• Aucun résultat trouvé

THERMAL EFFECTS IN DYNAMIC PLASTICITY, NUMERICAL SOLUTION AND EXPERIMENTAL INVESTIGATIONS (THERMOGRAPHIC-INFRARED DETECTION)

N/A
N/A
Protected

Academic year: 2021

Partager "THERMAL EFFECTS IN DYNAMIC PLASTICITY, NUMERICAL SOLUTION AND EXPERIMENTAL INVESTIGATIONS (THERMOGRAPHIC-INFRARED DETECTION)"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00224744

https://hal.archives-ouvertes.fr/jpa-00224744

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THERMAL EFFECTS IN DYNAMIC PLASTICITY, NUMERICAL SOLUTION AND EXPERIMENTAL INVESTIGATIONS (THERMOGRAPHIC-INFRARED

DETECTION)

W. Nowacki

To cite this version:

W. Nowacki. THERMAL EFFECTS IN DYNAMIC PLASTICITY, NUMERICAL SOLUTION AND

EXPERIMENTAL INVESTIGATIONS (THERMOGRAPHIC-INFRARED DETECTION). Journal

de Physique Colloques, 1985, 46 (C5), pp.C5-113-C5-119. �10.1051/jphyscol:1985514�. �jpa-00224744�

(2)

JOURNAL DE PHYSIQUE

Colloque C5, supplkment au n08, Tome 46, aoQt 1985 page C5-113

T H E R M A L EFFECTS IN DYNAMIC PLASTICITY, NUMERICAL SOLUTION AND E X P E R I M E N T A L I N V E S T I G A T I O N S (THERMOGRAPH I C-I N F R A R E D D E T E C T I O N )

W.K. Nowacki

I n s t i t u t e of FundarnentaZ TechnoZogical Research of the Polish Academy of Sciences, 00 049 Warszawa, uZ. Swietokrzyska 21, Poland

Rksumb - On btudie l a solution du problkme de I'impact d'une tige blastoviscoplastique s u r une p a r o i rigide,en supposant que l e processus est localement adiabatique e i dans le cas des grandes dbformations. On tient compte de I'influence de la tempbrature se produisant l o r s du choc s u r l e champ des dbformations. On a effectub les expbriences

correspondantes en u t i l i s a n t un systkme de b a r r a s dlHopkinson et une camgt-a i n f r a - rouge pyroblectrique. On compare les r k s u l t a t s des calculs numbriques avec les donnb-

es expkrimentales.

Abstract - The problem of the impact of a r i g i d wall by an elastoviscoplastic r o d i s examined under the assumption that the process i s l o c a l l y adiabatic and i n the case of f i n i t e deformations.The influence of the temperature produced by the impact on the de- formation f i e l d in the r o d i s discussed. Experimental investigation i s performed i n the Hopkinson p r e s s u r e b a r system and a thermovision set. The r e s u l t of numerical com- putations a r e compared with experimental data.

I

-

INTRODUCTION

I t i s discussed how the temperature f i e l d depends on the viscoplastic deformation i n the dyna- mically deformed b a r under the assumption that the process i s locally adiabatic.

Solution i s found t o the problem of wave propagation i n an elasticviscoplastic b a r which s t r i - kes against an undeformable obstacle. The theory of f i n i t e deformations of thermoelastovisco- p l a s t i c i t y of J.Mandel /2,3/ i s used. The effect of tranverse i n e r t i a i s disregarded,but that of transverse deformation i s taken into account because i t may be important i n case of f i n i t e deformation.

I I

-

FORMULATION OF T H E THERMOMECHAN I CAL PROBLEM

We summarise h e r e the principal r e s u l t s from the theory of elastic-viscoplastic continua as developed by J.Mandel /2,3/ and also obtain some related r e s u l t s f o r l a t e r use.

