• Aucun résultat trouvé

INTERNAL FRICTION DUE TO DOMAIN-WALL MOTION IN MARTENSITICALLY TRANSFORMED A15 COMPOUNDS

N/A
N/A
Protected

Academic year: 2021

Partager "INTERNAL FRICTION DUE TO DOMAIN-WALL MOTION IN MARTENSITICALLY TRANSFORMED A15 COMPOUNDS"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: jpa-00225334

https://hal.archives-ouvertes.fr/jpa-00225334

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

MOTION IN MARTENSITICALLY TRANSFORMED

A15 COMPOUNDS

C. Snead, Jr. Welch, D. Welch

To cite this version:

(2)

JOURNAL DE PHYSIQUE

Colloque ClO, suppl&ment au n o

12,

T o m e 46, dgcembre 1985

page C10-589

INTERNAL FRICTION DUE T O DOMAIN-WALL MOTION IN MARTENSITICALLY

TRANSFORMED A15 COMPOUNDS

C.L. SNEAD, Jr. AND D.O. WELCH

Brookhaven National Laboratory, Upton, NY 11973, U.S.A.

A b s t r a c t

-

A l a t t i c e i n s t a b i l i t y i n A15 m a t e r i a l s i n some c a s e s Leads t o a c u b i c - t o - t e t r a g o n a l m a r t e n s i t i c t r a n s f o r m a t i o n a t low t e m p e r a t u r e s . The t r a n s - formed m a t e r i a l o r i e n t s i n l a m e l l a e w i t h c a x e s a l t e r n a t e l y a l i g n e d a l o n g t h e

<loo>

d i r e c t i o n s p r o d u c i n g domain w a l l s between t h e l a m e l l a e . An i n t e r n a l - f r i c t i o n ( 6 ) f e a t u r e below Tm i s a t t r i b u t e d t o s t r e s s - i n d u c e d domain-wall motion. The magnitude of t h e f r i c t i o n i n c r e a s e s a s t m p e r a t u r e i s lowered below Tm a s ( I - c / a ) i n c r e a s e s , and behaves a s ( 1 - c / a ) ' from Tm down t o t h e s u p e r c o n d u c t i n g c r i t i c a l t e m p e r a t u r e where t h e i n c r e a s i n g t e t r a g o n a l i t y i s i n h i b i t e d . The e f f e c t of s t r a i n i n t h e l a t t i c e i s t o d e c r e a s e t h e domain-wall i n t e r n a l f r i c t i o n , b u t n o t a f f e c t T,. Neutron-induced d i s o r d e r and t h e a d d i - t i o n of some t h i r d - e l e m e n t s i n a l l o y i n g d e c r e a s e b o t h 6 and Tm, w i t h some e l e m e n t s r e d u c i n g o n l y t h e former. L e s s t h a n 1 a t . % H i s s e e n t o c o m p l e t e l y s u p p r e s s b o t h 6 and Tm. M a r t e n s i t i c a l l y t r a n s f o r m e d V pZr d e m o n s t r a t e s low- t e m p e r a t u r e i n t e r n a l - f r i c t i o n and modulus b e h a v i o r c o n s i s t e n t w i t h e a s y B/m w a l l motion r e l a t i v e t o t h e e a s y m l m motion of t h e A15's. For the VpZr, a peak i n 6 i s o b s e r v e d , q u a l i t a t i v e l y i n agreement w i t h e x p e c t e d

B l m

w a l l motion. INTRODUCTION

Although t h e r e h a s been a v e r y l a r g e amount of work expended on s t u d i e s of m a r t e n s i - t i c t r a n s f o r m a t i o n s , t h e u n d e r s t a n d i n g of t h e m i c r o s c o p i c mechanisms i n v o l v e d s o f a r i s q u i t e poor. To q u o t e P l a n e s e t a l .

111

" I n f a c t , o n l y c e r t a i n t r a n s i t i o n s

-

t h o s e found i n t h e A15 compounds

-

can be e x p l a i n e d i n terms of m i c r o s c o p i c p r o p e r - t i e s of t h e i r c o n s t i t u e n t s ( i t i s b e l i e v e d t h a t A15 compounds undergo a band Jahn- T e l l e r t r a n s i t i o n /2-41." Even w i t h t h a t , the m i c r o s c o p i c mechanism g i v i n g r i s e t o i n t e r n a l f r i c t i o n a s s o c i a t e d w i t h t h e t r a n s f o r m a t i o n i s n o t known. T h i s p a p e r r e v i e w s some of t h e d a t a on i n t e r n a l f r i c t i o n due t o m a r t e n s i t i c t r a n s f o r m a t i o n s i n A15's, how v a r i o u s m a t e r i a l t r e a t m e n t s a f f e c t t h e f r i c t i o n , a "microscopic" t h e o r y

t o e x p l a i n t h e f r i c t i o n , and how t h e d a t a and t h e t h e o r y compare.

