• Aucun résultat trouvé

CHARGE EXCHANGE EXCITATIONS IN N≠Z NUCLEI : VLASOV AND HYDRODYNAMIC EQUATIONS

N/A
N/A
Protected

Academic year: 2021

Partager "CHARGE EXCHANGE EXCITATIONS IN N≠Z NUCLEI : VLASOV AND HYDRODYNAMIC EQUATIONS"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: jpa-00226469

https://hal.archives-ouvertes.fr/jpa-00226469

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CHARGE EXCHANGE EXCITATIONS IN N ̸ =Z NUCLEI : VLASOV AND HYDRODYNAMIC

EQUATIONS

E. Lipparini, S. Stringari

To cite this version:

E. Lipparini, S. Stringari. CHARGE EXCHANGE EXCITATIONS IN N ̸ =Z NUCLEI : VLASOV AND HYDRODYNAMIC EQUATIONS. Journal de Physique Colloques, 1987, 48 (C2), pp.C2-27-C2-35.

�10.1051/jphyscol:1987204�. �jpa-00226469�

(2)

JOURNAL DE PHYSIQUE

C o l l o q u e C 2 , s u p p l e m e n t au n o 6 , Tome 4 8 , j u i n 1 9 8 7

CHARGE EXCHANGE EXCITATIONS I N N z Z NUCLEI : VLASOV AND HYDRODYNAMIC EQUATIONS

E. LIPPARINI a n d S. STRINGARI

D i p a r t i m e n t o d i Fisica, U n i v e r s i t d d i T r e n t o , I-38050 P o v o , ( T r e n t o ) , I t a l y

A b s t r a c t

-

Macroscopic e q u a t i o n s of m t i o n f o r charge exchange r e a c t i o n s i n N#Z n u c l e i are d e r i v e d s t a r t i n g from the time dependent Hartree-Fock theory.

Application is m d e to t h e study o f the d i p l e g i a n t resonance i n i s o s p i n channels and p- c a p t u r e In N#Z n u c l e i .

I n t h i s work we d e v e l o p macroscopic d e l s f o r g i a n t electric i s o v e c t o r resonances e x c i t e d by o p e r a t o r s o f t h e form

+

where T - are the usual i s o s p i n o p e r a t o r s d e f i n e d by

~ + l ~ > =

J21n> T

-

In>= J21p>.

These ope a t o r e n t e g i n many p h y s i c a l r e a c t i o n s involving charge exchange((p,n)

0 5 3

1

,

( n t ,a )

,

( H e , t )

. . .

.) reactions. The m i n f e a t u r e s o f s u h e x c i t a t i o n s are as- s o c i a t e d w i t h t h e e x i s t e n c e o f a neutron e x c e s s ( (N+Z) n u c l e i )

'-'. mis

is responsi-

b l e f o r s i g n i f i c a n t energy s p l i t t i n g s between the s t a t e s t h a t are e x c i t e d i n charge exchange reactions and the ones e x c i t e d i n reactions w i t t a u t charge exchange (y,e..) A s c h m t i c s i t u a t i o n o f t h e v a r i o u s e x c i t e d i s o s p i n fragments (with their isogeome-

t r i c a l f a c t o r s ) is r e p o r t e d i n fig.1, where one starts from a nucleus ( N , Z ) i n its ground s t a t e ( T Z q ) and e x c i t e s states i n t h e same nucleus (AT7* c h a n n e l ) and i n

- -

daughter n u c l e i (AT =+1 and ATZ=-1 channels r e s p e c t i v e l y ) . Once t h e Coulomb energy is r m v e d , the fragments w i t h t h e same i s o s p i n occur a t t h e saw energy and one ob- s e r v e s the e x i s t e n c e of s p l i t t i n g s betwcen fragiwnts with d i f f e r e n t i s o s p i n ( f i g . 2 ) . The d e s c r i p t i o n of such a s p l i t t i n g is a n i n t e r e s t i n g f i e l d of t h e o r e t i c a l i n v e s t i - g a t i o n . The neutron excess is a l s o r e s p o n s i b l e f o r a n important quenching of the s t r e n g t h i n t h e aTZ=-el channel w i t h r e s p e c t t o theATZ=O and -1 cases. T h i s quen- ching is c l e a r l y revealed i n t h e u ' c a p t u r e e x ~ e r i m c n t a l r a t e s and o r i g i n a t e s from t h e P a u l i blocking and from dynamic c o r r e l a t i o n s .

