• Aucun résultat trouvé

Sur la contrôlabilité de l’équation de la chaleur avec potentiel Michel Duprez

N/A
N/A
Protected

Academic year: 2021

Partager "Sur la contrôlabilité de l’équation de la chaleur avec potentiel Michel Duprez"

Copied!
33
0
0

Texte intégral

(1)

Sur la contrôlabilité de l’équation de la chaleur avec potentiel

Michel Duprez

Institut de Mathématiques de Marseille

Séminaire Analyse Appliquée (AA)

Marseille, I2M

(2)

Problem

How to act on the temperature from a given region ?

(3)

Controllability of the heat equation

Let beT >0,ω⊂Ω⊂RN and consider the system (

ty= ∆y+1ωu inQT := Ω×(0, T), y= 0 on ΣT :=∂Ω×(0, T), y(·,0) =y0 in Ω.

Such a system is said :

approximatively controllableat timeT if

∀y0, yTL2(Ω), ε >0∃u∈L2(QT) s.t.ky(T)−yTkL2(Ω)6ε, exactly controllableat timeT if

∀y0, yTL2(Ω)∃u∈L2(QT) s.t.y(T) =yT, null controllableat timeT if

∀y0L2(Ω)∃u∈L2(QT) s.t. y(T) = 0.

Remark :

•The system is not exactly contr.

•Null contr.⇒approx. contr.

(4)

Controllability of the heat equation

Consider the system (

ty= ∆y+1ωu inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω.

Approximate controllability å 58’ Mizohata Null controllabilityN = 1

å 74’ Fattorini and Russell Null controllabilityN >1

å 95’ Lebeau and Robbiano å 95’ Fursikov and Imanuvilov

(5)

Controllability of a parabolic equation

Consider the parabolic equation (

ty= div(d∇y) +g· ∇y+ay+1ωu inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω,

(G)

whereaL(QT),gL(0, T;W1(Ω))N and for a constantd0>0





dijW1(QT), dij=djil inQT,

N

P

i,j=1

dijξiξj>d0|ξ|2 inQT, ∀ξ∈RN.

å System (G) is null controllable at any timeT.

(6)

Problem

Let beT >0,ω⊂Ω⊂RN and consider the system (

ty= ∆y+x1(1ωu) inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω.

Ifω⊂⊂Ω,x1(1ωu) can be seen as a control with average equal to zero

Preliminary study for the Fokker-Planck control problem (

tρ=ε2∆ρ−div(ρ(v+1ωu)), ρ(·,0) =ρ0,

Supp(u)⊂ω

å Change of variables : div→x1

Null controllability when∂Ω∂ω6=∅

å Benabdallah, Cristofol, Gaitan, De Teresa, 2014 Null controllability in general

å Duprez, Lissy, 2016

(7)

Problem

General system





ty= div(d∇y) +g· ∇y+ay+x1(u) inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω,

Supp(u)⊂ω.

(G)

Toy model





ty= ∆y+ay+x1(u) inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω,

Supp(u)⊂ω.

(S)

We will see thataplay a critical role for the controllability of these system ! ! !

(8)

Duality

Consider the system (

ty= ∆y+ay+1ωu inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω.

(S)

Proposition

(i) System (S) isnull controllableat timeT iff there existsCobs>0 s.t. for allϕ0L2(Ω) the solutionϕW(0, T;H01(Ω), H−1(Ω)) to

( −∂

tϕ= ∆ϕ+ inQT,

ϕ= 0 on ΣT,

ϕ(·, T) =ϕ0 in Ω

(D)

satisfies theinequality of observability

kϕ(·,0)k2L2(Ω)6Cobs

Z T 0

Z

ω

ϕ2.

(ii) System (S) isapproximately controllableat timeT iff for all ϕ0L2(Ω) the solutionϕsatisfies

ϕ= 0 inω×(0, T) ⇒ϕ= 0 in Ω×(0, T).

(9)

Duality

Consider the system (

ty= ∆y+ay+x1(1ωu) inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω.

