• Aucun résultat trouvé

THE CRYSTALLOGRAPHY OF APERIODIC CRYSTALS

N/A
N/A
Protected

Academic year: 2021

Partager "THE CRYSTALLOGRAPHY OF APERIODIC CRYSTALS"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: jpa-00225725

https://hal.archives-ouvertes.fr/jpa-00225725

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE CRYSTALLOGRAPHY OF APERIODIC CRYSTALS

S. Alexander

To cite this version:

S. Alexander. THE CRYSTALLOGRAPHY OF APERIODIC CRYSTALS. Journal de Physique

Colloques, 1986, 47 (C3), pp.C3-143-C3-151. �10.1051/jphyscol:1986314�. �jpa-00225725�

(2)

THE CRYSTALLOGRAPHY OF APERIODIC CRYSTALS

S. ALEXANDER

The Racah Institute of Physics, The Hebrew University

of

Jerusalem, Jerusalem, Israel

Abstract

-

I t i s shown t h a t a complete crystallographic c l a s s i f i c a t i o n of aperiodic c r y s t a l s

i2

possible s t a r t i n g from t h e known point groups. We f i r s t construct t h e q-space Bravais s e t s consistentwith the point group.

This leads t o a hyperspace representation i n t h e space ofincomensuratehy- drodynamic t r a n s l a t i o n s . A unique h y p e r l a t t i c e dual t o t h e Bravais s e t de- s c r i b e s the d i s c r e t e hydrodynamic symmetry of t h e aperiodic c r y s t a l . From the transformation properties o f t h e phases an algorithm f o r t h e construc- t i o n of the relevant hyperspace groups i s constructed i n which the hydro- dynamic representations of t h e group play a s p e c i a l r o l e .

Results a r e only discussed b r i e f l y . I t i s shown t h a t t h e r e a r e s i x cubic s e t s and four tetragonal s e t s . There a r e four icosahedral s e t s only two o f which give a s i x dimensional h y p e r l a t t i c e . There i s only one pentagonal s e t .

1

-

INTRODUCTION

Since they are not periodic,quasicrystals andincommensuratecrystals cannot be c l a s - s i f i e d i n t h e 230 Fedorov-Schonfliess crystallographicspace groups. The f u l l sym- metry group of aperiodic c r y s t a l s i s c l e a r l y not a subgroup of t h e t r a n s l a t i o n r o t a - t i o n inversion group of space. Since t h i s i s t h e symmetry which i s broken one never- t h e l e s s expects t h a t the symmetry of aperiodic c r y s t a l s can be r e l a t e d t o t h a t of cartesian space i n a systematic way. We s h a l l show t h a t t h i s i s indeed possible and s h a l l develop an algorithm which, i n p r i n c i p l e , allows t h e construction o f a l 1 pos- s i b l e aperiodic c r y s t a l symmetries.

The e s s e n t i a l idea i s t o construct t h e aperiodic c r y s t a l density from t h e point group symmetries and f r o m t h e i r r e d u c i b l e representations of t h e f u l l continuous t r a n s l a t i o n group. Similar problems were e n c o ~ j e r e d long ago i n t h e c l a s s i f i c a t i o n of magnetic s t r u c t u r e s where it was a l s o found t h a t a description i n terms of t h e representa- t i o n s of the broken symmetry group was both r i c h e r and more convenient than other ap- proaches

.

Our approach i s closely related@ofhe ideas and techniques involved i n applying the Landau theory t o s o l i d i f i c a t i o n

.

The most systematic attempt t o work out t h e implications of t h i s approach is i n t h e work of8Shtrikman and ~ o r n r e i c h ( 7 ) on t h e blue phases and i n t h e ecent work of Kalugin e.a.

.

I n t h e context of icosahedral aperiodic c r y s t a sf9) s i m i l a r ideas have aitp3yeen used recently by Per 8ak(1°), by Léensky e s a . ( l l f , by Iielson(12), by Memin

,

by ~ a r i c ( l ~ ) and probably by others

.

Since t h i s work w i l l presumably be discussed elsewhere i n t h i s volume we make no a t - tempt t o describe it here. The emphasis of t h i s work i s mainly on t h e physics while we concentrate on t h e geometric crystallographicaspects.