The gradient o f total transformation is:

(1)

- F = E P

where _E and _Pare the gradients of elastic and plastic transformation rrspartivrly.Thegrad- ient of velocity of the displacement is:

(2) 1

V = g r a d ~ = i E - l

= E L -

+ _ E ~ , l I - l

-

where

ye = g g1

and

f

= _E

_p-l

E-I a r e the elastic and plastic parts, e -

The velocity of elastic deformation D = $(

ve + $7

can by w r i t t e n i n terms of t h r r a t e of Cauchy s t r e s s tensor and the temperature i n the form

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985514

(3)

JOURNAL DE PHYSIQUE

where T i s the temperature,

2

i s the Truesdell d e r i v a t i v e of the stress t e n s o r , C and _A - elasticity coefficients depending on the i n i t i a l configuration:

-1 -1 0 -1 -1 -1 0 -1

(4) Lmnrs= Eim E j n L i j h l E h r E ~ s 3 Amn=Eim A.. Ejn,

0 . 0 l J

where L . I S a matrix of e l a s t i c i t y coefficients and A..

-

matrix of thermic dilatation coeffi- cients, lJh; i s the mass density of the actual configuratf$n.

I n the elastic-viscoplastic medium w i t h instantaneous deformations,the gradient of r a t e of plas- t i c transformation i s the sum of the instantaneous p l a s t i c i t y term and viscoplasti-

c i t y term as a function of actual state of material.

! f

i s the y i e l d condition where YT i s the following tensor: YT = E

E

T-1 / P

,

E = ( K

,

n = lN i s the family of the internal parameters.

nit. r v v l u t i o t i equation f o r the i n t r r n a l parametrrs i s in thc following form:

The velocity of anelastic deformation i s defined by:

1 -1

(7) g P = t v P } -

= E B _ ~ - g = + [ < i @ q f ~ ,

T ) > > + x . - s

- - as I E-'

all.

A

>

0 i f =O and

k

= 0 , and A = 0 i f £<O o r

k-<

0

,

and the symbol < R > denotes the positive p a r t of r e a l R, and

The function i s the viscoplastic p a r t of t h i s gradient and must be defined i n an experimen- tal way.

l h v heat equttlion givesth(. rat(, of t ~ m ~ ) ( ~ r a t u r c ~ a s a function of thc, total drformation, of the plastic deformation, and

oZ

the state of the materials:

(9) cc

i

= M_ +

*

a K n + ;,, (

pp

i n the case of adiabatic processes, where c, i s the specific heat at constant deformation and

-

1

C. i s the stored internal energy, M_ =

-

!, A_

.

I n n r e c t a n g u l a r coordinate system X. the motion i s described by x= x(X,t). The gradients of elastic and plastic transformation asskme the following form:

The Cauchy tensor has only one component u i n the coordinate system X.. The velocity of elastic deformation can be w r i t t e n i n the form: 11

where v = ax/at

,

E i s Young's modulus, a i s the c o e f f i c i e n t of linear thermal expansion and P i s the densit;: p = pp, / F F~ The velocity of plastic deformation i s defined by:

P 11 2 2 '

(12) D 11 = E 11

6

11 P-l 11 E - ~ 11 = Ell

< I $ (

Yll, K

,

T ) + A

-

a Y with equation of evolution f o r the internal parameter 11

(4)

(with only one parameter K - s t r a i n hardening), The functions ($I and 2' a r e determined onthe basis of experimental investigations.

1 he heal equation (9) i n the case of adiabatic processes takes the form:

(14)

i = o ,, I;

pl1 -1 / p -

~i

11 E 11

E

0 / P o - - a & a~ I; ' The system of equations (1 1) - (14) together with the equation of motion (15) 2 1F~~ = p o 6 1

and relation

(16) Dll = DT1

+

Dp 11

enable a unique statement of the problem of adiabatic wave propagation i n the elastic-visco- plastic b a r under given boundary and i n i t i a l conditions.

We introduce the nominal s t r e s s : S = F~ 22 a

,

and the logarithmic mcsures of dcfor- mations:

(17) e = I n E l l

11

,

fll = I n F l l

,

pl, = I n Pll

,

f22 = I n F 22 ' The system of equations (1 1) - (16) takesthe following form:

;? = exp (f ) 1 5 - 2 s

i 2 2 + ~

(ill - 2 ;

11 11 .