The s t a r t i n g p o i n t o f o u r theory are t h e time dependent Hartree-Fock e q u a t i o n s (TDHF) f o r t h e one-body d e n s i t y matrix: p T T , ( r l l r 2 ) = C T r 2 h e r e as

io$:rb, .

usua1,a and T are the s p i n and i s o s p i n variables e s l n g l e particle wave

&on $. r e s p e c t i v e l y . Using t h e one-body local d e n s i t y dependent hamiltonian

f8'-

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987204

(3)

JOURNAL DE PHYSIQUE

v

+ +

H = - -

2m + V ( r ) + "sym (r1p.r

-

1/2 E C ~ z (2)

* +

whereP=C. $ ( ~ , O , T ) < T ] T ] T ' > $ ~ ( ~ , U , T ' ) istheisovectorone-bodydensityand 1GTT

'

i

EC is the mdulus of the energy s h i f t between neighbcuring nuclei, one has

where

r6

%P6 are the 6 - c a p n t s of t h e isospin operator and of t h e isovec- tor density p

.

I f m ' eq. (3) gives the standard TDHF equations for the neutron

( ~ = ~ ' = t l ) and proton (T=T'=-1) densities describing the nuclear e x c i ~ t i o n s in t h e AT =O channel. Conversely i f T*'

,

eq. (3) describes the nuclear excitations i n the

AT'=+^

channels.

Introducing the variables

& (?

+:.) /2, =;

(g -:

) and developing the y a t i a l terms

~ ( r ~ ) - ~ ( r )

,

v ( r 2 ) p s ( r 2 ) an6 v1 (r 1)p 6

(t

11 'up to linear in s ( k c l a s s i - c a l expansion,

8

equivalently, l%$ wave length limit) one obtains the f o l l m i n <

equations :

(4)

Taking t h e Fourier transform w i t h respect to t h e coordinate s and defining t h e di-

*

s t r i b u t i o n function

* -+

+ + -+ -+ i p * s d;

f T T l ( r , p , t ) =

2 I

p T T l (r,s,t)e (5)

(2n) 3

-+ -+ -+ +

and constructing its A - v n e n t i n isospin space f (rtp,t)=CTT X f ( r , p , t ) <T

I

T~

I

T I >

one f i n a l l y g e t s the following n a s o v type equations f o r f x (rIp,tfT

a

+

2 ? - $ v ( ~ ) * v

-+ l f

(G *

-+ -+ - + +

( Z

m r r P , p , t )

-

V r (v SF ( r ) p A ( r ) ) * V P f ( r , p , t )

-+ -+ -+ +

where f ( r , p , t ) =CT f T T ( r , p , t ) is t h e isoscalar d i s t r i b u t i o n function. By a p r c p r integration of eq.(6) in the nanentum space one can derive equations f o r the i s o v e c tor d e n s i t i e s &,current d e n s i t i e s relevant f o r charge exchange reactions

( f + - = ~ T T l f T T l < T l ~ I T 1 > ) :

+ -+ -+ -+ -+ + *

~ + ( r , t ) = j f + ( r , p , t ) d ; - ; J + ( r , t ) - =

J

p f + ( r , p , t ) d $ -

.

(7)

one finds:

where p and pl are t h e i s o s c a l a r and isovector (2-aqxment) d e n s i t i e s r e s p t i v e - l y -

?he h y d r o d m c equations a r e straightforwardly obtained by generalizing t h equilibrium approximation ( ? h a m s - F e d ) f o r t h e isoscalar density( a=3/5 (3n

i k

*

1

I p p fdp = - 6 a p 5 I 3 to the isovector case ( p 6 < < p ) : 3 ik

pppmximation (10) f o r the z - c a p n e n t (6 =z) i s irrmediately obtained applying t h e Thomas-Fermi approximation separately t o the neutron and proton k i n e t i c energy den- sities.

