4-8: EXCESS MOLAR VOLUMES OF N-EPD MEASURED AT ATMOSPHERIC PRESSURE, WITH POLYNOMIAL FITS TO THE DATA. ( ,. 278.15 K) ( ,. 288.15 K) ( ,. 298.15 K). THE SIZE OF THE MARKERS REFLECTS THE. UNCERTAINTY IN THE DATA. ......................................................................................................................................... 133 FIGURE 4-9: EXCESS MOLAR VOLUMES OF TERTIARY ALKY PIPERIDINES AND PIPERIDINE AT 298.15 K. (AFZAL ET AL., 2008) N-MPD. (COULIER ET AL., 2010) N-EPD. PIPERIDINE. ( 278.15 K). THE SIZE OF THE MARKERS REFLECT THE. UNCERTAINTY OF THE DATA ......................................................................................................................................... 136 FIGURE 4-10: EXCESS MOLAR VOLUMES OF SECONDARY HINDERED ALKYL PIPERIDINES AND PIPERIDINE AT 298.15 K. PIPERIDINE (AFZAL ET AL., 2008),. 2-MPD (COULIER ET AL., 2010),. ,2,6-DPD. THE SIZE OF THE MARKERS REFLECT. THE UNCERTAINTY OF THE DATA .................................................................................................................................. 137 FIGURE 4-11: EXCESS MOLAR VOLUMES OF SECONDARY ALKYL PIPERIDINES AND PIPERIDINE AT 298.15 K. (AFZAL ET AL., 2008),. 4-MPD,. 3-MPD ,. PIPERIDINE. 3,5-MPD . THE SIZE OF THE MARKERS REFLECT THE UNCERTAINTY OF. THE DATA ....................................................................................................................................................................... 138 FIGURE 4-12: EXCESS MOLAR VOLUMES OF 3-MPD AT 303.15 K WITH INCREASING PRESSURE AND REDLICH KISTHER FITS: (ATMOSPHERIC PRESSURE),. (0.5 MPA),. (1.0 MPA). THE SIZE OF THE MARKERS REFLECT THE UNCERTAINTY. OF THE DATA.................................................................................................................................................................. 140.  .

(29)  FIGURE 4-13: EXCESS MOLAR VOLUMES OF 4-MPD AT 303.15 K WITH INCREASING PRESSURE AND REDLICH KISHTER FITS. (ATMOSPHERIC PRESSURE),. (0.5 MPA). THE SIZE OF THE MARKERS REFLECTS THE UNCERTAINTY OF THE DATA.. ........................................................................................................................................................................................ 140 FIGURE 4-14 AND FIGURE 4-15 : EXCESS MOLAR ENTHALPIES OF 3-MPD (LEFT) AND 4-MPD (RIGHT) MEASURED AT 1.0 MPA ( ,. 303.15 K) ( ,. 313.15 K) ( ,. 323.15K) ( ,. 333.15 K). THE SIZE OF THE MARKERS REFLECTS. THE UNCERTAINTY OF THE DATA. ................................................................................................................................. 141 FIGURE 4-16: EXCESS MOLAR ENTHALPIES OF ALKYL PIPERIDINE AND REDLICH KISTER FITS, 2010),. N-MPD (COULIER ET AL., 2015),. 2-MPD (COULIER ET AL., 2015),. PIPERIDINE (KUL AND LIEU,. 3-MPD,. 4-MPD. THE SIZE OF THE. MARKERS REFLECTS THE UNCERTAINTY OF THE DATA. ............................................................................................... 142 FIGURE 4-17 AND FIGURE 4-18 : REDUCED MOLAR ENTHALPIES OF 3-MPD (LEFT) AND 4-MPD (RIGHT): ( 313.15 K), (. 323.15K), (. 303.15 K), (. 333.15 K). THE SOLID LINES ARE LINEAR REGRESSIONS FOR INFINITE DILUTION. THE SIZE. OF THE MARKERS REFLECTS THE UNCERTAINTY OF THE DATA ................................................................................... 143 FIGURE 4-19: TEMPERATURE DEPENDENT INFINITE DILUTION ENTHALPIES OF ALKYL PIPERIDINES. , 298.15 K (DOHNAL ET AL., 1994), MPD (COULIER ET AL., 2015), (BERTHON ET AL., 1979),. N-MPD (COULIER ET AL., 2015),. 3-MPD,. 2-. 3-MPD AT 298.15 K. 4-MPD AT 298.15 K (BERTHON ET AL., 1979). .............................................. 144. FIGURE 4-20: MOLAR HEAT CAPACITIES OF PURE ALKYL-PIPERIDINE. (COULIER ET AL., 2015),. N-MPD (DOHNAL AND REHAK, 2011),. 2-MPD AT 298.15 K (BERTHON ET AL., 1979),. 4-MPD,. PIPERIDINE AT. N-MPD (CONTI, G ET AL., 1976),. MPD,(3-MPD AND 4-MPD ARE OVERLAPPED). PIPERIDINE (MESSERLY ET AL., 1988),. 2-MPD (MESSERLY ET AL., 1988),. 3-MPD,. N-MPD 4-. 2-MPD (COULIER ET AL., 2015), ,. .................................................. 146. FIGURE 4-21 AND FIGURE 4-22: EXCESS MOLAR HEAT CAPACITIES OF 3-MPD (LEFT) AND 4-MPD (RIGHT) AT ATMOSPHERIC PRESSURE: ( ,. 288.15 K) ( ,. 298.15 K) ( ,. 308.15 K) ( ,. 318.15K) ( ,. 328.15 K) .................. 147. FIGURE 4-23: ZOOM IN OF EXCESS MOLAR HEAT CAPACITIES IN THE CROSSOVER CONCENTRATION. (A) 3-MPD ( , 288.15 K) ( , ,. 298.15 K) ( ,. 298.15 K) ( ,. 308.15 K) ( ,. 308.15 K) ( ,. 318.15K) ( ,. 318.15K) ( ,. 328.15 K), (B) 4-MPD ( ,. 288.15 K) (. 328.15 K). THE LINES IN THE FIGURE ARE POLYNOMIAL. FITS TO THE DATA. THE ARROWS SHOW THE DIRECTION OF INCREASING, BLACK, AND DECREASING, RED, HEAT CAPACITY WITH TEMPERATURE. ................................................................................................................................... 147.  .