Janner and c o w o r k e r ~ ( ~ ~ a 16) have developed techniques f o r describing t h e synmietry of aperiodic c r y s t a l s i n terms of projections of periodic space group symmetries i n hyperspaces. Similar techniques have been used extensively r e c e n t l y i n t h e context

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986314

(3)

C3-144 JOURNAL DE PHYSIQUE

of t h ~ l t i l i n g s of the plane(17) and t h e icosahedral t i l i n g s of 3 dimensional ~ ~ ~ ~ e space

.

Our a n a l y s i s leads t o a description i n t e r m s d a l a t t i c e i n t h e hyper- space odynamic variables. This description i s c e r t a i n l y r e l a t e d t o

Janner

4fs1"f.

It can a l s o be r e l a t e d t o other projection techniques (17

-i6yat ge

e s s e n t i a l difference i s t h a t we derive the h y p e r l a t t i c e s and symmetries from t h e point symmetries and hydrodynamic t r a n s l a t i o n a l symmetries of t h e aperiodic c r y s t a l i n physical space. The h y p e r l a t t i c e s and hyperspace groups one can obtain i n t h i s way a r e r a t h e r s p e c i a l . They provide a f u l l c l a s s i f i c a t i o n of aperiodic c r y s t a l s . The projections a r e well defined by t h e construction and q u i t e unique, and do not r e - q u i r e p r i o r knowledge of t h e l a t t i c e s and space groups i n hyperspace.

The r e l a t i o n ç h i p t o t h e Quasi c r y s t a l formalism of Levine and ~ t e i n h a r d t ( ~ ' ) i s l e s s d i r e c t .

In s e c t i o n 2 we discuss t h e construction of the Bravais s e t s i n q space on which t h e 3

Fourier expansion of the aperiodic density can be indexed. The procedure allows a complete l i s t i n g f o r each point group and i s relevant t o t h e indexation of d i f f r a c - t i o n points. We discuss t h e cubic s e t s i n d e t a i l t o i l l u s t r a t e t h e procedure and give r e s u l t s f o r the tetragonal icosahedral and pentagonal point groups. Contrary t o claims i n t h e l i t e r a t u r e ( 8 * 2 1 ) only two s i x dimensional l a t t i c e s a r e relevant t o t h e indexation of icosahedral p a t t e r n s .

Zn s e c t i o n 3 we derive the incommensuratehydrodynamic t r a n s l a t i o n s of aperiodic crys- tals from the s t r u c t u r e of t h e Landau expansion of t h e f r e e energy. We use t h i s t o obtain h y p e r l a t t i c e representations of t h e Bravais s e t s i n

9

space and the hyper- l a t t i c e s dual t o them. These h y p e r l a t t i c e s describe t h e d i s c r e t e hydrodynamic trans- l a t i o n a l symmetry of aperiodic c r y s t a l s and a r e the relevant h y p e r l a t t i c e s f o r pro- jection.

In s e c t i o n 4 we analyse the symmetries of aperiodic c r y s t a l s using t h e transformation properties of t h e phases under t h e operations of t h e point group. The hydrodynamic representations r e l a t e d t o hydrodynamic phase s h i f t s play a s p e c i a l r o l e . We a l s o discuss b r i e f l y t h e construction of both symmorphic and assymorphic hyperspace groups which provide a f u l l c l a s s i f i c a t i o n of aperiodic c r y s t a l s .

Section 5 is a summaa A more complete discussion and d e t a i l e d derivations w i l l be published elsewherec

.

I I

-

BRAVAIS SETS IN RECIPROCAL SPACE 2.1

-

General Derivation

Consider a density

where P+ and 8 3 a r e r e a l . For a (periodic) c r y s t a l t h e vectors q (in 3-d) can always 3

be indeged on &e of t h e 14 Brayais l a t t i c e s i n reciprocal space. Moreover p+ de-

pends only on t h e magnitude of q(q): 9

and is therefore t h e same f o r a l 1

q

belonging t o t h e same s t a r i . e . when

+

+

9' = Ga9 (2.3)

whsre G i s an operqtion of the point g r o u p ( 9 . In addition, because of time inver- s i o n (TT symmetry -q belongs t o t h e s t a r of q even when t h e two a r e not r e l a t e d by an operation of G (eqn. 2 . 3 ) .