I n the follcwing w e w i l l consider eqs. (8) and (9) in the l i m i t of nuclear matter.

Inserting eq. (10) i n eq.(9) one g e t s t h e following linearized equations:

A rL

where we have introduced the volurne symnetry energy c o e f f i c i entering the semi- empirical m s formula: b = 2 / 3 ~

+

v

vol F s d w i t h E =(5u/6m)?j3. lhis coefficient F

(5)

C2-30 JOURNAL DE PHYSIQUE

takes contribution both from t h e k i n e t i

Ci

and potential energies. The two contribu- tions a r e k n m t o be p r a c t i c a l l y equal and yield b =50 MeV. In eqs.(11) we have a l s o introduced the quantity vol

characterizing t h e symnetry p o t e n t i a l of t h e nuclear system (V 1

- -

?SFP )

.

Z

Equations (11) d i f f e r f r m the ones valid i n the ATz* channello f o r the t e r m p m portional t o E and d. These tenns r e f l e c t the occurrence of isospin precession phe- nomena induced by the C o u l d and C s y m w t q p t e n t i a l s . Such a phenahnen is formally similar t o the one p u r r i n g i n an interacting spin w l a r i z e d s y s t m in the presence of a magnetic f i e l d

.

The Coulanb interaction plays here t h e r o l e of t h e magnetic f i e l d and t h e isovector interaction v i s the analogous of t h e s p i n interaction.

While magnetic systems a r e usually p o f g i z e d by an external magnetic f i e l d , the nu- cleus i s polarized by t h e CoulcBnb f i e l d .

In the presence of an external o s c i l l a t i n g f ' e l d ' t e r a c f ' g with t h e uclear system

+$ -

'

-lwr+ C-el') where (g =g )

through the interaction Hamiltonian Hint= (G e

+ +

G-=T.g-(r )it ,

,

t h e equations of notion a n t a i n an additional term. I n p a r t i c u l a r the !iYdr&narmc equations (11) become:

a

I+ +

-

N-Z

+

+iwt

%P+

2.J *

%P+

+

2iAT pg (r)e- = 0

9 s . ( 1 3 . 2 ) 4ivy.r s e t o solutions of t h e form p + ( r , t ) = p (r)e'iwt

-la$ - f and

J + ( r , t ) = J + ( r ) e

The

q y

p l a r i z a b i l i t y r e l a t i v e t o t h e excitation operator G = E .g- (r

.

)

;

is gi-

l l i ven by :

a - ( a ) = 1 f g - ( r ) p - ( r ) d ;

.

(15)

This quantity is of g r e a t i n t e r e s t because it all* t h e determination of the eigen- values of t h e nuclear Hamiltonian and of t h e strengths r e l a t i v e to the excitation o- p r a t o r . In f a c t using standard f i r s t order p e r t u h a t i o n theory one finds:

of course t h e two terms of eq. (16) cannot be sirrmltanously d i f f e r e n t f m zero f o r i+e same k-state. Ihe poles of a-(a) correspond to states

+

exci$ed by the operator

+

G

.

The dynamic p o l a r i z a b i l i t y r e l a t i v e to the operator G =E.g (r ) T is given by

1 i i a+(w) = a_(%) and its poles correspond to states excited by t h e operator G-.

W e have applied t h e above formalism t o two i n t e r e s t i n g cases:

i) t h e solutions of eqs. (13,14) w i t k i n a sphere of radius R = 1 . 1 5 ~ ~ ' ~ h, imposing the c l a s s i c a l Steinwedel-Jensen boundary condition f o r the isovector current:

-+ + +

J + ( r ) . n - = 0

,

where n is the u n i t vector orthogonal to the surface of t h e sphere;

ii) the solutions of eqs.(13,14) f o r t h e propagation of excitations of a plane wave t y p with application of the r e s u l t s to the problem of capture in N#Z nuclei.