(30)  FIGURE 4-24: EXCESS MOLAR HEAT CAPACITIES OF N-MPD FROM (COULIER ET AL. 2015), ( , 298.15 K), ( ,. 288.15 K), ( ,. 308.15 K). ........................................................................................................................................ 148. FIGURE 4-25: COMPARISON OF EXCESS MOLAR HEAT CAPACITIES AT 318.15 K. MPD (COULIER ET AL., 2015),. 3-MPD,. N-MPD (COULIER ET AL., 2015),. 2-. 4-MPD ..................................................................................................... 149. FIGURE 5-1: SOLUTION ENTHALPIES PER MOLE OF CARBON DIOXIDE FOR A 39.86 WA% 4-MPD SOLUTION. THE DASHED LINES REPRESENT THE DATA SELECTED FOR THE AVERAGE ENTHALPY OF DISSOLUTION FOR CO2 IN SOLUTION. ( (0.43 MPA),. (0.95 MPA),. (1.45 MPA)) .................................................................................................................. 179. FIGURE 5-2: SOLUTION ENTHALPIES PER MOL OF AMINE FOR A 39.86 WA% 4-MPD SOLUTION. THE DASHED LINES REPRESENT THE THREE SEPARATE REGIONS FOR THE SOLUTION ENTHALPIES. (A) THE INITIAL SLOPE. (B) THE SECOND SLOPE REPRESENTING THE CHANGE IN ABSORPTION MECHANISM (C) PLATEAU REPRESENTING THE SATURATION OF THE SOLUTION. THE INTERCEPTS OF SLOPS B AND C REVEAL THE SOLUBILITY LIMITS FOR EACH SOLUTION. ( (0.43 MPA),. (0.95 MPA),. (1.45 MPA)) ........................................................................................ 182. FIGURE 5-3: ILLUSTRATION OF THE DIFFERENT EQUILIBRIUM CONDITIONS AND REACTIONS IN THE SYSTEM TO BE MODELLED. .................................................................................................................................................................... 183 FIGURE 5-4: EXPERIMENTAL SOLUBILITY (S) OF CO2 IN AQUEOUS, (A), 3-MPD AND, (B), 4-MPD SOLUTIONS (WA%=40) VS TOTAL PRESSURE. (○), 318 K AND (□), 338 K. SOLID LINES ARE THE CALCULATED SOLUBILITY AT 318 AND 338 K. .. 193 FIGURE 5-5: ENTHALPIES OF SOLUTION (' 'SOLH / KJ·‫ܔܗܕ‬۱‫۽‬૛ െ ૚) VERSUS CO2 LOADING FOR AQUEOUS SOLUTIONS OF 3MPD AND 4-MPD: ○, EXPERIMENTAL DATA. FROM THE THERMODYNAMIC MODEL: (1), TOTAL ENTHALPY OF SOLUTION; ENTHALPIC CONTRIBUTION FROM EQUILIBRIA: (2), AMINE PROTONATION (EQ 6-4); (3), CARBAMATE FORMATION (EQ 6-5); (4), CO2 VAPOUR – LIQUID EQUILIBRIUM; (5), SECOND IONIZATION OF CO2 (EQ 6-2); (6), FIRST IONIZATION OF CO2 (EQ 6-3). (A): T = 318 K AND W3-MPD%= 40; (B): T = 338 K AND W3-MPD %= 40; (C): T = 318 K AND W4-MPD %=40; (D): T = 338 K AND W4-MPD %=40..................................................................................................... 194 FIGURE 5-6: ACTIVITY COEFFICIENTS (JI) AND LIQUID PHASE COMPOSITION (MI, MOLAL CONCENTRATION) OF AQUEOUS SOLUTIONS OF 3-MPD AND 4-MPD VERSUS GAS LOADING CHARGE AS CALCULATED FROM THE MODEL. (A) AND (B): T = 318 K AND W3-MPD%= 20; (C) AND (D): T=318 K AND W4-MPD%= 20. ................................................................. 195.  .

(31)  FIGURE 5-7: ENTHALPIES OF SOLUTION PER MOLE OF AMINE (ABOVE) AND PER MOLE OF CO2 (BELOW). 3-MPD CORRESPONDING TO TABLE 6-1 (. 0.5 MPA), (. 1.0MPA) ( 1.5MPA) ................................................................... 217. FIGURE 5-8: ENTHALPIES OF SOLUTION TO PER MOLE OF AMINE (ABOVE) AND PER MOL OF CO2 (BELOW). 3-MPD CORRESPONDING TO TABLE 6-2(. 0.5 MPA), (. 1.0MPA) ( 1.5MPA) .................................................................... 218. FIGURE 5-9: ENTHALPIES OF SOLUTION TO PER MOLE OF AMINE (ABOVE) AND PER MOL OF CO2 (BELOW). 3-MPD CORRESPONDING TO TABLE 6-3 (. 0.5 MPA), (. 1.0MPA) ( 1.5MPA) ................................................................... 219. FIGURE 5-10: ENTHALPIES OF SOLUTION TO PER MOLE OF AMINE (ABOVE) AND PER MOL OF CO2 (BELOW). 4-MPD CORRESPONDING TO TABLE 6-4 (. 0.5 MPA), (. 1.0MPA) ( 1.5MPA) ................................................................... 220. FIGURE 5-11: ENTHALPIES OF SOLUTION TO PER MOLE OF AMINE (ABOVE) AND PER MOLE OF CO2 (BELOW). 4-MPD CORRESPONDING TO TABLE 6-5 (. 0.5 MPA), (. 1.0MPA) ( 1.5MPA) ................................................................... 221. FIGURE 5-12: ENTHALPIES OF SOLUTION PER MOLE OF AMINE (ABOVE) AND PER MOLE OF CO2 (BELOW). 4-MPD CORRESPONDING TO TABLE 6-6 (. 0.5 MPA), (. 1.0MPA) ( 1.5MPA) ................................................................... 222. FIGURE 5-13: ENTHALPIES OF SOLUTION PER MOLE OF AMINE (ABOVE) AND PER MOLE OF CO2 (BELOW). 4-MPD CORRESPONDING TO TABLE 6-7. (. 0.5 MPA), (. 1.0MPA) ( 1.5MPA) .................................................................. 223.  .