Some of t h e A15 compounds undergo a c u b i c - t o - t e t r a g o n a l m a r t e n s i t i c t r a n s f o r m a t i o n . T h i s t r a n s f o r m a t i o n i s a t t e m p e r a t u r e Tm below l i q u i d - n i t r o g e n t e m p e r a t u r e and above t h e s u p e r c o n d u c t i n g c r i t i c a l t e m p e r a t u r e Tc. A s w i t h many m a r t e n s i t i c

t r a n s f o r m a t i o n s , i t i s a s s o c i a t e d w i t h a l a t t i c e i n s t a b i l i t y ( t h e i n s t a b i l i t y of t h e {110} <110> mode w i t h d e c r e a s i n g t e m p e r a t u r e and t h e v a n i s h i n g of t h e s h e a r modulus ( 1 / 2 ) ( C l l - C 1 2 ) a t Tm 15-61. I n Nb3Sn t h e t e t r a g o n a l - p h a s e m a t e r i a l i s composed of twinned domains w i t h c a x e s l y i n g a l o n g

< l o o >

d i r e c t i o n s , and w i t h t h e h a b i t p l a n e o f t h e twin boundary a l o n g (110). A t Tm, t h e c a x i s i s reduced and t h e a and b a x e s e q u a l l y l e n g t h e n e d . The t e t r a g o n a l i t y of t h e m a t e r i a l i n c r e a s e s , however, a s

t h e t e m p e r a t u r e i s lowered below Tm a s c / a d e c r e a s e s w i t h d e c r e a s i n g t e m p e r a t u r e down t o Tc where f u r t h e r change i n c / a i s a r r e s t e d 121. For Nb3Sn a t Tc, c / a =

0.9939 w i t h Tm a t 43 K 171. On t h e o t h e r hand, V3Si h a s t h e c a x i s l a r g e r t h a n t h e a and b a x e s and a c / a of 1.0022 w i t h a Tm o f 21 K 171. Note t h a t t h e " t e t r o g a n a l i t y " / ( l - c / a ) l of Nb3Sn i s r o u g h l y 3 times t h a t of VgSi a t t h e i r r e s p e c t i v e Tcl s.

(3)

The A15 superconductor NbgSn i s c u r r e n t l y the prime m a t e r i a l f o r the c o n s t r u c t i o n of magnets f o r a p p l i c a t i o n s such a s c o n f i n i n g magnets f o r f u s i o n , and bending magnets f o r t h e Superconducting S u p e r c o l l i d e r . Since these a p p l i c a t i o n s r e q u i r e l a r g e s t r e s s e s on the conductors, knowledge of the low-temperature modulus v a l u e s and mechanical behavior i s needed. The modulus d a t a t h a t a r e taken concomitantly with

the Q - l d a t a a r e , t h e r e f o r e , of s c i e n t i f i c and engineering i n t e r e s t . As the t r a n s f o r m a t i o n t o the t e t r a t r a g o n a l phase i s thought t o be i n t i m a t e l y coupled with both mechanical behavior and t o the superconducting c r i t i c a l p r o p e r t i e s , these s t u d i e s take an added i n t e r e s t .

Figure 1 shows the i n t e r n a l f r i c t i o n of Nb3Sn from 10-400 K. Specimens were p o l y c r y s t a l l i n e 10-pm l a y e r s of Nb3Sn sandwiching a 10-um Nb s u b s t r a t e and c u t i n t o f o i l s . Standard e l e c t r o s t a t i c d r i v e i n f l e x u r e was used a t f r e q u e n c i e s between 100 and 2000 Hz. The high-temperature peaks w i l l be discussed l a t e r . The f e a t u r e of n o t e i s the 2.5 o r d e r of magnitude i n c r e a s e i n 0 - I between T, ( h e r e 49 K) and Tc (18.1 K . (Data were taken f o r temperature ramps i n both d i r e c t i o n and no h y s t e r s i s o r time dependence of Q'l was ever d e t e c t e d . A l l d a t a a r e shown f o r i n c r e a s i n g temperature.) I t i s t h i s f e a t u r e t h a t provides the means of studying v a r i o u s chemi- c a l and mechanical e f f e c t s on the m a r t e n s i t i c transformation.

AIRCO

NbSSn

. .

TEMPERATURE (K1

Fig. 1. Q - l vs. temperature f o r Fig. 2. E f f e c t of i n t e r n a l s t r a i n i n "pure" NbgSn f o i l . NbgSn on the reduced modulus E(T)/E(300 K)

a s a f u n c t i o n of temperature.