(4)

version. The Bravais s e t i s then de?ined by a l 1 t h e vectors

where t h e n1 a r e i n t e g e r s . By construction t h e s e t has the f u l l point symmetry(G

*

T) a t a l 1 poin?s. I t i s a l s o of measure zero. The indexation by t h e n i may of course be redundant.

I n general one can choose an a r b i t r a r y number of generating vectors. We r e s t r i c t ourselves t o t h e minimum nwnber of generating vectors necessary t o obtain a Bravais s e t spanning space. The r e s u l t i n g s e t s a r e minimal Bravais s e t s . The (fourteen) crystallographicBravais l a t t i c e s a r e s p e c i a l cases obtained by s u i t a b l e choices of t h e generating vectors. Quite generally t h e minimal Bravais s e t s can be constructed and l i s t e d f o r a l 1 point groups. Except f o r the Eravais l a t t i c e s they a r e always dense.

2.2 We consider

a,

few examples: Consider t h e cubic groups. Because of t h e high sym- metry one generating vector K i s always s u f f i c i e n t . The s e t s d i f f e r according t o the o r i e n t a t i o n of

2

with respect t o the axes of the point group.

Choosing

2

along a fourfold a x i s (çay (001)) generates a simple cubic l a t t i c e . The generating s t a r contains s i x vectors.

-+ K along a t h r e e f o l d axis ((111)) has e i g h t vectors i n i t s s t a r and generates a body centered l a t t i c e .

2

along a twofold axis ((011)) generates a face centered cubic l a t t i c e with twelve vectors i n t h e generating s t a r .

I t i s f a i r l y easy t o check t h a t any

ik

with commensurateprojections on t h e cubic axes a l s o generates one of these three l a t t i c e s .

There a r e t h r e e minimalincommensuratesets. Two a r i s e when 3 K i s chosen perpendicular t o a twofold a x i s and have generating s t a r s of 24 vectors:

The four centered s e t (K -+ = (klk20)) and t h e two centered s e t

(ik

= (klklk2)).

F i n a t J ~ ~ t h e r e i s the general case K = (k k k ) with 48 vectors i n the generating

s t a r

.

1' 2' 3

In a l 1 cases t h e ki a r e assumed mutually incommensurate.

Thus t h e r e a r e s i x minimal cubic Bravais s e t s . A l 1 other cubic s e t s require more generating vectors and can be described as (vector) sums of these s e t s .

An analogous analysis f o r the a x i a l tetragonal group gives four s e t s including the two l a t t i c e s . The minimal s e t s are a l 1 periodic along the axis.

For non crystallographic point groups t h e r e are, obviously, no l a t t i c e s and t h e s e t s a r e a l 1 dense. Clearly two s e t s can d i f f e r only when t h e choice of generating vec- t o r s d i f f e r s i n i t s r e l a t i o n t o t h e symmetry operations of t h e group. Some care i s however required because d i f f e r e n t choices may i n f a c t reduce t o d i f f e r e n t indexa- t i o n s of i d e n t i c a l s e t s .

Like the cubic s e t s icosahedral s e t s require only one generating vector. There a r e f i v e d i s t i n c t choices f o r t h e o r i e n t a t i o n of t h e generating vector.

(5)

C3-146 JOURNAL

DE

PHYSIQUE

a) along a diagonal of t h e icosahedron (ID

-

a f i v e f o l d axis) with 12 vectors i n the generating s t a r .

b) along a diagonal of the dodecahedron (DD

-

a threefold axis) with 20 vectors i n t h e s t a r .

c) along an edge ( a twofold a x i s ) . This gives t h i r t y vectors i n t h e generating s t a r .

d) A general d i r e c t i o n perpendicular t o a twofold a x i s (a symmetry plane) gives a generating s t a r of s i x t y .

Time reversa1 i s redundant i n a l 1 these cases.

e. For a general d i r e c t i o n (no symmetry) t h e r e a r e 120 vectors i n t h e generating s t a r .

These choices give r i s e t o four d i s t i n c t Bravais s e t s . Contrary t o some statements i n t h e l i t e r a t u r e the choices 3.a) and 3.b) give i d e n t i c a l s e t s which can be mapped on a simple cubic l a t t i c e i n a 6 dimensional hyperspace. The edge s e t

-

3.c i s d i f - f e r e n t and maps on an FCC h y p e r l a t t i c e f o r which the sum of the s i x indices i s a l - ways even.