(32)  7DEOHRI7DEOHV TABLEAU 0-1: LISTE DES AMINES ETUDIEES ET LEURS ACRONYMES ....................................................................................... 32 TABLEAU 0-2: CARACTERISTIQUES DES CELLULES D’EQUILIBRE DE PHASE. ............................................................................ 36 TABLE 3-1 : CHARACTERISTICS OF THE VISUAL CELLS USED FOR CLOUD POINT MEASUREMENTS ........................................ 88 TABLE 3-2: EXPERIMENTAL METHOD USED TO MEASURE THE PHASE EQUILIBRIUM TEMPERATURE. ................................. 99 TABLE 3-3 : MOLE FRACTION AND MEASURED LIQUID-LIQUID EQUILIBRIUM TEMPERATURES OF ALKYL PIPERIDINES .... 112 TABLE 3-4: SCALING LAW PARAMETER FOR AQUEOUS ALKYL PIPERIDINE SOLUTIONS. ...................................................... 114 TABLE 3-5: LLE OF AQUEOUS N-MPD SOLUTIONS WITH CO2 MEASURED WITH THE SAPPHIRE EQUILIBRIUM CELL AND THE THAR INSTRUMENTS EQUILIBRIUM CELL. .................................................................................................................... 115 TABLE 3-6: LLE OF AQUEOUS 2-MPD SOLUTIONS WITH CO2 MEASURED WITH THE THAR INSTRUMENTS EQUILIBRIUM CELL ........................................................................................................................................................................................ 116 TABLE 3-7: LLE OF AQUEOUS 2,6-DPD SOLUTIONS WITH CO2 MEASURED WITH THE SAPPHIRE EQUILIBRIUM CELL ......... 117 TABLE 3-8: LLE OF AQUEOUS N-EPD SOLUTIONS WITH CO2 MEASURED WITH THE STATIC MIXING UNIT AND THAR CELL. ........................................................................................................................................................................................ 118 TABLE 4-1: LIST OF CHEMICALS SUPPLIERS AND PURITIES .................................................................................................... 152 TABLE 4-2: EXPERIMENTAL AND LITERATURE OF MOLAR ISOBARIC HEAT CAPACITIES OF N-OCTANE. .............................. 153 TABLE 4-3: DENSITIES AND EXCESS MOLAR VOLUMES OF AQUEOUS 3-MPD SOLUTIONS AND PURE LIQUID AT ATMOSPHERIC PRESSURE.. A,B,C,D. .................................................................................................................................... 154. TABLE 4-4: DENSITIES AND EXCESS MOLAR VOLUMES OF AQUEOUS 4-MPD SOLUTIONS AND PURE LIQUID AT ATMOSPHERIC PRESSURE.. A,B,C,D. .................................................................................................................................... 156. TABLE 4-5: DENSITIES AND EXCESS MOLAR VOLUMES OF AQUEOUS 2,6-DPD SOLUTIONS AND PURE LIQUID AT ATMOSPHERIC PRESSURE.. A,B,C,D. .................................................................................................................................... 158. TABLE 4-6: DENSITIES AND EXCESS MOLAR VOLUMES OF AQUEOUS 3,5-DPD SOLUTIONS AND PURE LIQUID AT ATMOSPHERIC PRESSURE.. A,B,C,D. .................................................................................................................................... 159.  .

(33)  TABLE 4-7: DENSITIES AND EXCESS MOLAR VOLUMES OF AQUEOUS N-EPD SOLUTION AND PURE LIQUID AT ATMOSPHERIC PRESSURE.. A,B,C,D. .................................................................................................................................... 160. TABLE 4-8: TEMPERATURE DEPENDENT REDLICH-KISHTER PARAMETERS FOR EXCESS MOLARE VOLUMES OF ALKYL PIPERIDINES. .................................................................................................................................................................. 161 TABLE 4-9: TEMPERATURE DEPENDENT EXCESS PARTIAL INFINITE DILUTION MOLAR VOLUMES AND INFINITE DILUTION PARTIAL MOLAR PROPERTIES OF ALKYL PIPERIDINE. .................................................................................................. 162 TABLE 4-10: MAGNITUDE AND LOCAL MINIMA OF EXCESS MOLAR VOLUMES AT 298.15 K. THE TABLE IS ARRANGED BY DECREASING MAGNITUDE OF THE EXCESS MOLAR VOLUMES. ................................................................................... 162 TABLE 4-11: PRESSURE DEPENDANT REDLICH-KISTER PARAMETERS FOR EXCESS MOLAR VOLUMES AT 303.15 K ............ 163 TABLE 4-12: DENSITIES AND EXCESS MOLAR VOLUMES OF 3-MPD AND 4-METHYLPIPERIDINE AT 303 K AT ATMOSPHERIC PRESSURE, 0.5 MPA AND 1.0 MPA. ............................................................................................................................... 164 TABLE 4-13: EXCESS MOLAR ENTHALPIES OF MIXING WATER AND 3-MPD AT A PRESSURE OF 1.0 MPA ........................... 166 TABLE 4-14: EXCESS MOLAR ENTHALPIES OF MIXING WATER AND 4-MPD AT A PRESSURE OF 1.0 MPA ........................... 168 TABLE 4-15: REDLICH-KISTER PARAMETERS FOR THE EXCESS MOLAR ENTHALPIES ............................................................. 170 TABLE 4-16: MAGNITUDE AND LOCAL MINIMA OF EXCESS MOLAR ENTHALPIES. THE TABLE IS ARRANGED BY DECREASING MAGNITUDE OF THE EXCESS MOLAR VOLUMES. ......................................................................................................... 170 TABLE 4-17: INFINITE DILUTION PARTIAL MOLAR ENTHALPIES OF 3-MPD AND 4-MPD. ..................................................... 170 TABLE 4-18: SPECIFIC HEAT CAPACITIES AND EXCESS MOLAR HEAT CAPACITIES OF AQUEOUS 3-MPD SOLUTION AND PURE LIQUID AT ATMOSPHERIC PRESSURE.. A,B,C,D. .................................................................................................................. 171. TABLE 4-19: SPECIFIC HEAT CAPACITIES AND EXCESS MOLAR HEAT CAPACITIES OF AQUEOUS 4-MPD SOLUTION AND PURE LIQUID AT ATMOSPHERIC PRESSURE ............................................................................................................................ 173 TABLE 4-20: REDLICH-KISTER FITTING PARAMETERS FOR EXCESS MOLAR HEAT CAPACITIES. ............................................ 175 TABLE 4-21: MAGNITUDE AND LOCAL MINIMA OF EXCESS MOLAR HEAT CAPACITIES AT 318.15K. THE TABLE IS ARRANGED BY DECREASING MAGNITUDE OF THE EXCESS VOLUMES. ........................................................................................... 176.  .

(34)  TABLE 5-1: ENTHALPIES OF SOLUTION FOR CO2 DISSOLUTION AND SOLUBILITY OF CO2 IN AQUEOUS SOLUTIONS OF 3MPD ............................................................................................................................................................................... 181 TABLE 5-2: ENTHALPIES OF SOLUTION FOR CO2 DISSOLUTION AND SOLUBILITY OF CO2 IN AQUEOUS SOLUTIONS OF 4MPD ............................................................................................................................................................................... 181 TABLE 5-3: PARAMETERS FOR EQUILIBRIUM CONSTANTS .................................................................................................... 184 TABLE 5-4: EXPERIMENTAL ENTHALPIES OF SOLUTION OF CO2 IN AQUEOUS 3-MPD (WA%=19.36) AT 318 K .................... 198 TABLE 5-5: EXPERIMENTAL ENTHALPIES OF SOLUTION OF CO2 IN AQUEOUS 3-MPD (WA%=40.44) AT 318 K .................... 200 TABLE 5-6: EXPERIMENTAL ENTHALPIES OF SOLUTION OF CO2 IN AQUEOUS 3-MPD (WA%=40.00) AT 338 K ................... 203 TABLE 5-7: EXPERIMENTAL ENTHALPIES OF SOLUTION OF CO2 IN AQUEOUS 4-MPD (WA%=16.57) AT 318 K .................... 206 TABLE 5-8: EXPERIMENTAL ENTHALPIES OF SOLUTION OF CO2 IN AQUEOUS 4-MPD (WA%=39.86) AT 318 K ................... 209 TABLE 5-9: EXPERIMENTAL ENTHALPIES OF SOLUTION OF CO2 IN AQUEOUS 4-MPD (WA%=20.00) AT 338 K .................... 211 TABLE 5-10: EXPERIMENTAL ENTHALPIES OF SOLUTION OF CO2 IN AQUEOUS 4-MPD (WA%=40.00) AT 338 K ................. 214.  . .  .