One of the f i r s t parameters i n v e s t i g a t e , d was the e f f e c t of s t r a i n on t h e transforma- t i o n . S t r a i n due t o unrelieved deformation i n the s u b s t r a t e was i n v e s t i g a t e d a s shown i n the modulus measurements of Figure 2. Note t h a t t h e modulus s o f t e n s near Tm = 49 K t o a value of "40% of the room-temperature value i n the s t r a i n - f r e e specimen. This modulus s o f t e n i n g r e f l e c t s the i n s t a b i l i t y of the I110 }<110> mode mentioned e a r l i e r . With i n c r e a s i n g i n t e r n a l s t r a i n ( e 0 . 1 and 0.2%) the amount of s o f t e n i n g i s reduced s i g n i f i c a n t l y . Figure 3 shows the e f f e c t s of t h i s s t r a i n on the i n t e r n a l f r i c t i o n . The r e d u c t i o n i n the f r i c t i o n with s t r a i n i s c o n s i d e r a b l e , b u t the main p o i n t to make i s t h a t even though the modulus and the i n t e r n a l f r i c t i o n a r e changed, the transformation temperature Tm i s e s s e n t i a l l y u n a l t e r e d , a s i s expected from a Landau- type theory of the transformation

/a/.

(4)

TEMPERATURE ( K ) TEMPERATURE ( K ) F i g . 3. E f f e c t of s t r a i n on Q - ~ a s F i g . 4 . P a r a m e t r i z e d f i t of ~ - ' a ( c / a - 1 ) 2 a f u n c t i o n of t e m p e r a t u r e i n Nb3Sn. f o r t h e low- t e m p e r a t u r e i n t e r n a l f r i c t i o n of two Nb gSn specimens. of "pure" Nb3Sn d a t a a r e f i t w i t h t h i s e x p r e s s i o n w i t h t h e d a t a normalized a t 18 K . T h e r e i s one f r e e p a r a m e t e r , T,. S i n c e c / a d e c r e a s e s w i t h t e m p e r a t u r e , we use p r e v i o u s l y determined v a l u e s

I ? /

i n t h e f i t t i n g . The r e s u l t s a r e shown i n F i g u r e 4. The Tm v a l u e of 49 K , determined from t h e a p p a r e n t h i g h e s t - t e m p e r a t u r e of o n s e t of t h e i n t e r n a l f r i c t i o n does n o t f i t w e l l . The v a l u e Tm = 44.5 K was found t o g i v e t h e b e s t f i t . Note t h a t i s n e a r t h e v a l u e of 43 K u s u a l l y a s s o c i a t e d w i t h t h i s t r a n s f o r m a t i o n from X-ray work / 7 / . The r e g i o n 44-49 K would then seem t o be a t e m p e r a t u r e range d e n o t i n g o n s e t (49 K) and c o m p l e t i o n (44 K) of t h e c u b i c - t o - t e t r a g o n a l t r a n s f o r m a t i o n . Below 44 K , a l l changes i n Q-' a r e a t t r i b u t e d t o changes i n c / a . We w i l l s e e t h a t t h i s t r a n s f o r m a t i o n r e g i o n below Tm can be broadened by d i f f e r e n t t r e a t m e n t s .

A15 compounds w i t h maximized c r i t i c a l p r o p e r t i e s a r e c h a r a c t e r i z e d a s h i g h l y o r d e r e d compounds. The q u e s t i o n h a s a r i s e n of what t h e e f f e c t s of d i s o r d e r a r e o,n t h e com- pound's p r o p e r t i e s . S i n c e t h e s e m a t e r i a l s a r e e n v i s i o n e d t o be used i n r a d i a t i o n e n v i r o n m e n t s , f o r i n s t a n c e , t h e radiation-damage-induced d i s o r d e r e f f e c t s become o f paramount importance. F i g u r e s 5 and 6 show t h e e f f e c t s of 400 K r e a c t o r - s p e c t r u m n e u t r o n i r r a d i a t i o n t o Nb3Sn. The p r i m a r y d e f e c t produced a f f e c t i n g d i s o r d e r from

t h i s i r r a d i a t i o n i s t h e a n t i s i t e d e f e c t (A-B i n t e r c h a n g e i n t h e A3B compound) 1 9 1 . '

0 2 0 40 6 0

TEMPERATURE ( K )

(5)

I n Figure 5 t h e r e a r e t h r e e main t h i n g s t o n o t e with regard t o the d i s o r d e r e f f e c t s on t h e log decrement 6. The f i r s t i s the decrease i n 6 with fluence. The second i s t h e d e c r e a s e i n Tm with f l u e n c e . R e c a l l t h a t i n t e r n a l s t r a i n reduced 6 b u t did n o t a f f e c t Tm a t a l l . I t i s then c l e a r t h a t d i s o r d e r plays a very d i f f e r e n t r o l e i n changing the c h a r a c t e r i s t i c s of the t r a n s f o r m a t i o n , most probably through the

Neutron Fluence ( 1018n/cm2 ,E> l MeV 1 I 0 5 2.4 0 ~ g ~ ' s ~ o' n 1 J J 1 8 1 5 0 100 3 0 0 8 TEMPERATURE (K)

Fig. 6. Reduced modulus E(T)/E(300 K)

vs. temperature of Nb3Sn f o r s e v e r a l reactor-spectrum f l u e n c e s .