The two other s e t s require twelve and eighteen dimensional representations respective- l Y .

Analysis of the pentagonal case shows t h a t t h e r e i s only one minimal Bravais s e t both f o r t h e planar (Penrose) case and i n 3 dimensional space. Like t h e tetragonal s e t s

(and a l 1 other a x i a l s e t s ) the minimal pentagonal Bravais s e t i s periodic along t h e a i s .

III. INCOMMENSURATE TRANSLATIONS AND KYDRODYNAMIC VARIABLES

The symmetry of a c r y s t a l i s not completely determined by t h e Bravais s e t i n

4

space.

A s i n ordinarycrystallographyit i s n a t u r a l t o assume t h a t t h e amplitudes (p-t) i n t h e Fourier expansion of t h e density (eqn. 2.1) a r e t h e same f o r a l 1 members of

%

s t a r

(eqn. 2.2.).

For each s t a r one then has a geometrical s t r u c t u r e factor(23) A = C exp i ( q a -? r + 8 - + )

a qa

whose symmetry depends on t h e choice of t h e phases (O+). The overall symmetry of t h e c r y s t a l i s t h a t which i s common t o a l 1 t h e s t r u c t u r e q f a c t o r s (eqn. 3.1.) f o r a l 1 s t a r s . This includes both t r a n s l a t i o n a l and r o t a t i o n a l symmetries.

For periodic c r y s t a l s t h e (pure) t r a n s l a t i o n a l symmetry i s alyays described by one of t h e 14 Bravais l a t t i c e s and i s uniquely determined by t h e q space Bravais l a t t i c e . The r e a l and q-space l a t t i c e s a r e dual t o each other. This can be r e l a t e d t o t h e f a c t t h a t r i g i d t r a n s l a t i o n s a r e t h e only hydrodynamic va

Tfi3:1IS

f o r periodic c r y s t a l s

.

Aperiodic c r y s t a l s have additional hydrodynarnic variables and t h e i r symmetry can be represented by a h y p e r l a t t i c e i n t h e hyperspace ofincommensuratehydrodynamic t r a n s l a t i o n s which i s d u a l t o t h e Bravais s e t .

We first introduce t h e hydrodynamic t r a n s l a t i o n s i n a systematic way. A general term i n t h e Landau density expansion of t h e f r e e energ@-6) has the form

with a s u i t a b l e mode1 dependent, c o e f f i c i e n t s and using t h e d e f i n i t i o n s of eqn. 2.1.

(6)

c q i = 0

s o t h a t the qi form a closed polygon. 3

A r i g i d t r a n s l a t i o n

(g)

i s represented by phase s h i f t s :

3 -+

& @ + = q a t 9

f o r a l 1 -f q.

Thus from eqns. 3 . 2 and 3.3

-f

and t h e f r e e energy i s i n v a r i a n t f o r any value of the d dimensional vector t . For a periodic c r y s t a l t h e qi a r e vectors of the Bravais l a t t i c e and the t r a n s l a t i o n s -t

f o r which

f o r a l 1

qi

form a l a t t i c e .

-

There a r e no s o l u t i o n s t o equation 3.6 f o r ageriodic c r y s t a l ~ ( ~ ~ ) ( i . e . when t h e Bravais s e t i s not a l a t t i c e ) . The vectors q. haveincommensuratecomponents along t h e axes of any coordinate system i n d dimens$03al space. Choosing a s p e c i f i c co- ordinate system we can decompose t h e vectors (q) i n t o t h e i r incommensuratecomponents

3

e

+,

q = q (3.7)

v= 1

where the components of d i f f e r e n t

Q)

a r e mutually incomensurateand Q i s t h e number ofincommensuratecomponents required f o r the p a r t i c u l a r s e t . This amounts t o a d.9.

dimensional h y p e r l a t t i c e representation of t h e Bravais s e t . The decomposition de- pends on t h e choice of coordinates but !?. does ~ o t .