(35)  /,67RI$EEUHYLDWLRQVDQG6\PEROV $EEUHYLDWLRQ &2. . &DUERQGLR[LGH'LR[\GHGHFDUERQ. '3' . 'LPHWK\OSLSHULGLQH'LPpWK\OSLSpULGLQH. (3' . (WK\OSLSHULGLQHeWK\OSLSpULGLQH. H157/. (OHFWURO\WH1RQ5DQGRP7ZR/LTXLG0RGHO. (WK. (WKDQROeWKDQRO. . /&67. /RZHU&ULWLFDO6ROXWLRQ7HPSHUDWXUH7HPSpUDWXUHGH6ROXWLRQ&ULWLTXH,QIpULHXU. //( . /LTXLGOLTXLGHTXLOLEULXPeTXLOLEUHOLTXLGHOLTXLGH. 03' . 0HWK\OSLSHULGLQH0pWK\OSLSpULGLQH. 1. 1LWURJHQ$]RWH. . 157/ . 1RQ5DQGRP7ZR/LTXLG0RGHOV. 8&67. 8SSHU&ULWLFDO6ROXWLRQ7HPSHUDWXUH7HPSpUDWXUHGH6ROXWLRQ&ULWLTXH6XSpULHXU. 81,48$&. 81,YHUVDO48$VL&KHPLFDO. 6\PEROV $%&)LWWLQJSDUDPHWHU. $M . 'HE\H+FNHO FRHIILFLHQWV IRU DQ H[WHQVLYH SURSHUW\  3DUDPHWUH GH 'HE\H+FNHO SRXU XQ SURSULpWppWHQGX. E  ȕ  &S  FS. &RHIILFLHQWLQWKH3LW]HUHTXDWLRQ&RHIILFLHQWGDQVO¶pTXDWLRQGH3LW]HU 9LULDOSDUDPHWHUIRUWKH3LW]HUHTXDWLRQSDUDPqWUHYLULHOSRXUO¶pTXDWLRQGH3LW]HU ,VREDULFPRODUKHDWFDSDFLW\&DSDFLWpFDORULILTXHPRODLUHLVREDUH 6SHFLILFKHDWFDSDFLW\&DSDFLWpFDORULILTXHVSpFLILTXH . .

(36)   '  * . 'LHOHFWULF&RQVWDQW&RQVWDQWHGLpOHFWULTXH 0RODU*LEEV(QHUJ\eQHUJLHOLEUHGHPRODLUH*LEEV. * L  3DUWLDO0RODU*LEEV(QHUJ\eQHUJLHOLEUHGHPRODLUH*LEEVSDUWLHO  + 0RODU(QWKDOS\(QWKDOSLHPRODULH  , ,RQLFVWUHQJWK)RUFHLRQLTXH  ,3 ,QWHUDFWLRQSDUDPHWHUV3DUDPqWUHVG¶LQWHUDFWLRQ  . (TXLOLEULXPFRQVWDQW&RQVWDQWG¶HTXLOLEUH  N &DOLEUDWLRQFRQVWDQW&RQVWDQWGHFDOLEUDWLRQ  +HQU\¶VFRQVWDQW&RQVWDQWHGH+HQU\ N+  0 0ROHFXODUZHLJKW0DVVHPROHFXODLUH  P 0RODOLW\LQPROHVSHUNLORJUDPRIVROYHQW0RODOLWpHQPROHSDUNLORJUDPVGHVROYDQW  6 0RODU(QWURS\(QWURSLH0RODLUH  5 ,GHDO*DV&RQVWDQW&RQVWDQWHGHVJD]SDUIDLWV  U5DGLXVRIWKHPROHFXOHRULRQ5DGLXVGHODPROHFXOHRXGHO¶LRQ  7 7HPSHUDWXUHLQ.HOYLQ7HPSHUDWXUHHQ.HOYLQ  9 0RODU9ROXPH9ROXPHPRODLUH  NJ NLOLRJUDPNLORJUDPPH  P/ PLOOLOLWHUVPLOOLOLWUHV  03D 0HJDSDVFDO0HJDSDVFDO  Q 1XPEHURIPROHV1RPEUHGHPROHV  3 3RZHU3XLVVDQFH  S 3UHVVXUH3UHVVLRQ  I )XJDFLW\)XJDFLWp  .

(37)   Z  ZD  [D  ]. :DWHU(DX :HLJKWSHUFHQWDPLQHLQZDWHUDPLQHVROXWLRQ3RXUFHQWDJHHQPDVVHG DPLQpGDQVXQHVROXWLRQ G HDXDPLQH 0ROHIUDFWLRQRIDPLQHLQZDWHUDPLQHVROXWLRQ)UDFWLRQPRODLUHGHO DPLQpGDQVXQHVROXWLRQ G HDXDPLQH &KDUJHRQDQLRQ&KDUJHGHO¶LRQ. *UHHN6\PEROV  Į /RDGLQJFKDUJH7DX[GHFKDUJH  ǻ 'LIIHUHQFH'LIIHUHQFH  Ȟ 6WRLFKLRPHWULFFRHIILFLHQW&RHIILFLHQW6WRLFKLRPpWULTXH  Ȗ $FWLYLW\FRHIILFLHQWDQLVRWURS\&RHIILFLHQWG¶DFWLYLWp  ȡ 'HQVLW\RIDOLTXLG0DVVHYROXPLTXHG¶XQHOLTXLGH  ı 6WDQGDUGXQFHUWDLQW\GHYLDWLRQVVWDQGDUG  ȝ &KHPLFDOSRWHQWLDO3RWHQWLDOFKLPLTXH  )XJDFLW\FRHIILFLHQW&RHIILFLHQWGHIXJDFLWp I  IJ 3HULRGRIYLEUDWLRQ3pULRGHGHUpVRQQDFQH   6XEVFULSWV  D $PLQHDFWLYLW\DFWLYLWp  L 6SHFLHV(VSqFH  U $WWKHUHIHUHQFHWHPSHUDWXUH5HGXFHGSURSHUW\$ODWHPSHUDWXUHGHUHIHUHQFH3URSULpWpUpGXLWH  W 7RWDODPRXQWRIVSHFLHV4XDQWLWpWRWDOHG¶HVSqFHV  V 6ROXWLRQ  VF &ULWLFDO6ROXWLRQ7HPSHUDWXUH7HPSpUDWXUHFULWLTXHGHODVROXWLRQ   .