Nb3Sn NEUTRONFLUENCE

( 1 0 ' ~ n / c r n ~ , ~ = 1 4 MeV)

TEMPERATURE (K)

Fig. 7. Log decrement 6 vs. temperature of Nb3Sn f o r s e v e r a l f l u e n c e s of 14-MeV neutrons.

e l e c t r o n i c p r o p e r t i e s of the m a t e r i a l which t o f i r s t approximation a r e n o t a f f e c t e d by s t r e s s . Tm i s seen t o decrease monotonically ( s t i l l p r e s e n t i n t h e curve marked 6 i f the s c a l e i s expanded and l o c a t e d a t "21 K). For f l u e n c e s higher than

3.8 x

lo1*

n/cm2, Tm would, by e x t r a p o l a t i o n , l i e below Tc. Since c / a cannot

change below Tc 121, t h e transformation cannot

,

t h e r e f ore; take place. Thus, d i s o r d e r induced by neutron i r r a d i a t i o n can completely a r r e s t the m a r t e n s i t i c t r a n s f o r m a t i o n .

I n a d d i t i o n t o a r e d u c t i o n of 6 and Tm with d i s o r d e r , i t i s a l s o noted from Figure 5 t h a t a s f l u e n c e (and d i s o r d e r ) i n c r e a s e , the shape of the 6 curve 'between o n s e t a t high temperature and Tc changes from convex-right to convex-left: i n o t h e r words,

the ( l - c ~ a ) ~ dependence no longer holds. Indeed, the e n t i r e range f o r the 0.65 x 1818 n/cm2 f l u e p c e t a k e s on the c h a r a c t e r of the 44-49 K region of the u n i r r a d i a t e d case. We think t h i s i s s i g n i f i c a n t and t h a t a f l u c t u a t i o n of d i s o r d e r i n the speci- men c r e a t e s the s i t u a t i o n where a l a r g e r temperature range i s spanned b e f o r e the completion of transformation i s r e a l i z e d . For curves 5 and 6 t h i s temperature span c l e a r l y encompasses Tc.

The e f f e c t of i n c r e a s i n g d i s o r d e r on the mode s o f t e n i n g and t h e r e f o r e the dynamic Young's modulus i s shown i n Figure 6. A l l the moduli a r e normalized t o t h e i r r e s p e c t i v e v a l u e s a t 300 K. S o f t e n g of $O% f o r the "virgin" specimen i s seen t o d e c r e a s e t o only 6% f o r the 13 x 10" n/cm case. For the two h i g h e s t f l u e n c e s shown, t h e r e was no m a r t e n s i t i c transformation. This s i g n i f i c a n t i n c r e a s e i n t h e low-temperature modulus i n r a d i a t i o n environments could have important consequences i n f u s i o n a p p l i c a t i o n s . For the e f f e c t of pure 14-MeV neutrons on the transforma- t i o n , Figure 7 shows t h e i n t e r n a l f r i c t i o n changes with f l u e n c e . S i m i l a r behavior t o reactor-spectrum i r r a d i a t i o n (Figure 5) i s seen, b u t with an i n t e r e s t i n g d i f f e r - ence. The changes of the superconducting Tc s c a l e with damage energy when compar- ing the two types of neutron s p e c t r a (14-MeV neutron "6 times more e f f e c t i v e / l o / ) , whereas the comparison h e r e would g i v e a v a l u e c l o s e r t o 2.

(6)

The e f f e c t s of a d d i n g T i t o t h e Nb3Sn compound on t h e low-temperature i n t e r n a l f r i c t i o n a r e s e e n i n F i g u r e 8. Here i t i s noted t h a t 3 a t . % i n t h e m a t r i x com- p l e t e l y s u p p r e s s e s t h e t r a n s f o r m a t i o n by r e d u c i n g Tm below Tc. A s w i t h n e u t r o n i r r a d i a t i o n , T i a l l o y i n g r e d u c e s Tm and t h e magnitude of Q- l . Both Q- and T,

Fig. 8. Low-temperature Q - I v s . t e m p e r a t u r e f o r Nb3Sn

+

xTi f o r s e v e r a l v a l u e s of x.

a r e s i m i l a r l y reduced by t h e a l l o y i n g of a few p e r c e n t of Ta b u t w i t h Tm com- p l e t e l y s u p p r e s s e d a t t h e 7 - a t . % l e v e l , i n comparison w i t h 3 a t . % f o r t h e T i . I t i s t o be n o t e d t h a t t h e i n t r o d u c t i o n of T i o r Ta reduce b o t h Tm and Q due t o domain-wall motion. The e f f e c t s of T i a d d i t i o n t o t h e modulus i s seen i n Fig. 9 where t h e r e s u l t s a r e q u i t e s i m i l a r t o t h o s e of t h e n e u t r o n - i r r a d i a t e d specimens.