(6)

+ -

i) I n t h e dipole case (g ( r ) = g (r)=1/2z1 the solutions of eqs. (13.14) yield the f o l l w i n g expressions £05 the energies and strengths of t h e states excited by the d i p l e operator 1/22 z T- in the AT =+1 channels:

r ,i i i z

where 0 = qk a r e the usual eigenfrequencies of t h e Steinwedel-Jensen d e l m% q k ~ = 2 3 h

,

5.95.

. . . . . .

One notes t h a t in eqs. (17.18)the e f f e c t of t h e C o u l d interaction, as treated i n the present &el, consists of a s-le s h i f t of the frequencies without ncdification of t h e dipole strength. The s h i f t i s due t o the f a c t t h a t the e x c i t a t i o n occurs in a nucleus w i t h d i f f e r e n t charge w i t h respect t o the i n i t i a l nucleus. Conversely t h e symnetry potential vs introduces dynamic effe- cts changing both t h e frequencies and t h e strength with a P c t t o t h e ones c h a r a c e r i z i n g t i e AT =O channel:

An interesting quantity t o investigate i s the isospin s p l i t t i n g AE+ between the dif f e r e n t T-isospin fragments with the same value of T

.

One has

-

1 N-z

v1

~ e g l e t i n g t- i n ( (N-z)/A)

',

eq. (20) yields the well k n m r e s u l t

7 i

f o r the isospin s p l i t t i n g a l - ready e g y e d by several a-

uthors

.

I n t a b l e 1 we re- t a b l e 1 p o r t t h e predictions of eq. (20)

f o r the dipole isospin s p l i t t i g &+ AE

-

AEq

-

g s AEA (in W V ) i n several nucl e i &ether with the experimn-

48Ca 4.5

-

3 . 8

tal values £ran r e f s . (1.2.4.8).

-

The agreement i s q u i t e reasona-

b l e especially f o r t h e hE_ 6 0 ~ i 1.7 4.1 1.6 1.

s p l i t t i n g . ?he asymetzy between 9 0

t h e

aE+

and aE_ s p l i t t i n g s r e Zr 3. 3.9 2.6 2.2 f l e c t s t h e presence of

3

siqni-

f i c a n t isotensor e f f e c t ac- 120sn 4.7 5.5 3.7 3.6 counted f o r in the presen m-

0

5

d e l by t h e term i n ( d / q ) (see 208Pb 6 -2 11.2 4.3 4.5

h

eq. (20).

(7)

C2-32 J O U R N A L D E PHYSIQUE

In t a b l e 2 we cQnpare t h e predictions of t h e Me1 f o r the quantity AE+

-

AE-=

with t h e recert experimntal r e s u l t s f o r the mnopole resonance (see r e f . 2)

.

Also in this case the agreanent is s a t i s f a c t c r y .

Another i n t e r e s t i n g e f f e c t is t h e quenching of t h e strength S

+

with r e ~ p e c t to S- (see eq. (18) )

.

?he quenching i s spectacular in nuclei with a large neutron excess and froan a microscopic pint of view arises from t h e Pauli blocking. The quenching

+

N-Z 2

of the S strength i s t o t a l when t h e manentun ak approaches t h e value 2 -- A 3rnF

.

This i s o b p i n e d i n practice i n the case of 208pb where t h e quenching of the dipole strength S is consequently almost t o t a l . In t a b l e 3 we caTlpare the predictions of eq. (18) f o r the dipole strength with t h e RPA predictions of ref -13

.

?he agreement is s a t i s f a c t o r y revealing t h a t the present a ~ p r m c h accounts f o r mst of the micro- scopic e f f e c t s responsible f o r the strength d i s t r i b u t i o n of t h e nuclear excitations i n t h e isospin channels.

t a b l e 2 t a b l e 3

+ -

w l e u s (AE+-AE-) ( A E + - A E ) ~ ~ ~ Nucleus S+ SwA

-

-

'RPA

14-16.

ii) The

u-

capture r a t e is given by

.