-

11

I

+ 2 i

We can solve this system of equations with the following i n i t i a l conditions:

(19) ell(X,O) = fll(X,O) = f22(X,0) = p 1 1 (X,O) = 0

,

T(X,O) = TO

,

and the boundary conditions i n the form:

( 2 0 ) v ( O , t ) = w

,

f o r t < t

,

S(0,t) = 0 f o r t h t : and S ( l 0 , t ) = 0 f o r t > O , where t i s the time of rebound of the sample.

k

I I I

-

DESCR I PT I O N OF EXPER IMENTS

The test stand i s based on Hopkinson p r e s s u r e b a r system and a thermovision set

-

F i g . 1.

I t i s designed f o r dynamic compression of c y l i n d r i c a l samples and f o r thermovision recording of temperature d i s t r i b u t i o n

-

c f . ref.4. The Hopkinson p r e s s u r e b a r system consistsof a com- pressed a i r gun (1) and a set of b a r s (3,4). The tested sample (2) leaves the gun b a r r e l at a high velocity, s t r i k e s against the face of the b a r and becomes considerably deformed. The sample velocity i s mesured by means of a l a s e r (9), the beam of which i s s p l i t b y a set of prisms (10) into two p a r a l l e l beads directed toward the phototransistors ( 8 ) . As a r e s u l t of the impact, an elastic wave of compression i s produced i n the measuring b a r and after reflec- tion t r a v e l s back i n t h i s b a r as an elastic wave of extension. A potentiometric s t r a i n gauge system (7) i s mounted at the mid-length of the bar. I t s signal i s processed i n an amplifier (17) and recorded i n one of the channels of a digital storage oscilloscope (15). T h i s signal repre- sents the i n i t i a l and reflected elastic waves as function of time.

The impact point of the sample at the instant of s t r i k i n g against the active measuring h a r i s observed by a thermovision camera (12). The camera i s located at a distance of 300 mm from the geometric a x i s of the b a r s and the gun tube so as t o take a sharp image i n the detector

(5)

C5-116 JOURNAL DE PHYSIQUE

plane. T e m p e r a t u r e v a r i a t i o n i s determined b y a n a l y s i n g the a m p l i f i e d d e t e c t o r signal of the i n f r a r e d r a d i a t i o n emitted b y t h e sample s u r f a c e p o i n t s l y i n g along the l i n e p a r a l l e l to the a x i s of the sample, that i s , b y a n a l y s i n g the signal at the t h e r m o v i s i o n image l i n e . T h i s

F i g . 1 - Schematic d i a g r a m of experimenral stand f o r d y r a m i c c o m p r e s s i o n cf c y l i n d r i c a l sam- l e s w i t h t h e r m o v i s i o n t e m p e r a t u r e r e c o r d i n g .

F i g . 2 - T y p i c a l c u r v e of sample r a d i a t i o n p o w e r v e r s u s X

signal i s o b s e r v e d and r e c o r d e d on the s c r e e n of an o s c i l l o s c o p e attachement 18. (14) : H(t) i n Fig.2.

The sample w e r e made of a soft aluminium a l l o y P A 1 . T h e c y l i n d i c a l samples w e r e do =9.8mm i n d i a m e t e r and lo = 95mm i n length - F i g . 3 . The c a r r y i n g p a r t o f the sample was l i m i t e d b y t w o t e f l o n r i n g s i n o r d e r to e n s u r e c o a x i a l motion of the sample i n s i d e the gun b a r r e l . T h e sample h a d no s i d e contact i n the motion i n s i d e the gun ~ l l i ( 11 mod(. it po%sil,lr l o a v o i d f r . i r t i ( , ~ ~ e f f e c t s and m i n i s i n t e r p r e t a t i o n of the measurement r e s u l t s .

The p o w e r of the r a d i a t i o n o b s e r v e d b y the camera v a r i e s both i n the time and space. T h e p r i n - c i p e of o p e r a t i o n of the t h e r m o v i s i o n c a m e r a used i n the p r e s e n t experiments consists i n obser-

(6)

vation of the successive point of a selected sample l i n e by means of a rotating prism. I n the diagram H(X 1, a complete observation cycle i s contained between two points at which the quantity observed changes i t s sign. I n the same diagram prepared f o r a s t r i k e r velocity of 1 w = 70m/s

-

i t i s possible to distinguish three maxima - cf.Fig.2. The f i r s t maximum ( r a t h e r weak) located at the left i s caused by the heat radiated frorr the indicator heater w i r e s (point R); the second maximum (most distinct at point C), and the t h i r d maximum (at point D) c o r r e s - pond t o the end of the s t r i k e r b a r and the end of the incident b a r , respectively, both ends being heated up d u r i n g impact.