1.0

Fig. 9. Reduced modulus E(T)/E(300 K)

(7)

t i o n was taking place. For the Z r a l l o y , where Tm i s not a f f e c t e d , t h i s broaden- i n g of Tm does not obviously take place. R e s u l t s s i m i l a r t o those of Z r a r e shown i n Fig. 11 f o r Hf a d d i t i o n s . The modulus curves f o r both of these a l l o y s (Zr and Hf) a r e q u i t e s i m i l a r to those of T i i n Fig. 9 , and a r e n o t shown.

L I I I I I I I I

0 10 2 0 30 4 0 50 60 7 0 TEMPERATURE ( K )

Fig. 10. Low- temperature Q" vs. temperature f o r Nb3Sn

+

xZr f o r s e v e r a l v a l u e s of x.

t

0 - I I I I I I I 0 10 2 0 30 4 0 50 60 TEMPERATURE (K) Fig. 11. Low-temperature Q- vs. temperature f o r Nb gSn

+

xHf f o r s e v e r a l v a l u e s of x.

The d i f f e r e n c e i n behavior of Q-I and Tm f o r Ti and Ta a d d i t i o n s on the one hand, and f o r Hf and Z r on the o t h e r a r e q u i t e i n s t r u c t i v e . Where d i s o r d e r i s p r e s e n t i n A15 compounds, whether by a l l o y i n g , r a d i a t i o n damage, o r d e v i a t i o n from stoichiome- t r y , i t i s well known t h a t the e l e c t r i c a l p r o p e r t i e s ( i n c l u d i n g the superconductiv- i t y c r i t i c a l p r o p e r t i e s ) a r e much more s e n s i t i v e to d f s o r d e r on the A s i t e than the B s i t e . / 9 / The connection i s then made t o the a l l o y i n g r e s u l t s here t h a t i t is probable t h a t s i n c e T i and Ta reduce T,, but Hf and Z r do n o t , t h a t Ti and Ta occupy the Nb s i t e s , while Hf and Z r probably occupy the Sn s i t e s s i n c e t h e i r presence does not suppress T,. The EXAFS and TEM evidence f o r s i t e occupation confirms the c o n j e c t u r e f o r the T i and Ta: no d e f i n i t i v e r e s u l t s f o r Hf o r Z r a r e y e t a v a i l a b l e . The major p o i n t regarding t h i s i s t h a t we have here a p o s s i b l e new

t o o l f o r i d e n t i f y i n g the s i t e occupancy of d i l u t e a l l o y i n g a d d i t i o n s , based upon i n t e r n a l - f r i c t i o n measurements.

Since the i n t e r n a l f r i c t i o n from the domain-wall motion i s a c l e a r i n d i c a t o r of t h e presence of transformed m a t e r i a l , we a l s o have a t o o l to t e s t f o r t h e presence of the transformation i n o t h e r A15 m a t e r i a l s . Specimens of VgGa and NbgGe have been t e s t e d . Fig. 12 shows the r e s u l t s f o r VgGa. F i r s t , the degree of modulus ,softening is about h a l f of t h a t of NbgSn. The specimen i s s t r a i n f r e e and i s near stoichiome- t r y and p e r f e c t long-range o r d e r a s a t t e s t e d by i t s value of Tc. Thus, we con- clude from the lack of a low-temperature i n t e r n a l - f r i c t i o n f e a t u r e ( c h a r a c t e r i s t i c of twin-boundary motion) t h a t V3Ga probably does n o t undergo a m a r t e n s i t i c phase transforma t i o n . S i m i l a r lack of i n t e r n a l f r i c t i o n i n NbgGe i s r a t h e r inconclusive due t o the subs t r a te-induced s t r a i n s and d i s o r d e r i n the specimens /11/.

(8)

m a r t e n s i t i c t r a n s f o r m a t i o n . The e f f e c t s they found were v e r y s i m i l a r t o t h o s e found by a d d i n g T i o r Ta: i . e . , r e d u c t i o n of i n t e r n a l f r i c t i o n i n t h e t r a n s f o r m e d regime and t h e r e d u c t i o n of T,. The s t r i k i n g f e a t u r e , however, i s t h e c o m p l e t e s u p p r e s -

-

s i o n of T, below Tc f o r hydrogen c o n c e n t r a t i o n s l e s s t h a n 1 a t . % ( s e e F i g . 1 3 ) .

20 30 5 0 100 200 400

TEMPERATURE ( K ) TEMPERATURE (K)

Fig. 12. Log decrement 6 and reduced Fig. 13. Reduced modulus E(T)/E(300 K) modulus E(T)/E(300 k ) f o r V3Ga. v s . t e m p e r a t u r e ( t o p ) and Q-

'

v s . temper-

a t u r e ( b o t t o m ) f o r NbgSn w i t h v a r i o u s amounts of hydrogen: ( 1 ) None, ( 2 ) 0.2 a t . % ) , (3) 0.15 a t . % , ( 4 ) 1.8 a t . % , and ( 5 ) 3.0 a t . % (from LeHuy e t a l . 1 1 2 1 ) . A d e p a r t u r e from p r e v i o u s b e h a v i o r i s a l s o n o t e d t h a t t h e r e d u c t i o n of s o f t e n i n g ( F i g . 1 3 , t o p ) does n o t s c a l e w i t h t h e r e d u c t i o n o f T, a s w i t h t h e m e t a l l i c a l l o y s . T h e r e a r e c l e a r l y d i f f e r e n t e f f e c t s b e i n g m a n i f e s t e d by t h e hydrogen i n c l u s i o n s t h a t a r e n o t s e e n i n o t h e r t r e a t m e n t s . T h i s would seem t o be a n i n t e r - e s t i n g and f r u i t f u l a r e a f o r f u r t h e r s t u d y .