From t h e t r a n s l a t i o n a l invariance requirement (eqn. 3.3) it now follows t h a t c q i = o -ry

t (3.8)

f o r a l 1 terms i n t h e f r e e energy. Thus t h e phase s h i f t s

sov

=

q .

tv

f o r a r b i t r a r y choice of t h e Q(d dimensional) vectors

2,

a r e a l 1 hydrodynamic. The aperiodic c r y s t a l has d.!?.hydrodynamic t r q l a t i o n s which do not change t h e f r e e energy. In the hyperspace defined by t h e t r i g i d t r a n s l a t i o n s define a subspace

Pz?

(3.10)

f o r a l 1 v. A general hyperspace t r a n s l a t i o n

(7)

defines a hydrodynamic phase s h i f t through eqn. 3.9 and i s t h e r e f o r e an invariance operation of t h e f r e e energy of t h e aperiodic c r y s t a l analogous t o a r i g i d t r a n s l a t i o n . I n general two r e a l i s a t i o n s r e l a t e d by incomensuratetranslations

fi)

do of course look q u i t e d i f f e r e n t . They a r e however equivalent i n having i d e n t i c a l f r e e energies. For example a l 1 Penrose t i l i n g s with i d e n t i c a l t i l e s and construction r u l e s a r e r e l a t e d i n t h i s way.

I n t h e hyperspace

( T )

one can a l s o define a h y p e r l a t t i c e

(E)

dual t o the Bravais s e t

- -

: * r i =

~ ? . p = 2 r n (3.11)

v

(7)

C3-148 JOURNAL DE PHYSIQUE

The h y p e r l a t t i c e describes t h e @ncommensurateJ t r a n s l a t i o n a l invariance operations of the aperiodic c r y s t a l . Since the

';f"

and therefore t h e a r e incornensurate t h e hyper- l a t t i c e (R) contains no r i g i d t r a n s l a t i o n s i . e . no vectors i n t h e subspace defined by eqn. 3.10.

A h y p e r l a t t i c e construction r e l a t e d t o t h e above has been given by Per ~ a k ( ' > l ~ ) f o r t h e simple icosahedral s e t . It i s also r e l a t e d i n a sim l e way t o t h e projection techniques which have been developed by various a u t h o r ~ ( j ~ - ~ ~ ) t o obtain aperiodic pentagonal t i l i n g s o f t h e plane o r icosahedral t i l i n g s o f t h e space. We note however t h a t our derivation defines the h y p e r l a t t i c e s uniquelyfromthe d dimensional Bravais s e t s .

Quite generally one can extend t h e s t r u c t u r e f a c t o r (Aq eqn. 3.1) t o hyperspace by writing

The density:

p(T) = L

A (F)

(3.13)

s t a r s '9 q

then describes a proper periodic c y s t a l i n hyperspace with t h e Bravais l a t t i c e

R.

In t h e space of physical vectors ( r )

À i s i d e n t i c a l t o A (eqn. 3.1). The density i n t h e u n i t ce11 of t h e periodic hyper- c&stal i s arbitra$ One obtains an aperiodic t i l i n g of hyperspace from any periodic t i l i n g of hyperspace. Our construction assures t h a t t h e t i l i n g i s described by t h e chosen Bravais s e t .

IV. SYbbETRIES RELATED TO POINT OPERATIONS AND WDRODYNAMIC REPRESENTATIONS The ( d i s c r e t e ) t r a n s l a t i o n a l symmetry of a l 1 c r y s t a l s i s described by t h e fourteen Bravais l a t t i c e s . The much r i c h e r space group synmietry r e s u l t s when one a l s o con- s i d e r s t h e e f f e c t s of t h e operations of t h e point group on t h e phases i n t h e s t r u c - t u r e f a c t o r s . The usual procedure i s t o use t h e known symmetries of t h e 230 space groups t o determine r e l a t i o n s between t h e phases i n each s t a r . The r e s u l t s a r e l i s t - ed i n r e f . 23. An e x p l i c i t procedure f o r deriving these r e s u l t s i s described e.g.