Fig.3

-

Sample.

F r o m the r e c o r d of deformation E (t) i n the incident b a r i t i s possible to determine the s t r a i n and stress at the contact point of the sample and the b a r (under the assumption that the incident b a r i s elastic). Permanent longitudinal and transversal deformations A and A

ctivel y were measured (Fig.4 - sample a f t e r deforrration). 1 1 22 respe-

Fig.4

-

Sample a f t e r deformation.

I V

-

A N A L Y S I S OF EXPERIMENTAL RESULTS. COMPAR I SON WITH THEORETICAL CAL- CULAT l ONS

An initial-boundary value problem i s solved f o r the same boundary and i n i t i a l conditions as those used i n the experiments described i n the § I I I . Numerical data were close t o those used f o r the sample tested i n the experiments. The numerical calculations have beell made in ! w o different cases:

(a) - I n the r e l a t i o n f o r the velocity of anelastic deformation ( 7 ) the il~st;~l~t;~nc,ous plasticity tvr.ni i s ncylc,ctc.d: so \v(. c.olisid(.r. o ~ i l y visc.c~l~lics!ic. ti(.fo~.n~icliolis

-

s ( . ( - r.t~f. 1

.

(b) - We take into account i n (7) both members: instantaneous p l a s t i c i t y and viscoplasticity.

The calculed permanent longitudinal and transversal deformations, A and A i n both cases ( f o r a f i x e d lime) of the sample under test a r e shown i n ~ i g ' . k i n comparcson with 22.

the corresponding s t r a i n s measured on the deformed samples. The maximum deformations appear on the boundary of the sample under test. I t i s seen that the maxima calculated i n the case (a) and (b) and measured coincide. We observe that the deformations A and A2 calcu- lated i n the case (b) has the best correspondence with experimental results. I t followsTromthe 1 experiments described h e r e that i n the theoretical discussion on long dynamically deformed samples made of strain-rate-sensitive material i t i s necessary to take into account not only

(7)

JOURNAL DE PHYSIQUE

the deformations of a relaxation type,but also the instantaneous deformations.

Fig.5 - Permanent deformations of sample: A longitudinal deformations, AZ2 transverse de- formations : - -

- -

experimental,

-

t h e o r e t ~ c a l 1 1 . (calculated).

Fig.6 -Temperature increase along sample under test, on line X =v ( t

-

td ).

-

-

--

experimental,

-

thedretical (calculated). 1 cam

Dashed line i n Fig.6 represents temperature v a r i a t i o n AT along the sample (that is,along the straight l i n e X = v (t - t

)I

The d i s t r i b u t i o n of the power of i n f r a r e d radiation along the

1 .

sample i s shown In

h:?l .

~ o f i d lines i n Fig.6 represent the temperature increase (also along the l i n e X i = vcam( t - td)) calculated from the numerical solution o f the i n i t i a l -boundary value problem. The irrpact velocity of the sample was almost identical i n both cases. The difference between the calculated and measured r e s u l t s i s greater i n the case (a), the best approximation of the experimental c u r v e i s given by case (b). The experimental temperature

(8)

increase and the heated region of the sample face a r e l a r g e r that those predicted by the nume- r i c a l calculations.

REFERENCES

/ 1 / Nowacki, W .K. and Kurcyk, T., J .Mbc.Thbor.et Appl

.

,Numbro spbcial (1 962) 109-1 24.

/2/ Mandel, J . , Plasticiti? classique et viscoplasticit&, C I S M Publications,Spr i n g e r V e r l a g (1971).

/3/ Mandel, J . , C.R.Acad.Sci.Paris,Skrie B,= (1980) 5-7.

/4/ Malatynski, M. and Nowacki, W.K. and Oliferuk, W., Arch.of Mech.

,%

(1983) 475-489.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to