F o r t h e A15 m a t e r i a l s , we have o n l y been concerned w i t h i n t e r n a l f r i c t i o n due t o t h e motion of twin b o u n d a r i e s t h a t c o m p r i s e t h e w a l l s between d i f f e r e n t l y o r i e n t e d t e t r a g o n a l domains. The presume t i o n i s t h a t t h e s e b o u n d a r i e s move more e a s i l y under s t r e s s a n d / o r have a much l a r g e r a r e a t h a n do any t e t r a g o n a l / c u b i c (film) domain w a l l s . Dejonghe e t a l . 1141 s u c c i n c t l y o u t l i n e d t h e type of i n t e r n a l - f r i c t i o n r e s p o n s e t o be e x p e c t e d from t h e s e v e r a l p o s s i b l e t y p e s of domain-wall motion i n t h e r m o e l a s t i c a l l y t r a n s f o r m i n g specimens. The A15 r e s u l t s f i t t h e c a s e of e a s y m/m boundary motion, w i t h l i t t l e o r no B/m c o n t r i b u t i o n . The o t h e r major p o s s i b i l i t y f o r f r i c t i o n i n v o l v e s t h e c a s e where B/m motion i s predominant: c a s e s where t h e t h r e s h o l d s t r e s s f o r m/m motion i s h i g h e r t h a n t h a t f o r

B l m ,

o r due t o t h e l a c k o f

m/m i n t e r f a c e s .

For t h e c a s e of B / m i n t e r f a c e motion, i n s t e a d of c o n s t a n t ( o r i n c r e a s i n g w i t h c / a ) f r i c t i o n below T,, a ( i l l d e f i n e d ) peak i s e x p e c t e d below Tm. A l s o o t h e r

(9)

tion. Also, the modulus begins t o show hardening due t o the transformed m a t e r i a l , which i s f u l l y i n keeping with expected behavior. R e c a l l , t h a t the ~ 1 5 ' s show no such hardening below T,, and t h i s lack of hardening i s a s c r i b e d t o a modulus e f f e c t due t o the easy motion of the m/m domains. The hardening i n t h e

1,

, , , , , , ,

,

,

, , , , , ,

, ,

, ,

, , ,

,107 40 60 80 100 120 140 160 TEMPERATURE (I0 VpZr -

--.

480 Hz 2O-x10-~ '\

V2Zr, then, i s f u r t h e r evidence of the lack of a m/m l o s s mechanism being p r e s e n t i n t h i s system. This V p Z r system a l s o d i s p l a y s a marked h y s t e r e t i c and h e a t i n g

dependence of the i n t e r n a l f r i c t i o n , t h a t i s c o n s i s t e n t with B/m wall motion ( L .

Snead, to be published).

-10

CONCLUSIONS

-

Y

09g

Fig. 14. Log decrement 6 vs. temperature f o r V 2 Z r i n region 2 the m a r t e n s i t i c transformation.

08; Reduced modulus E(T)/E(300 K) i s

/ a l s o p l o t t e d .

0 -

The m a r t e n s i t i c phase t r a n s i t i o n Nb3Sn and i t s a l l o y s has been shown t o give r i s e t o a l a r g e i n t e r n a l f r i c t i o n ( Q - ~ ) . Presumably o r h e r A15 compounds, such a s V3Si, which have t h i s type of t r a n s i t i o n w i l l a l s o m a n i f e s t t h i s i n t e r n a l f r i c t i o n . (However, t h e magnitude of

9-l

seems to vary with ( c / a

-

I ) ~ ; thus the magnitude f o r V3Si should be a f a c t o r of about 8 s m a l l e r than t h a t f o r Nb3Sn.) The c h a r a c t e r -

i s t i c s of t h e i n t e r n a l f r i c t i o n , such a s the dependence on ( c / a

-

a r e c o n s i s - t e n t with i t being caused by the s t r e s s - i n d u c e d motion of the boundaries (domain w a l l s ) between d i f f e r e n t v a r i a n t s of the t e t r a g o n a l phase. Furthermore, these domain w a l l s seem t o be a b l e t o move r e l a t i v e l y f r e e l y under the i n f l u e n c e of t h e s t r e s s , but f u r t h e r understanding of the dynamics of domain-wall motion r e q u i r e a d d i t i o n a l experiments t o c h a r a c t e r i z e the s t r e s s - a m p l i t u d e and frequency dependence of the i n t e r n a l f r i c t i o n . Both the i n t e r n a l f r i c t i o n s t r e n g t h and the s o f t e n i n g of the e l a s t i c modulus a s s o c i a t e d with the m a r t e n s i t i c pliase t r a n s i t i o n were shown to depend s e n s i t i v e l y on the s t a t e of s t r e s s , the degree of d i s o r d e r , the presence of s o l u t e s , and o t h e r f a c t o r s ; thus they w i l l provide u s e f u l t o o l s f o r the f u r t h e r i n v e s t i g a t i o n of t h i s i n t e r e s t i n g phase t r a n s i t i o n i n an important c l a s s of i n t e r m e t a l l i c compounds.