(38)  Z :DWHU(DX  6XSHUVFULSWV  Į 3KDVHRQH3KDVHXQH  ȕ 3KDVHWZR3KDVHGHX[  ( ([FHVVSURSHUW\3URSULpWpH[FqV  R  +\SRWKHWLFDORQHPRODOVWDQGDUGVWDWHRULGHDOJDVVWDQGDUGVWDWH8QpWDWVWDQGDUGPRODLUH VWDQGDUGRXXQpWDWGHJD]LGpDO   3XUHVXEVWDQFH6XEVWDQFHSXUH VDW. 6DWXUDWLRQ. Y. 9DSRXU9DSHXU. . .  .

(39)   . 5pVXPpHQ)UDQoDLVH 8QFKDQJHPHQWFOLPDWLTXHHVWXQSKpQRPqQHQDWXUHODSSDUDLVVDQWUpJXOLqUHPHQWVXUQRWUHSODQqWH. /¶pFKHOOHGHWHPSVSRXUFHFKDQJHPHQWHVWQRUPDOHPHQWGHO¶RUGUHGHFHQWDLQHVGHPLOOLHUVG¶DQQpHV &HSHQGDQWOHFKDQJHPHQWFOLPDWLTXHTXLVHSURGXLWDFWXHOOHPHQWDOLHXGHSXLVOHGpEXWGHODUpYROXWLRQ LQGXVWULHOOH GRQF VXU XQH pFKHOOH GH WHPSV WUqV UpGXLWH G¶XQH FHQWDLQH G¶DQQpHV $ FHWWH pSRTXH OHV pPLVVLRQVDQWKURSLTXHVGHJD]jHIIHWGHVHUUHVHVRQWLQWHQVLILpHVOHGLR[\GHGHFDUERQH &2

(40) pWDQWOH SOXV LPSRUWDQW ,O HVW UHVSRQVDEOH G¶HQYLURQ  GX UpFKDXIIHPHQW FOLPDWLTXH /H WDX[ GH &2 GDQV O¶DWPRVSKqUHDDXJPHQWpUDSLGHPHQWSDVVDQWGHSSPGDQVOHVDQQpHV :LJOH\

(41) jODYDOHXU DFWXHOOH GH SOXV GH  SSP PHVXUpH j O¶REVHUYDWRLUH GH 0DXQD /RD +DZDw /H JURXSH G¶H[SHUWV LQWHUQDWLRQDX[VXUOHFKDQJHPHQWFOLPDWLTXH *,(&

(42) SUpGLWXQWDX[GHSSPGHGLR[\GHGHFDUERQH GDQVO¶DWPRVSKqUHG¶LFL/DWHPSpUDWXUHVXUWHUUHVHUDLWDORUVDXJPHQWpHGHƒ&HWOHQLYHDXPR\HQ GHODPHUGHFP 6WHZDUWDQG+HVVDPL

(43)  /¶DXJPHQWDWLRQGHODSRSXODWLRQHWO¶XWLOLVDWLRQGHVpQHUJLHVIRVVLOHVSRXUODGHPDQGHFURLVVDQWHHQ pQHUJLHVRQWOHVFDXVHVSULQFLSDOHVGHO¶DXJPHQWDWLRQGHVpPLVVLRQVGH&2 3DFKDXULHWDO

(44) (Q DWWHQGDQWXQGpYHORSSHPHQWGHVpQHUJLHVDOWHUQDWLYHVOHVWHFKQRORJLHVGHFDSWDJHHWGHVpTXHVWUDWLRQGX &2 &6&

(45) SHXYHQWrWUHHQYLVDJpHVSRXUSUpYHQLUO¶DXJPHQWDWLRQGXWDX[GHFHOXLFLGDQV O¶DLU (OOLQD /HYLQD HW DO 

(46)  &HV WHFKQRORJLHV GRLYHQW rWUH XWLOLVpHV VXU OHV FHQWUDOHV pOHFWULTXHV HW OHV VLWHV LQGXVWULHOV FRQVRPPDWHXUV G¶pQHUJLHV IRVVLOHV DILQ GH UpSRQGUH j FHWWH GHPDQGH /H UDSSRUW GX *,(& VXSSRVHTXHOHFDSWDJHHWVWRFNDJHGX&2 &6&

(47) SHXWUpGXLUHGHOHVpPLVVLRQVGH&2SDUUDSSRUW jFHOOHVGH (OOLQD/HYLQDHWDO

(48)  /HSURFpGpGHFDSWDJHOHSOXVFRPPXQpPHQWHQYLVDJpHVWOHSURFpGpGLWGH©ODYDJHDX[DPLQHVª &HSURFpGpSRVWFRPEXVWLRQXWLOLVHGHVVROXWLRQVDTXHXVHVG¶DONDQRODPLQHVSRXUDEVRUEHUVpOHFWLYHPHQW  .

(49)  OHGLR[\GHGHFDUERQHGDQVOHVHIIOXHQWVLQGXVWULHOV&HSURFpGpGHODYDJHDX[DPLQHVHVWGpMjPLVHQ SODFH SRXU VpSDUHU OH &2 GDQV OH WUDLWHPHQW GX JD] QDWXUHO 0DGGR[ HW DO 

(50)  ,O D pJDOHPHQW UpFHPPHQWpWpDSSOLTXpSRXUFDSWHUOH&2SURYHQDQWGHFHQWUDOHVjFKDUERQSDUH[HPSOHDX%RXQGDU\ 'DP 3RZHU 6WDWLRQ DX &DQDGD 0XPIRUG HW DO 

(51)  /¶DPLQH DFWXHOOHPHQW FRQVLGpUpH FRPPH UpIpUHQFH HQ (XURSH HVW OD PRQRpWKDQRODPLQH 3DUPL OHV DXWUHV VROYDQWV FODVVLTXHV RQ WURXYH OD PpWK\OGLpWKDQRODPLQH OD GLpWKDQRODPLQH OD DPLQRPpWK\OSURSDQRO RX GHV PpODQJHV G¶DPLQHV GHSLSpUD]LQHHWG¶DPPRQLDF /H SURFpGp UHSRVH VXU GHV F\FOHV G¶DEVRUSWLRQGpVRUSWLRQ GX &2 HW VRQ VFKpPD GH SULQFLSH HVW UHSUpVHQWp HQ )LJXUH  /H GLR[\GH GH FDUERQH FRQWHQX GDQV OHV HIIOXHQWV JD]HX[ HVW DEVRUEp VpOHFWLYHPHQWSDUXQHVROXWLRQOLTXLGHGDQVXQDEVRUEHXU/HPpFDQLVPHG¶DEVRUSWLRQHVWSULQFLSDOHPHQW FKLPLTXH EDVp VXU OHV UpDFWLRQV DFLGREDVLTXHV HW VXU OD IRUPDWLRQ GH FDUERQDWHV ELFDUERQDWHV RX GH FDUEDPDWHV /D VROXWLRQ FKDUJpH HVW UpJpQpUpH SDU GpVRUSWLRQ GDQV XQH FRORQQH GH UpJpQpUDWLRQ /H VROYDQW UpJpQpUp UHWRXUQH GDQV O¶DEVRUEHXU HW OH GLR[\GH GH FDUERQH HVW FRPSUHVVp HW WUDQVSRUWp SRXU rWUH VWRFNp RX UpXWLOLVp /H SUREOqPH FOp GH FHWWH WHFKQRORJLH HVW VRQ FR€W pQHUJpWLTXH (Q HIIHW OD GpVRUSWLRQ GX GLR[\GH GH FDUERQH HVW IRUWHPHQW HQGRWKHUPLTXH (OOH D OLHX GDQV XQH FRORQQH GH UpJpQpUDWLRQRODVROXWLRQFKDUJpHHVWFKDXIIpHDXWRXUGHƒ&.  .