2 2 2 2

In eq.(21) we have a s s m d SU4 spiq isospin set G =G

+

3G A

+

G P

-

2G P A G

a d

introduced t h e quantity e < P > (n/(Zrn muon atarcic wave function averaged over

u

il correction and M is the rel$van$ m t r i x e l m n t given by:

(22)

In eq.(22) qko is t h e energy of t h e emitted neutrino

where

yco

is t h e excitation energy i n t h e final nucleus and wu is t h e p - a t a n i c bin- ding energy. Equations (21,221 have been already investigatedBin the past usiW

(8)

d i f f e r e n t theoretical a p p r o a c l ~ s ''-I8 mainly based on t h e closure approupition, on the use of indepndent m c l e models and of sum rules. More recently a self- consistent calculation based on the random phase approximation has been carried out i n the isospin channels and revealed t h e important r o l e of dynamic correlations.

I n the f o l l m i n g we w i l l use the hydrcdynamical model here developed t o calculate the rate(21) in N+Z nuclei. Such an approach has the merit of revealing i n a c l e a r way the phvsical inqredients characterizing t h i s reaction.

m t i o n ($2)+ shows t h a t the relevant excitation operator i n t h e p- capture is

=

9

eiqeri T+

.

For t h i s p r a t o r $e solutions of eqs. (13.14) yield the follc-

1 i

wing e x p r e s s i o y f o r the freque cies

Y

(q) of the c o l l e c t i v e s m t e s and f o r t h e ma- t

9

trix elements s = Zk

1

<k

1

G lo>

1

6 (w+jko) :

0 1 N-Z

q and d = -

-

V1

.

m a t i o n (25) assumes an even sinpler

5

" 2 ,

form i f one neglects the term ( d / h (q) ) wlth respect t o 1, which is a good appro- ximation i n t h e physical case considered here.and assumes7 t h a t the p t e n t i a l con- t r i b u t i o n t o h vol is equal to t h e k i n e t i c one yielding b v01- - 1/2 Vl. One then gets

+

A

S = - N-Z 2

26 ( I - - A 6 )

where 6 = RbW1/q 2

.

W a t i o y j25.26) c l e a r l y reveal t h a t t h e e f f e c t of t h e exc- e s s neutrons 1s t o reduce t h e S strength w i t h respect t o the N=Z case (Pauli blo- cking). The e f f e c t of the dynamic correlations is a l s o taken i n t o account i n eqs.

(25,26) v i a the s y ~ ~ t r y potential. Notice t h a t neglecting i$e e f f e c t s of such cor- r e l a t i o n s (V =O in eq. (25)) would yield an expression f o r ST containing only terms l i n e a r i n (N-Z) 1 /A :

+

-- - 2 N-Z

'uncorr. ( 1 - 2 - 6 )

6kin A kin

6

The m a t r i x element (22) k e r n s :

where t h e value of q is fixed by the solution of eqs. (23) and (24) (uko = w

+

(4))

.

0 2

N q l e c t i n g t h e small t e r m i n (d/& ) entering eq.(24) one finds:

1 N-Z

5 -

]W!J B

--

2

-

A bvol

+ E~

q =

1

+\p -

(9)

C2-34 JOURNAL DE PHYSIQUE

Within the sane approximation one g e t s t h e f o l l m i n g expression f o r t h e t o t a l r a t e :

I n the f o l l m i n g we w i l l use the known values of wlJ

,

R and A; (see f o r example r e f . (13)) and take bvol= 50 MeV. The namntum of &e neutrino r e s u l t i n g f r m eq. (291

t u r n s . o u t t o be a h s t independent on the nuclear mass ranging frcan 86 to 90 MeV.

Taking an average value of 88 &V f o r q, eq.(X)) becomes:

Equation (31) can be shown t o reproduce t h e numerical r e s u l t s o f eqs.(29,30) in an accurate way. The v a l u e q s r e d i c t e d by eq.(31) are reported i n table 4 together with the experimental valuesLu.