ACKNOWLEDGMENTS

This r e s e a r c h was performed under the a u s p i c e s of the U.S. Department of Energy, Division of M a t e r i a l s Sciences, O f f i c e of Basic Energy Sciences under Contract No. DE-AC02-76CH00016.

The experimental work presented h e r e i s l a r g e l y the product of s e v e r a l c o l l a b o r a - t i o n s and independent s t u d i e s . The major people included were J. B u s s i e r e , B.

Berry, B. Faucher, H. Kumakura, and M. Suenaga. The t e c h n i c a l a s s i s t a n c e of B.

Jones and W. Tremel i s g r e a t l y a p p r e c i a t e d .

APPENDIX A. Simple Model f o r the Low-Temperature I n t e r n a l F r i c t i o n and Modulus Defect i n A15 Compounds

(10)

e i t h e r the x, y, or z a x e s ) ; the volume f r a c t i o n of each of the d i f f e r e n t types of domain w i l l be denoted by f x , f y , and f,, with f t = f x

+

f y

+

f,. We

assume, f o r s i m p l i c i t y , t h a t the applied s t r e s s used i n the measurement of the dynamic modulus does not a l t e r the t o t a l amount o f transformed m a t e r i a l , so t h a t f t is a constant. Furthermore, we assume t h a t the e l a s t i c s t r a i n induced i n an i n d i v i d u a l domain i s much smaller than the t e t r a g o n a l i t y (c/a-1) caused by the martensi t i c transformation.

Again f o r s i m p l i c i t y , consider the e f f e c t of an o s c i l l a t i n g u n i a x i a l t e n s i l e s t r e s s along the z a x i s :

This w i l l induce a component of s t r a i n along the z a x i s , which a l s o o s c i l l a t e s (but not n e c e s s a r i l y i n phase with a,,):

where the f i r s t term r e p r e s e n t s the instantaneous e l a s t i c s t r a i n and the second i s the c o n t r i b u t i o n due t o domain-wall motion. Eo i s the unrelaxed Young's modulus, while the angular brackets r e p r e s e n t a volume average over the various domains as well as the untransformed m a t e r i a l . Af, i s the time-dependent change i n the volume f r a c t i o n of z a x i s domains produced by the consumption or c r e a t i o n of adja- c e n t x- and y-axis domains by domain-wall motion. The i n t e r n a l f r i c t i o n , Q - l , and Young's modulus E , a r e obtained by standard methods /15/ from the in-phase and out-of-phase components of €,,/a,,:

- 2 n

(2

-1) I m (Af,/azz)

Q-' = a

,

and

E-

The required change i n z-domain volume f r a c t i o n , Af,, i s a complex q u a n t i t y with t h e r e l a t i v e c o n t r i b u t i o n of i t s r e a l and imaginary p a r t s dependent on the d e t a i l s of domain-wall dynamics, about which more l a t e r . I f however, i n general the dynamic response of the domain populations to an applied s t r e s s w i l l be of the form:

Af, a F(a,,) ~ ( w ) A

,

where F(aZ,) i s the (thermodynamic) f o r c e on a domain wall caused by the s t r e s s

u,,,

R(w) i s a frequency-dependent response f u n c t i o n which depends on the mechan-

ism of domain-wall motion, and A i s the domain-wall area per u n i t volume. The force

F As found from the change i n the e l a s t i c thermodynamic p o t e n t i a l of the c r y s t a l caused by the displacement of the wall s e p a r a t i n g two types of domain

( w ,

x domain and a z domain); t h i s may be found using the e x p l i c i t expressions f o r t h e e l a s t i c thermodynamic p o t e n t i a l s of the three types of domain given by P i e t r a s s . / l 6 / Thus:

(11)

and

where a i s a n u m e r i c a l f a c t o r which depends on t h e domain s h a e. I t i s s e e n from Eq. ( 5 ) t h a t t h e i n t e r n a l f r i c t i o n i s p r o p o r t i o n a l t o ( c i a - l ) ' , and t h i s i s observed

2

e x p e r i m e n t a l l y a s shown i n F i g u r e 4. B a s i c a l l y , t h e f a c t o r ( c / a - 1 ) a r i s e s because t h e s t r a i n produced when a domain w a l l move i s p r o p o r t i o n a l t o ( c / a - 1 ) . The p r o d u c t of t h e s e two f a c t o r s e n t e r s i n t o Q-', which i s t h e r e f o r e p r o p o r t i o n a l t o (c/a-1)'. Note t h a t t h e f a c t t h a t t h e t e m p e r a t u r e dependence of Q- i s e s s e n t i a l l y a c c o u n t e d f o r by t h a t of ( c / a - 1 ) ' i m p l i e s t h a t t h e f r e q u e n c y r e s p o n s e f u n c t i o n R(w), and hence t h e domain-wall m o b i l i t y , must depend o n l y weakly on t e m p e r a t u r e .