(52)  )LJXUH6FKpPDGHSULQFLSHG¶XQHXQLWpGHFDSWDJHSRVWFRPEXVWLRQGHGLR[\GHGHFDUERQH.  ,O HVW QpFHVVDLUH G¶LPDJLQHU GHV SURFpGpV LQQRYDQWV SHUPHWWDQW XQH UpGXFWLRQ QRWDEOH GX FR€W pQHUJpWLTXHGXWUDLWHPHQW3DUPLOHVQRPEUHXVHVVROXWLRQVHQYLVDJpHVXQHGHVRSWLRQVHVWO¶XWLOLVDWLRQ GHVROYDQWVGpPL[DQWV =KDQJHWDO*RPH]HWDO

(53) &HVQRXYHDX[VROYDQWVSUpVHQWHQWXQH VpSDUDWLRQGHSKDVHVOLTXLGHOLTXLGHTXLIDFLOLWHOHUHODUJDJHGX&2FDSWpHWODUpJpQpUDWLRQGXVROYDQW SRXUXQHXWLOLVDWLRQLQGXVWULHOOH &HVVROYDQWVGpPL[DQWVVRQWKRPRJqQHVjWHPSpUDWXUHDPELDQWHHWSUpVHQWHQWXQHVpSDUDWLRQGH SKDVHOLTXLGHOLTXLGHHQDXJPHQWDQWODWHPSpUDWXUH/HSURFpGp'0;70TXLHVWEDVpVXUOHSULQFLSHGX VROYDQW GpPL[DQW D pWp SURSRVp HW EUHYHWp SDU ,)3 (QHUJLHV QRXYHOOHV ,)3(Q

(54)  /H VFKpPD GH IRQFWLRQQHPHQWHVWSUpVHQWpHQ)LJXUH'DQVODSUHPLqUHpWDSHGXSURFpGpOHGLR[\GHGHFDUERQHHVW FKLPLTXHPHQW DEVRUEp SDU XQH VROXWLRQ DTXHXVH G¶DPLQH VHORQ OH PrPH VFKpPD TXH GDQV OH FDV GX ©ODYDJH DX[ DPLQHVª FODVVLTXH ILJXUH 

(55)  /D VROXWLRQ FKDUJpH HQ &2 HVW DORUV HQYR\pH YHUV XQ GpFDQWHXURODWHPSpUDWXUHGHODVROXWLRQHVWDXJPHQWpHMXVTX¶jVpSDUDWLRQGHSKDVHV/DSKDVHODSOXV .

(56) ORXUGH HVW FRPSRVpH SULQFLSDOHPHQW G¶HDX GH VHOV FDUERQpV HW GH VHOV G¶DPLQH DORUV TXH OD SKDVH VXSpULHXUHFRQWLHQWSULQFLSDOHPHQWOHVDPLQHVTXLQ¶RQWSDVUpDJL'DQVOHSURFpGpGHVpSDUDWLRQVHXOH OD SKDVH DTXHXVH FKDUJpH HVW HQYR\pH YHUV O XQLWp GH UpJpQpUDWLRQ OD SKDVH DPLQH pWDQW UHQYR\pH GLUHFWHPHQWYHUVO¶DEVRUEHXU/¶LQWpUrWGHWUDYDLOOHUDYHFGHVDPLQHVGLWHVGpPL[DQWHVHVWTXHVHXOHXQH SDUWLHGHODVROXWLRQHVWHQYR\pHYHUVO XQLWpGHUpJpQpUDWLRQ/HFR€WGHODUpJpQpUDWLRQHVWDLQVLUpGXLW GXIDLWG. XQHTXDQWLWpSOXVIDLEOHGHVROXWLRQjUpJpQpUHU.  )LJXUH6FKpPDGXSURFpGpXWLOLVDQWOHVVROXWLRQVG¶DPLQHVGpPL[DQWHV *RPH]HWDO

(57) . /¶pWXGH SURSRVpH LFL YD FRQWULEXHU j OD FRPSUpKHQVLRQ GHV pTXLOLEUHV WKHUPRG\QDPLTXHV GHV V\VWqPHV ^HDXDPLQH` HW ^HDXDPLQH&2` R O DPLQH HVW XQH SLSpULGLQH VXEVWLWXpH /H FKRL[ GHV VXEVWLWXWLRQV HVW pWDEOLV DILQ GH PHWWUH HQ pYLGHQFH GHV UHODWLRQV VWUXFWXUHSURSULpWpV GpPL[LRQ DEVRUSWLRQ

(58)  /HV SLSpULGLQHV VRQW GpMj ELHQ FRQQXHV SRXU SUpVHQWHU XQH VpSDUDWLRQ GH SKDVHV OLTXLGH OLTXLGH GH W\SH /&67 ORZHU FULWLFDO VROXWLRQ WHPSHUDWXUH

(59)  /H EXW HVW G¶pODERUHU GHV UqJOHV V\VWpPDWLTXHVHWWUDQVIpUDEOHVjSDUWLUG XQHpWXGHWKHUPRG\QDPLTXHDILQGHSRXYRLUDLGHUDXGHVLJQGH PROpFXOHVVSpFLILTXHPHQWHIILFDFHVSRXUGHVSURFpGpVGHFDSWDJHGH&2pFRQRPLTXHVHWDGDSWDEOHVj. .