It is worthwile t o note t h a t

eq. (31) i n s p i t e of its sem_ Nucleus (N-Z)/A R A'

u n m r %I A'

p l i c i t y , reproduces the ex- exp

perimental values w i t h good

precision. An even b e t t e r 4 0 ~ 0 -44 .36 4.3 3.2 2.5

agreement is obtained using

a s l i g h t l y l a r g e r value of 4 8 ~ a -17 -47 .05 2.1 1.3

-

bvol ' We note t h a t eq. (31)

accounts f o r s i z e a b l e e f - %i -07 .32 .16 9.1 5.9 5.9 f e c t s introduced by t h e Pa-

u l i blocking and by dynamic "Zr .ll .175 .31 17.7 ll. 8.6 c o r r e l a t i o n s . To b e t t e r ap-

140e

p r e c i a t e t h e imprtance of .17 .075 .38 23.6 14.2 11.4 the l a t t e r e f f e c t i n t a b l e

4 we a l s o r e p o r t the values 2 0 8 ~ b .21 .029 .59 24.6 16.1 13.

f o r t h e r a t e obtained using the same value (88 MeV) f o r

t a b l e 4

the mcrnentum of the n e u t r i - f

no, b u t ignoring the e f f e c t s of dynamic c o r r e l a t i o n s (see eq.(27) f o r S ) . One can see t h a t the e f f e c t of the dynamic c o r r e l a t i o n s is t o 1- t h e s t r e n g t h by-40%.

1) W.A. Sterenburg e t a l . , Phys. Rev. Lett.45 (1980) 1839.

2) A. E r e l l e t a l . , Phys. Rev. C34 (1986) 1822,

3) C. Gaarde, Nuclear S t r u c t u r e , eds. R. B m q l i a , G. Hagemann, B. Herskind, p.449.

4) P. Paul, i n Proceedings I n t . Conf. on Photonuclear Reactions and Applications, p a c i f i c Grove 1973, e d i t e d by I,. Eemm, Lawrence L i v e m r e Lab. Rep. NoCONF'-730X)1 5) R. Leonardi and M. Rosa-Clot, Phys. Rev. L e t t . 23 (1969) 874.

6) R.O. Akyuz and S. F a l l i e r o s , Phys. Rev. L e t t . 27 (1971) 1016.

7 ) A. Bohr and B.R. tWttelson, Nuclear S t r u c t u r e , Benjamin, Reading, Mass., 1975.

8) K. Skcda, Phys. Reg. 53 (1979) 341.

9) R. Leonardi, E. Lipparini and S. S t r i n g a r i , , Phys. Rev. C26 (1982) 2636.

10) H. Steiriwedel and J.H.D. Jensen, 2. Naturforsch. 5a (1950) 413.

11) G. &ym and C.J. Pethick: i n t h e Physics of Liquid and S o l i d Helium, e d i t e d by K.H. B e m m m n and J.B. Ketterson,

.

Wiley and Sons, New York, N.Y.,1978.

(10)

12) D. Pines and P. P&iieres, "The theory o f quantum l i q u i d s " Benjamin, N.Y., 1975.

1 3 ) N. A u e h c h and A. Klein, Nucl. Phys. A395 (1983)77.

14) H. Primakoff, Rev. Mod. Phys. 31 (1959) 802.

15) J . R . Luyten, H.P.C. Rood and H.A. Tolock, Nucl. R y s . 4 1 (1963) 236.

1 6 ) L.L. Foldy and J.D. Walecka, Nuovo Cimento, 34 (1964) 1026.

1 7 ) J. Joseph, F. Ledoyen and B. Coulard, Phys. Rev. C6 (1972) 1742.

1 8 ) P. C h r i s t i l l i n , A . D e l l a f i o r e and M. Rosa-Clot, Phys. Rev. L e t t . 31 (1973) 1012.

19) N. Auerbach and A. Xlein, Phys. L e t t . 114 B (1982) 95.

20) M. E k h a u s e e t a l . Nucl. Phys. 8 1 (1966) 575.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to