(S)

Proposition

(i) System (S) isnull controllableat timeT iff there existsCobs>0 s.t. for allϕ0L2(Ω) the solutionϕW(0, T;H01(Ω), H−1(Ω)) to

( −∂

tϕ= ∆ϕ+ inQT,

ϕ= 0 on ΣT,

ϕ(·, T) =ϕ0 in Ω

(D)

satisfies theinequality of observability

kϕ(·,0)k2L2(Ω)6Cobs

Z T 0

Z

ω

x1ϕ2.

(ii) System (S) isapproximately controllableat timeT iff for all ϕ0L2(Ω) the solutionϕsatisfies

x1ϕ= 0 inω×(0, T) ⇒ϕ= 0 in Ω×(0, T).

(10)

Proof

Let

St: L2(Ω) → L2(Ω)

y0 7→ y(t;y0,0) and Lt: L2(QT) → L2(Ω) u 7→ y(t; 0, u).

(i) System (S) is null controllable at timeT iff

∀y0L2(Ω), ∃u∈L2(QT) s.t.

STy0=−LTu.

⇔ ImST⊆ImLT.

C >0 : ∀ϕ0L2(Ω), kSTϕ0k2L2(Ω)6CkLTϕ0k2L2(QT). (ii) System (S) is approximatively controllable at timeT iff

∀y0, yTL2(Ω), ε >0, ∃u∈L2(QT) s.t.

kLTu+STy0yTkL2(Ω)6ε.

LT(L2(QT)) =L2(Ω).

⇔ ker (LT) ={0}

⇔ ∀ϕ0L2(Ω) : LTϕ0ϕ≡0.

(11)

Proof

Lety0, ϕ0L2(Ω) anduL2(QT) : hSTy0, ϕ0iL2(Ω) = hy(T;y0,0), ϕ(T)iL2(Ω)

= Z T

0

h∂ty(s;y0,0), ϕ(s)iH−1,H01ds

+ Z T

0

h∂tϕ(s), y(s;y0,0)iH−1,H1

0ds+hy0, ϕ(0)iL2(Ω)

= hy0, ϕ(0)iL2(Ω)

and

hLTu, ϕ0iL2(Ω) = hy(T; 0, u), ϕ(T)iL2(Ω)

= Z T

0

n

h∂ty(s; 0, u), ϕ(s)iH−1,H10+h∂tϕ(s), y(s; 0, u)iH−1,H01

o ds

= h∂x1u, ϕiL2(0,T;H−1(Ω)),L2(0,T;H01(Ω))=−hu, ∂x1ϕiL2(QT). Thus

ST : L2(Ω) → L2(Ω)

ϕ0 7→ ϕ(·,0) and LT : L2(Ω) → L2(QT).

ϕ0 7→ −∂x1ϕ

(12)

Boundary condition

Consider





ty= ∆y+ay+x1(u) inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω,

Supp(u)⊂ω

(S)

Theorem

If∂Ω∂ω6=∅, then System (S) isnull controllableat timeT.

Suppose that∂Ω∂ω∩(Ox1)6=∅. If (0, R)×eωω, let (y, v) solution of (

ty= ∆y+ay+1(0,R)טωv inQT,

y= 0 on ΣT,

y(·,0) =y0, y(·, T) = 0 in Ω.

We take

u:=

Z x1 R

v.

Or equivalently Z

ϕ(·,0)26C Z

ω×(0,T)

ϕ26C Z

ω×(0,T)

(∂x1ϕ)2.

(13)

Boundary condition : General parabolic equation

Consider the parabolic system (

ty= div(d∇y) +g· ∇y+ay+x1(1ωu) inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω.

(G)

Theorem (Benabdallah, Cristofol, Gaitan, De Teresa, 2014)

Assume that∂Ω∂ω6=∅. Then System (G) isnull controllableon the time interval (0, T).