(60) ODQDWXUHGHVHIIOXHQWVLQGXVWULHOVjWUDLWHU'¶DSUqVODUHSUpVHQWDWLRQGXSURFpGpPRQWUpHQ)LJXUHXQ VFKpPDSK\VLFRFKLPLTXHHWXQVFKpPDGHSURFpGpSHXYHQWrWUHpWDEOLV .  )LJXUH6FKpPDSK\VLFRFKLPLTXHGXSURFpGpGHFDSWDJHGH&2.  /HF{WpJDXFKHGHODILJXUHFRUUHVSRQGjODGLVVROXWLRQGX&2RO¶HQWKDOSLHGHVROXWLRQHWOD VROXELOLWp GX &2 j OD WHPSpUDWXUH GH O¶DEVRUEHXU HQYLURQ ƒ&

(61)  VRQW OHV JUDQGHXUV FDUDFWpULVWLTXHV FKRLVLHVSRXUUHSUpVHQWHUOHSURFHVVXV/HF{WpGURLWFRUUHVSRQGjODFRORQQHGHUpJpQpUDWLRQO¶HQWKDOSLH GH UpJpQpUDWLRQ GDQV FHWWH SDUWLH HVW O¶RSSRVp GH O¶HQWKDOSLH GH GLVVROXWLRQ j OD WHPSpUDWXUH GH OD FRORQQH DXWRXUGHƒ&

(62) 'DQVFHWWHFRORQQHVHXOHODSKDVHDTXHXVHULFKHHQGLR[\GHGHFDUERQHHVW FRQVLGpUpH /D SDUWLH FHQWUDOH KDXWH UHSUpVHQWH O¶pWDSH GH VpSDUDWLRQ OLTXLGHOLTXLGH TXL D OLHX GDQV OH GpFDQWHXU /D WUDQVLWLRQ G¶XQH j GHX[ SKDVHV RX O pTXLOLEUH OLTXLGHOLTXLGH HVW OD FDUDFWpULVWLTXH SULQFLSDOH GH FHWWH RSpUDWLRQ )LQDOHPHQW OH FDUUp FHQWUDO EDV FRUUHVSRQG DX PpODQJH GH OD SKDVH .

(63)  UpJpQpUpH ULFKH HQ HDX SURYHQDQW GX UpJpQpUDWHXU HW GH OD SKDVH ULFKH HQ DPLQH SURYHQDQW GX GpFDQWHXU (OOH HVW FDUDFWpULVpH SDU O HQWKDOSLH GH PpODQJH RX G H[FqV ^HDXDPLQH` /HV GRQQpHV GH FDSDFLWpVFDORULILTXHVHWGHGHQVLWpVVRQWQpFHVVDLUHVDXGLPHQVLRQQHPHQWGHVpFKDQJHXUVWKHUPLTXHVGX SURFpGp /DSLSpULGLQHDXQHVWUXFWXUHKpWpURF\FOLTXHVDWXUpHDYHFXQJURXSHD]RWp(OOHDDYHFO DGGLWLRQ GH JURXSHPHQWV DON\OHV GHV YDOHXUV GH S.D DOODQW GH  SRXU OD 1PpWK\OSLSpULGLQH j  SRXU OD SLSpULGLQH /H S.D GpSHQG GH OD SRVLWLRQ GX QRPEUH HW GH OD WDLOOH GHV JURXSHPHQWV DON\OHV /D SLSpULGLQHHVWFRPSOqWHPHQWVROXEOHTXHOOHTXHVRLWODFRPSRVLWLRQGDQVOHGRPDLQHGHWHPSpUDWXUHVHW GH SUHVVLRQV pWXGLpV GDQV FH WUDYDLO /¶DGGLWLRQ G¶XQ JURXSH PpWK\OH YD HQJHQGUHU XQH VpSDUDWLRQ GH SKDVHV OLTXLGHOLTXLGH DYHF O¶DXJPHQWDWLRQ GH OD WHPSpUDWXUH HQ VROXWLRQ DTXHXVH 6WHSKHQVRQ  *yUDOHWDOD*yUDOHWDOE

(64) /¶DXJPHQWDWLRQGHODORQJXHXUGHFKDLQHGXJURXSHDON\OHRX O¶DXJPHQWDWLRQ GX QRPEUH GH JURXSHV DON\OHV YRQW pJDOHPHQW PRGLILHU OHV WHPSpUDWXUHV FULWLTXHV GH VROXWLRQ7VFDLQVLTXHODFRPSRVLWLRQFULWLTXHGHVROXWLRQ[VF/¶pTXLOLEUHGHSKDVHVHVWOLpjODVWUXFWXUH GHODPROpFXOHFHSHQGDQWOHPpFDQLVPHGHFHWWHUHODWLRQHVWDXMRXUG¶KXLLQFRQQX/D)LJXUHLOOXVWUH OHVGLIIpUHQWHVVWUXFWXUHVGHVSLSpULGLQHVpWXGLpHVGDQVFHSURMHW/HQRPGHVSURGXLWVFKLPLTXHVHWOHXUV DFURQ\PHVHVWOLVWpVGDQVOH7DEOHDX .  .

(65) %

(66) . ,

(67) . )

(68) . . &

(69) . . $

(70) . *

(71) . . . '

(72) . . . +

(73) . (

(74)   )LJXUH6WUXFWXUHGHVDON\OSLSpULGLQHVpWXGLpHVGDQVFHOHSURMHW $

(75) 3LSpULGLQH %

(76) 1PpWK\OSLSpULGLQH103' &

(77) PpWK\OSLSpULGLQH03' '

(78) PpWK\OSLSpULGLQH03' (

(79) PpWK\OSLSpULGLQH )

(80) 1pWK\OSLSpULGLQH1(3' *

(81) GLPpWK\OSLSpULGLQH'3' +

(82) GLPpWK\OSLSpULGLQH'3 ,

(83) pWK\OSLSpULGLQH(3'. 7DEOHDX/LVWHGHVDPLQHVpWXGLpHVHWOHXUVDFURQ\PHV 3URGXLWVFKLPLTXH. $FURQ\PHV. 1PpWK\OSLSpULGLQH. 103'. PpWK\OSLSpULGLQH. 03'. PpWK\OSLSpULGLQH. 03'. PpWK\OSLSpULGLQH. 03'. GLPHWK\OSLSpULGLQH. '3'. GLPpWK\OSLSpULGLQH. '3'. 1pWK\OSLSpULGLQH. 1(3'.  &HWWH WKqVH D pWp UpDOLVpH GDQV OH FDGUH G¶XQ SURMHW QRPPp '$&227$ 'HPL[LQJ$PLQHV IRU&2FDSWXUH7KHUPRG\QDPLF DQG 6SHFWURVFRSLF$SSURDFK

(84)  ,O V¶DJLW G¶XQH FROODERUDWLRQ LQWHUQDWLRQDOH HQWUH XQH pTXLSH GH UHFKHUFKH GH O¶LQVWLWXW GH &KLPLH GH &OHUPRQW)HUUDQG pTXLSH 7KHUPRG\QDPLTXH HW ,QWHUDFWLRQV 0ROpFXODLUHV WKpPDWLTXH ©&DSWDJH GX &2ª

(85) HW OH ©+\GURWKHUPDO &KHPLVWU\*URXSªGHO¶8QLYHUVLWpGH*XHOSKDX&DQDGD/HVILQDQFHPHQWVGHFHSURMHWRQWpWpIRXUQLV .