i n r e f s . 5 and 6 . Since t h e relevant hyperspace groups a r e not known we need a more general forma1 procedure. We s h a l l derive t h i s by considering t h e e f f e c t of the point group operations on t h e phases e x p l i c i t l y . The relevant hyperspace groups con- t a i n t h e h y p e r l a t t i c e t r a n s l a t i o n s a s a subgroup. Symmorphic hyperspace groups a l s o have Points with t h e f u l l point group symmetry. Non symmorphic hyperspace groups only contain combinations of some of the point operations with s u i t a b l e h y p e r l a t t i c e t r a n s l a t i o n s . They therefore have no points with the f u l l point symmetry. Only very s p e c i a l Bravais l a t t i c e s i n hyperspace a r e a c t u a l l y generated by t h e procedure o f section 3 . The point groups are a l s o very s p e c i a l and r a t h e r a r t i f i c i a l a s

groups i n hyperspace. Thw the f u l l cubic group i n 6-d has 16080 elements(ZgO?! ) of which only 60 (or 120) a r e elements of t h e relevant icosahedral group. I t i s thus c e r t a i n l y much more economical t o construct t h e relevant space groups e x p l i c i t l y . Consider the e f f e c t of these point operations on tge s t r u c t u r e f a c t o r s (eqn. 3.1).

The point group permutes the vectors of t h e s t a r (q ) . Its e f f e c t on the s t r u c t u r e f a c t o r o i i t h e r e f o r e be described by a permutation O!? t h e phases O

.

I t i s convenient t o describe t h i s i n terms of the i r r e d u c i b l e representations of tfie point group

nvn mv

where 10

,

i s a vector whose dimension ( s ) i s equal t o the number of vectors i n

9 9

(8)

ixh f o r some y and i n general w i l l depend on the type o f star(qY.

To have a r e a l density one must have O + = - & .

-9 9 (4.2)

3 3

which r e s t r i c t s t h e possible representations when q and -q a r e r e l a t e d by G. Also because of eqn. 4.2

1 3

The choice of o r i g i n i n t h e A ( r ) i s a r b i t r a r y . S h i f t i n g the o r i g i n r e s u l t s i n hy- drodynamic phase s h i f t s corre$onding t o a r i g i d t r a n s l a t i o n (eqn. 3.4). These phase s h i f t s transform with a s p e c i a l representation of G ( t h e vector representation v) which i s allowed by the symmetry of a l 1 s t a r s .

For symmorphic space groups one c m , by s u i t a b l e choice of o r i g i n , remove t h e vector representation f o r a l 1 s t a r s . For these high symmetry choices of o r i g i n t h e i d e n t i t y representation i s t h e only one appearing, s o t h a t a l 1 s t a r s have t h e f u l l symmetry G.

We note t h a t t h e difference between r e l a t e d point groups

-

such a s the four cubic point groups, appears a t t h i s stage.

We can t r e a t symmorphic aperiodic c r y s t a l s i n an analogous way. The hydrodynamic phase s h i f t s (eqn. 3.9) transform according t o some representations which we s h a l l c a l 1 t h e hydrodynamic representationsof G.For c r y s t a l l o ~ r a p h i c p o i n t groups these a r e always r e p e t i t i o n s o Y t h e vector representation. For such point groups each incom- mensuratecomponent (q

,

tv, 80' ) transforms separately under t h e operations of G.

Equivalently one can choose a c$ordinate system which i s invariant under G and use i t t o d e f i n e t h e s e p a r a t i o n of t h e q. i n t o theirincommensuratecomponents. This i s pos- s i b l e even f o r non t r i v i a l incommlensurate s e t s l i k e those considered i n section 2.

F o r n o n c r y s t a l l o ~ g r a p h i c p o i n t groups t h e r e i s always more than one type of hydrodynam- i c representation. For example

-

t h e two t h r e e dimensional representations of t h e icosahedral group a r e both hydrodynamic. S i m i l a r i l y t h e two two dimensional represen- t a r i o n s of t h e pentagonal group are t h e hydrodynamic representations f o r the Penrose p a t t e r n s . I n both cases t h e vector representation i s one of these two. Since hydro- dynamic phase s h i f t s a r e possible f o r a l 1 s t a r s each i r r e d u c i b l e hydrodynamic repre- sentation must show up a t l e a s t once f o r every d dimensional s t a r i n t h e Bravais s e t . One a l s o can not choose an invariant coordinate system f o r these point groups.