(14)

General parabolic operator

Consider the system





ty= ∆y+p(x)∂xu+q(x)u in (0, π)×(0, T), y(0,·) =y(π,·) = 0 on (0, T),

y(·,0) =y0 in (0, π),

Supp(u)⊂ω.

(S’)

Theorem (Duprez, 2016) Suppose that

Supp(p, q)∩ω6=∅.

Then System (S’) isnull controllableon the time interval (0, T).

(15)

Constant coefficient(s)

Consider the system





ty= ∆y+ay+x1(u) inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω,

Supp(u)⊂ω.

(S)

Theorem ( D., Lissy, 2016)

Ifais constant, then System (S) isnull controllableat timeT. Sketch of proof :

Up to the initial condition and the boundary condition,x1ϕsatisfies the same system asϕ:

( −∂

tϕ= ∆ϕ+ inQT,

ϕ= 0 on ΣT,

ϕ(·, T) =ϕ0 in Ω.

Using the Carleman estimates, for some weightsρ1, ρ2, ρ3, Z

ϕ(·,0)26C Z

QT

ρ1ϕ26C Z

QT

ρ2(∂x1ϕ)26C Z

qT

ρ3(∂x1ϕ)2.

(16)

Constant coefficients : General parabolic equation

Consider the system (

ty= div(d∇y) +g· ∇y+ay+x1(1ωu) inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω.

(G)

Theorem ( D., Lissy, 2016)

Suppose thatd, gandaare constant in space and in time.

Then System (G) isnull controllableon the time interval (0, T).

(17)

Algebraic resolvability

Let us recall the system





ty= ∆y+ay+x1(1ωu) inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω,

Supp(u)⊂⊂ω.

(S)

Theorem (D., Lissy, 2016, submitted)

Leta∈ C1(QT). If there exists (x0, t0)∈ω×(0, T) such that (∂x1a)(x0, t0)6= 0,

then System (S) isnull controllable(hence approximately controllable) on the time interval (0, T).

(18)

Proof : first approach

Fictitious control method :

Letωb⊂⊂ω. Consider (by,bu) a solution to





tby= ∆by+ayb+ ˆu inQT,

yb= 0 on ΣT,

y(·) =b y0, y(·, T) = 0 in Ω, Supp(u)b ⊂⊂bω×(0, T).

If we find a solution to

tz= ∆z+az+x1(v) +ub inQT, Supp(z, v)⊂⊂ω×(0, T), (S1) then(byz,−v)will be a solution of the initial problem.

(19)

Proof : first approach

Algebraic problem : Rewrite (S1) as

L(z, v) =bu where

L(z, v) =tz−∆z−azx1(v).

Let us search a differential operatorMsuch that L ◦ M=Id (S2) Thus (z, v) :=M(bu) will be a solution to (S1).

Remark :buhave to be regular enough.

We will solve the formal adjoint to (S2) :

M◦ Lψ=ψ (S3) where

L(ψ) = L1ψ

L2ψ

=

−∂tψ−∆ψ−

−∂x1ψ

.

(20)

Proof : first approach

Resolution of the algebraic problem :

We recall the expression toL: L(ψ) =

L1ψ L2ψ

=

−∂tψ−∆ψ−

−∂x1ψ

.

The commutator ofL1 andL2 is :

[L1:L2]ψ=x1(a)ψ.

So we have

M1◦ L1+M2◦ L2=Id, where

M1=x1(a)−1x1 andM2=x1(a)−1[∂t+ ∆ +a].

(21)

Proof : second approach

Resolvability + Inequality of observability :

Letϕthe solution to the dual system ( −∂

tϕ= ∆ϕ+ inQT,

ϕ= 0 on ΣT,

ϕ(·, T) =ϕ0 in Ω.

Using the algebraic resolvability :

ϕ=M1◦(−∂t−∆−a)ϕ+M2◦(−∂x1)ϕ=M2◦(−∂x1)ϕ Hence

kϕ(·,0)k2L2(Ω)6C Z

qT

ϕ2=C Z

qT

(M2x1ϕ)2 Thus we have a solution to the control problem :

(

ty= ∆y+ay+x1(M2u) inQT,

y= 0 on ΣT,

y(·,0) =y0, y(·, T) = 0 in Ω.