(86)  SDUO $JHQFH1DWLRQDOHGHOD5HFKHUFKH $15

(87) SRXUO¶pTXLSHIUDQoDLVHHWOH&RQVHLOGH5HFKHUFKHVHQ 6FLHQFHV1DWXUHOOHVHWHQ*pQLHGX&DQDGD &561*

(88) &HWWHFROODERUDWLRQSHUPHWGHPHWWUHHQFRPPXQ OHV FRPSpWHQFHV GH FKDTXH JURXSH /H JURXSH FDSWDJH GX &2  HVW VSpFLDOLVp GDQV OHV PHVXUHV H[SpULPHQWDOHV GH VROXELOLWp GX &2 GHV pTXLOLEUHV OLTXLGHOLTXLGH GHV HQWKDOSLHV GH PpODQJH GHV FDSDFLWpV FDORULILTXH G¶H[FqV HW GHV PDVVHV YROXPLTXHV GH IOXLGHV /H ©+\GURWKHUPDO &KHPLVWU\ *URXSª GH O 8QLYHUVLWp GH *XHOSK HVW VSpFLDOLVp GDQV O¶pWXGH GHV SURSULpWpV WKHUPRG\QDPLTXHV HW GH WUDQVSRUWGHVVROXWLRQVDTXHXVHVDX[KDXWHVWHPSpUDWXUHVHWKDXWHVSUHVVLRQV'DQVOHFDGUHGHFHSURMHW OD VSHFWURVFRSLH 5$0$1 D pWp XWLOLVpH SRXU GpWHUPLQHU OD VSpFLDWLRQ HQ VROXWLRQ DSUqV DEVRUSWLRQ GX GLR[\GHGHFDUERQHGDQVOHVVROXWLRQVG DPLQHDYDQWHWDSUqVGpPL[WLRQ /HEXWGHPDWKqVHHVWGHFDUDFWpULVHUH[SpULPHQWDOHPHQWOHVV\VWqPHV^HDXDPLQH`HW^HDXDPLQH &2` HQ SDUWLFXOLHU OHV pTXLOLEUHV OLTXLGHOLTXLGH SRXU XQH IDPLOOH GH SLSpULGLQHV VXEVWLWXpHV / pWXGH WKHUPRG\QDPLTXHSHUPHWWUDGHUpSRQGUHjSOXVLHXUVTXHVWLRQVLPSRUWDQWHV  &RPPHQW OD VWUXFWXUH GH OD PROpFXOH DIIHFWHWHOOH OHV SURSULpWpV SK\VLFR FKLPLTXHV HW OHV pTXLOLEUHVGHSKDVHV"  \DWLOGHVUHODWLRQVHQWUHODVWUXFWXUHGHVSLSpULGLQHVHWOHVSURSULpWpVWKHUPRG\QDPLTXHVRXOHV pTXLOLEUHVGHSKDVHVTXLSHXYHQWrWUHXWLOLVpHVSRXUFRQFHYRLUGHQRXYHOOHVPROpFXOHV" /HV RXWLOV XWLOLVpV GDQV PD WKqVH VRQW SULQFLSDOHPHQW H[SpULPHQWDX[ /HV WHPSpUDWXUHV G¶pTXLOLEUH OLTXLGHOLTXLGHGHVVROXWLRQVDTXHXVHVG DPLQHRQWpWpPHVXUpHVDYHFHWVDQVGLR[\GHGHFDUERQH3RXU OHV V\VWqPHV ELQDLUHV ^HDXDPLQH` OHV GHQVLWpV OHV FDSDFLWpV FDORULILTXHV VSpFLILTXHV HW OHV HQWKDOSLHV G¶H[FqV RQW pWp pWXGLpHV HQ IRQFWLRQ GH OD WHPSpUDWXUH 3RXU OHV V\VWqPHV WHUQDLUHV ^HDXDPLQH&2` PRQWUDYDLODSRUWpVXUODPHVXUHHWODUHSUpVHQWDWLRQGHVHQWKDOSLHVGHVROXWLRQHWGHVVROXELOLWpV /HV GRQQpHV H[SpULPHQWDOHV G HQWKDOSLHV GH VROXWLRQ RQW pWp XWLOLVpHV SRXU DMXVWHU OHV PRGqOHV UHSUpVHQWDWLIVGHODGLVVROXWLRQGXJD]GDQVODVROXWLRQDTXHXVH3RXUFHODXQPRGqOHWKHUPRG\QDPLTXH  .

(89)  Ȗȣ DpWpDMXVWpVXUOHVGRQQpHVHQWKDOSLTXHVREWHQXHVDX[IDLEOHVWDX[GHFKDUJHHWVXUOHVGRQQpHVGH VROXELOLWpV REWHQXHV  HQ IRQFWLRQ GH OD WHPSpUDWXUH HW GH OD SUHVVLRQ &H PRGqOH WKHUPRG\QDPLTXH SHUPHW XQH HVWLPDWLRQ GHV FRQVWDQWHV G¶pTXLOLEUH GH IRUPDWLRQ GX FDUEDPDWH HW GH OD VSpFLDWLRQ HQ VROXWLRQ /DVXLWHGHFHFKDSLWUHYDSUpVHQWHUOHVSULQFLSDX[UpVXOWDWVREWHQXVDXFRXUVGHPRQWUDYDLOGH WKqVH8QHGHVJUDQGHVDYDQFpHVGHFHWUDYDLOUpVLGHGDQVODPLVHDXSRLQWG¶XQHPpWKRGHSRXUODPHVXUH GHVWHPSpUDWXUHVGHVpSDUDWLRQGHSKDVHVGDQVGHVVROXWLRQVFKDUJpHVHQJD]&HWWHPpWKRGHDLQVLTXH OHVSULQFLSDX[UpVXOWDWVH[SpULPHQWDX[VRQWSUpVHQWpVSDUODVXLWH$SUqVXQHSUpVHQWDWLRQGHVSULQFLSDOHV SURSULpWpV WKHUPRG\QDPLTXHV GHV VROXWLRQV ELQDLUHV YROXPHV FDSDFLWpV FDORULILTXHV HW HQWKDOSLHV G¶H[FqV

Références

Documents relatifs

4- Aide-toi des dessins des sacs pour écrire

Pour chacune des deux courbes suivantes, indiquer l’ensemble de définition de la fonction associée, puis dresser son tableau de variations

Pour calculer le prix réel de l’article, on prend en compte une seule réduction : la plus favorable au client. Quelle est la clé primaire de la (ou des) table(s)

Hepatocarcinoma induces a tumor necrosis factor-dependent Kupffer cell death pathway that favors its proliferation upon partial hepatectomy .... Complementary

En quoi les évolutions tendancielles en matière de publication scientifique, ainsi que les prescrits politiques et managériaux qui les initient, les stimulent ou les

The slope dT/dP for the nematic-isotropic transition shows an alternation with the number of carbon atoms in the alkyl chain, while that for the solid- nematic (or

Mixing processes and large-scale subsidence exert a control strong enough on subtropical humidity to explain most of water vapor isotopic ratios variability although

Dependent variables Description and items code (for description see Appendix 1) Expected usability Average score of responses for perceived usability (Items 1–8) Expected aesthetics