A symmorphic aperiodic c r y s t a l i s defined by t h e existence of high symmetry points, with t h e f u l l symmetry G, i n t h e hydrodynamic hyperspace. For t h i s choice of o r i g i n a l 1 phases i n a s t a r have t o be equal. When t h e i d e n t i y representation i s not an allowed representation f o r a s t a r [eqn. 4.1) t h e phases a r e determined.From t h e point group symmetry one then has only two p o s s i b i l i t i e s :

Thus t h e difference between t h e two icosahedral groups (Y;Yh ) i s t h a t eqn. 4.4 holds f o r a l 1 s t a r s i n Yh. For Y t h e r e i s a f r e e phase f o r t h e large, low symmetry, s t a r s of 120 vectors.

From the h y p e r l a t t i c e symmetry it i s c l e a r t h a t t h e high symnetry points form a l a t - t i c e i n hyperspace which has a t most one point i n the physical space (eqn. 3 .IO).

For a general point t h e r e a r e , i n addition, hydrodynamic phase s h i f t s . A l 1 equiva- l e n t r e a l i s a t i o n s of the aperiodic c r y s t a l can be r e l a t e d t o each other by t h e hyper- space t r a n s l a t i o n s i n a Wigner S e i t z ce11 of t h e h y p e r l a t t i c e .

Most of t h e 230 space groups a r e non symmorphic. The point group G i s not an e x p l i c i t subgroup of these space groups. Some of t h e point operations only appear i n combina-

(9)

C3-150 JOURNAL DE PHYSIQUE

t i o n with s u i t a b l e t r a n s l a t i o n s (screw a x i s , g l i d e planes). While the p o s s i b i l i t y of non symmorphic aperiodic c r y s t a l s has not been c o n s i d e r e d i n t h e recent l i t e r a t u r e on icosahedral and pentagonal c r y s t a l s t h e r e i s n o a p r i o r i r e a s o n t o disregard t h i s pos- s i b i l i t y . For incommensuratecrystals with c r y s t a l l o g r a p h i c a l l y a l l o w e d points groups such synunetries have been observed and analysed. We note t h e d e t a i l e d work of Buit- ing e t . a l . (16)

.

In t h e language we have developed non symmorphic space groups appear through phase s h i f t s which transform with t h e hydrodynamic representations but cannot be removed by a s h i f t of o r i g i n . In general we c m w r i t e f o r a non symmorphic element

where G i s an element of G, 10> i s defined as i n eqn. 4.1 and

1%

i s - a hydrodynamic s h i f t rgpresenting t h e e f f e c t of a s u i t a b l e hydrodynamic t r a n s l a f i o n (hl on the phases i n t h e s t a r .

-iï

i s a vector with i n t e g e r components. Without l o s s of generality we can assume t h a t h i s contained i n t h e Wigner-Seitz ce11 of t h e h y p e r l a t t i c e . The meaning of eqn. 4.5 i s of course t h a t t h e e f f e c t of Gaon t h e phases can be r e - moved by a s u i t a b l e (hyperspace) t r a n s l a t i - (-5 )

.

A nonsymmorphic space group a r i s e s i f one can choose a s e t of vectors

ha

f o r a i l Ga consistent with t h e point group algebra. Listing the p o s s i b i l i t i e s i s f a i r l y straightforward f o r a x i a l point groups but becomes complicated f o r t h e cubic and icosahedral groups. We only note the forma1 implications of eqn. 4.5.

Let p be t h e period of G ( ( G )' = l ) L The t r a n s l a t i o n corresponding t o ( G , ) ~ must therefore be a hyperlatt?ce Bector (fia). By repeated operation one f i n d s

= P-1

(4 6 ) ll=o

Thus one must have

where g a i s the component of which i s invariant under Ga.

In addition, since an equation analogous t o 4.5 must hold f o r a l 1 elements of the point group f o r t h e same t h e decomposition i n t o i r r e d u c i b l e representations can contain only the i d e n t i t y and the hydrodynamic representations.

Using these r e s u l t s t h e construction of t h e relevant hyperspace groups i s s t r a i g h t - forward.

V. CONCLUSIONS

The main point of our discussion was t o show t h a t t h e symmetry c l a s s i f i c a t i o n of aperiodic c r y s t a l s i s simply r e l a t e d t o t h e i r hydrodynamic t r a n s l a t i o n s and can be carried out i n a systematic way s t a r t i n g from t h e known d i s c r e t e point groups. Our procedure constructs t h e h y p e r l a t t i c e and space groups i n hyperspace e x p l i c i t l y from the point group and Bravais s e t i n physical space. The algorithm we have described allows a complete l i s t i n g of t h e Bravais s e t s , h y p e r l a t t i c e s and hyperspace groups f o r any point group.