(22)

Proof : first approach

Regular control with the fictitious control method :

Letωb⊂⊂ωand (y,bbu),y,θ,ηsuch that

tyb= ∆by+ayb+1ωˆuˆ inQT, by= 0 on ΣT, by(·,0) =y0, by(·, T) = 0 in Ω

ty= ∆y+ay inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω

( Supp(θ)ω, θ= 1 inbω, 0≤θ≤1

and

( η= 1 in [0, T /3], η= 0 in [2T /3, T], 0≤η≤1.

Theny:= (1−θ)by+ηθyis solution to

ty= ∆y+ay+1ωu inQT,

y= 0 on ΣT,

y(·,0) =y0, y(·, T) = 0 in Ω.

withu:= ∆θby+ 2∇θ· ∇by+t(η)θyη∆θy2η∇θ· ∇y.

We remark thatyis more regular thanby.

(23)

General parabolic equation

Consider the system (

ty= div(d∇y) +g· ∇y+ay+x1(1ωu) inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω.

(G)

Theorem (D., Lissy, 2016, submitted)

Letdkli , gkij∈ CN2+3T) andaij∈ CN2+2T) for everyi, j∈ {1,2}and k, l∈ {1, ..., N}. Assume∃ωTqT s.t.

(

eais not an element of theCt,x0 2,...,xNT)-module 1,eg

2, ...,eg

N, d22, ..., dN N

C0t,x

2,...,xNT), where

egi:=gi

N

P

j=1

xjdij,

ea:=−a+ div(g).

Then System (G) isnull controllableon the time interval (0, T).

(24)

Sketch of proof

Suppose thatN= 2 (

ty=x1x1(d1y) +∂x2x2(d2y) +∂x1(ge1y) +x2(ge2y) +aye +x1(1ωu) inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω.

Algebraic resolution : Expression toL: L1ψ

L2ψ

=

tψd1x1x1(ψ)−d2x2x2(ψ) +ge1x1(ψ) +ge2x2(ψ) +e

−∂x1ψ

.

Step 1 : The derivatives inx1

L3ψ:=L1ψ−(d1x1+bg1)L

2ψ=tψd2x2x2(ψ) +ge2x2(ψ) +e Step 2 : The derivative in time

L4ψ:= [L3 :L2]ψ=−∂x1(d2)∂x2x2(ψ) +x1(ge2)∂x2(ψ) +x1(ea)ψ

(25)

Sketch of proof

Step 3 : The other terms

•If|∂x1(d2)| ≥δ1, then

L5ψ:= [∂x1(d2)−1L4 :L2]ψ=x1

x1(ge2)

x1(d2)

x2(ψ) +x1

x1(ea)

x1(d2)

ψ

•If|∂x1

x1(ge2)

x1(d2)

| ≥δ2, then

L6ψ:= [∂x1

x1(ge2)

x1(d2) −1

L5 :L2]ψ=x1

x1

x1(

ea)

x1(d2)

x1

x1( ge2)

x1(d2)

ψ

(26)

Sketch of proof

Step 4 : Conclusion

x1

x1

∂x1(

ea)

∂x1(d2 )

x1

∂x1(ge2 )

∂x1(d2 )

= 0 ⇔

x1

∂x1(

ea)

∂x1(d2 )

x1

∂x1(ge2 )

∂x1(d2 )

=λ1(t, x2)

x1

x1(

ea−λ1ge2)

x1(d2)

= 0

x1(ea−λ1ge2)

x1(d2) =λ2(t, x2)

x1(eaλ1ge2λ2d2) = 0

⇔ ea=λ1ge2+λ2d2+λ3

(27)

Summary

Let us recall the system





ty= ∆y+ay+x1(1ωu) inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω,

Supp(u)⊂⊂ω.