This work was supported i n p a r t by t h e fund f o r Basic Research administered by t h e I s r a e l Academy o f Science and Humanities and by t h e National Science Foundation Grant No. DMR-84-12898. The h o s p i t a l i t y of Exxon Research Laboratories where p a r t of t h i s work was done i s g r a t e f u l l y acknowledged.

(10)

/1/ Alexander, S., Phys. Rev. 127 420 (1962).

/2/ Landau, L.D., Phys. Z . S O W ~ .

g

26, 545 (1937).

/3/ Alexander, S. and Mctague, J . , Phys. Rev. L e t t . 41 702 (1978).

/4/ Baym, G . , Bethe, H.A. and Pathick, C.J., Nucl. ~ h y s . (A).

175

25 (1971).

/5/ Alexander, S. i n Symmetries and Broken Symmetries i n Condensed Matter Physics N. Boccara e d t . IDSET P a r i s 1981, p. 141.

/6/ Alexander, S . , J . de Physique Coll. C3 Vol. 46 33 (1985).

/7/ Hornreich, R.M. and Shtrikman, S., J. de ~ h y x q u e 335 (1980), i b i d . 367 (1981).

Grebel, H, Hornreich, R.M. and Shtrikman, S., Phys. Rev. A 28 1114 (1983).

/8/ Kalugin, P.A., Kitayev, A. Yu. and Levitov, L.S., J. de ~ h y x q u e ( L e t t r e s )

5

L601 (1985), Pisma v ZETF 41 119 (1985) (JETP L e t t . 119 (1985)).

/9/ Shechtman, D., Blech, I . , G r a t i a s , D. and Cahn, J . W . , Phys, Rev. L e t t . 1951 (1984).

/ I O / Bak, P., Phys. Rev. L e t t . 1517 (1985)and Phys. Rev. B z 5764 (1985).

/ I l / Levine, D., Lubensky, T.C., Ostlund, S . , Tamaswamy, S . , S t e i n h a r d t , P.J. and Toner, J., Phys. Rev. L e t t .

54

1520 (1985)

Lubensky, T.C., Ramaswanly and Toner, J . , Phys. Rev. B32 7444 (1985).

/12/ Sachdev, S. and Nelson, D.R., Phys. Rev. B 32 4592 (1985).

/13/ Mermin, N.D. and Troian, S.M., Phys. Rev. ~zt. 1524 (1984).

/14/ J a r i c , M.V., Phys. Rev. L e t t . 55, 607 (1985).

/15/ Janner, A. and Janssen, T., ~ h c . Rev. L e t t . $- 1700 (1980), Acta C r y s t a l .

A 3 6

408 (1980).

Janssen, T., Janner, A. and deWolf, P.M., Acta Cryst. A39 658, 667, 671 (1983).

/16/ Buiting, J . J . M , Weger, M. and Mueller, F.M., S o l i d S t a t e Corn.

46

857 (1983), J . Phys. F

2

2343 (1984) Buiting, J . J . M . , Janner, A. and Weger, M. ( p r e p r i n t ) . /17/ McKay, A.L., Physica A 114 609 (1982).

/18/ E l s e r , V . , Phys. Rev.

LX.

1730 (1985).

/19/ Duneau, M. and Katz, A., Phys. Rev. L e t t . 54 2688 (1985).

/20/ Levine, D. and S t e i n h a r d t , P.J., Phys. ~ e v T ~ e t t . 53 2477 (1984).

/21/ Cahn, J . W . , Shechtman, D. and G r a t i a s , D. ( p r e p r i n q /22/ Alexander, S. ( t o be published)

/23/ I n t e r n a t i o n a l Tables f o r X-RayCrystaLlography, v o l . 1 (1959).

/24/ Note t h a t T with 12 elements does n o t generate t h i s s t a r .

/25/ This holds f o r d i r e c t i o n s i n which t h e c r y s t a l isincommensuratetherefore

net

along t h e a x i s of a x i a l s e t s .

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to