(S)

aconstant

å Null controllable

There exists (x0, t0)∈ω×(0, T) s.t.x1a6= 0 å Null controllable

Is System (S) always null controllable ?

(28)

Example of non controllability

Let us recall the system





ty= ∆y+ay+x1(u) inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω,

Supp(u)⊂ω.

(S)

Theorem (D., Lissy, 2016, submitted)

Ifω⊂⊂Ω, then there existsa∈ C(Ω) such that System (S) isnot approximately controllable(hence not null controllable) at timeT.

(29)

Fattorini criterion

Let us recall the system





ty= ∆y+ay+x1(1ωu) inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω,

Supp(u)⊂⊂ω.

(S)

Theorem (Fattorini criterion)

System (S) isapproximately controllableon the time interval (0, T), if and only if for everys∈Cand everyϕD(∆), we have

−∆ϕ−= in Ω

x1ϕ= 0 inω

ϕ= 0.

å Olive, 2014

(30)

Proof

Suppose thatN= 1, Ω := (0, π) andω1:= (2π/5,3π/5).

Consider

a:=−∆ϕ−ϕ

ϕ .

Thus

−∆ϕ−=ϕ in Ω,

x1ϕ= 0 inω, ϕ6= 0.

Using the Fattorini Criterion, the system isnot approximately controllableon the time interval (0, T).

Letϕ∈ C2([0, π]) satisfying

ϕ(x) = sin(x) ∀x∈[0, π/5]∪[4π/5, π], ϕ(x) = 1 ∀x∈[2π/5,3π/5], ϕ > δ >0 in [π/5,4π/5].

0 1 2 3

0 0.5 1

sin(x) 1

(31)

Geometrical condition

Let us recall the system





ty= ∆y+ay+x1(u) inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω,

Supp(u)⊂ω.

(S)

Theorem (D., Lissy, 2016, submitted) There existsa∈ C(Ω) such that :

(i) There existsω⊂⊂Ω such that, for allT >0, System (S) isnull controllable(then approximatively controllable) at timeT. (ii) There existsω⊂⊂Ω such that, for allT >0, System (S) isnot

approximatively controllable(then not null controllable) at time T.

(32)

Conclusions and perspectives

Let us recall the system





ty= ∆y+ay+x1(1ωu) inQT,

y= 0 on ΣT,

y(·,0) =y0 in Ω,

Supp(u)⊂⊂ω.

(S)

Conclusions :

System (S) isnull controllableunder one of the following condition : å ∂Ω∂ω6=∅

å constant coefficients

å x1a(x0, t0)6= 0 for a (t0, x0)∈qT

There existsa∈ C(QT) s.t. System (S) isnot approximately controllable

Perspectives :

Find a general condition...

Study the Fokker-Planck equation

(33)

Thank you for your attention !

Références

Documents relatifs

Vous connaissez sûrement aussi la diagonalisation dans Cl : une matrice réelle carrée d’ordre n admet toujours n valeurs propres dans Cl, qui ne sont pas forcément

Dans ce cas la solution générale de l’équation de la chaleur pour un tube déterminé, peut toujours s’exprimer par une somme de produit d’une fonction Up de

On utilise la methode des sous et sur solutions pour montrer l’existence d’une solution minimale et d’une solution maximale puis on etablit l’unicité de la

Nous cherchons donc à savoir comment choisir ses coéquipiers pour s’assurer de la réussite d’un projet lorsqu’on est en relation avec un groupe de personnes, de type

We study the con- sequences of a mistaken assumption of homogeneous anchoring for the analysis of the shift effect in multiple-bounded dichotomous choice format, when respondents

La conductivité thermique a donc pour dimension celle d’une puissance par unité de surface divisée par celle d’un gradient de température. Or, une puissance a la dimen- sion

1.. Donner l’expression des valeurs singulières et des fonctions singulières. Écrire la condition de Picard explicitant ce que doivent vérifier ces coefficients pour que cette

En admettant le lemme ci-dessous (voir preuve dans le poly), montrer (1) dans le cas