A s p e c i f i c a t i o n of t h e f r e q u e n c y dependence of t h e i n t e r n a l f r i c t i o n , Q - l , and t h e modulus d e f e c t , < E @ - l ) - l - E , r e q u i r e s a n e x p l i c i t model f o r t h e domain-wall dynamics s o t h a t t h e r e s p o n s e f u n c t i o n R(w) c a n be e v a l u a t e d . For example, i f domain w a l l s a r e r e a s o n a b l y mobile o v e r most of t h e i r e x t e n t , e x c e p t f o r c e r t a i n e d g e s , c o m e r s , e t c . , where they a r e h i g h l y pinned ( b y , f o r example, i n t e r a c t i o n s w i t h g r a i n

b o u n d a r i e s , i n t e r s e c t i n g w i t h o t h e r domain w a l l s , e t c . ) , and i f t h e r e i s no c r i t i c a l s t r e s s which must be overcome p r i o r t o motion, a s d i s c u s s e d by DeJonghe e t a l . / 1 4 / , then a d a m p e d - h a r m o n i c - o s c i l l a t o r model of domain-wall dynamics may be a p p r o p r i a t e . (A r e c e n t t h e o r e t i c a l s t u d y of domain-wall motions i n A15 compounds by Barsch and Krumhansl /17/ s u g g e s t s t h a t t h e s e w a l l s behave a s s o l i t o n s , and t h u s they s h o u l d n o t have s t r o n g " P e i e r l s - N a b a r r o w - t y p e c r i t i c a l s t r e s s e s r e q u i r e d t o s e t them moving.) I n such a harmonic model, domain w a l l s w i l l be c h a r a c t e r i z e d by a n e f f e c t i v e mass m , r e s o n a n c e f r e q u e n c y w g , and viscous-damping c o e f f i c i e n t K ( t o a c c o u n t f o r damping by e l e c t r o n s c a t t e r i n g , phonon e m i s s i o n s , e t c . ) , t h e dynamics w i l l then be c h a r a c t e r i z e d by:

where x i s t h e boundary d i s p l a c e m e n t caused by a f o r c e F. Such dynamics l e a d t o t h e r e s p o n s e f u n c t i o n :

The f r e q u e n c y depedence l e v e l s of t h e i n t e r n a l f r i c t i o n and modulus d e f e c t f o r t h e d a m p e d - h a r m o n i c - o s c i l l a t o r model of domain-wall dynamics a r e then o b t a i n e d by combining Eq. ( 8 ) w i t h Eqs. ( 5 ) and ( 6 ) . F u r t h e r e x p e r i m e n t s a r e r e q u i r e d t o t e s t

t h e p r e d i c t i o n s of t h i s model. REFERENCES

1. A. P l a n e s , J. V i n a l s , and V. T o r r a , P h i l . Mag A.

5,

501 (1983). 2. R. N B h a t t and W. L. McMillan, Phys. Rev. B

14,

1007 (1976). 3. R. N. B h a t t , Phys. Rev. B

g,

2947 ( 1 9 7 8 ) .

4. B. L u t h i and W. Rehwald, S t r u c t u r a l Phase T r a n s i t i o n s , ed. by K. A. Miiller and

H. Thomas, S p r i n g e r - V e r l a g , 1978, p. 131.

5. L. R. T e s t a r d i i n P h y s i c a l A c o u s t i c s , ed. by W. P. Mason and R. N. T h u r s t o n (Academic P r e s s , NY),

w,

p. 193; Vol X I I I , p. 29 ( 1 9 7 3 ) .

6. M. Weger and I . B . Goldberg, i n S o l i d S t a t e P h y s i c s , ed. by F. S e i t z and D . T u m b u l l ( ~ c a d e m i c P r e s s , NY), Vol. 28, p. 1 (1973).

(12)

D. 0. Welch, Advances i n C r y o g e n i c E n g i n e e r i n g

-

M a t e r i a l s , e d . by R.P. Reed and A.F. C l a r k , ( P l e n u m p r e s s , NY), V o l . 28, 1 9 8 2 , p. 655.

9 . A. R. S w e e d l e r , C.L. S n e a d , Jr., a n d D. E. Cox, T r e a t i s e o n M a t e r i a l s S c i e n c e a n d T e c h n o l o g y , ed. by T. Luhman a n d D. Dew-Hughes (Academic P r e s s , NY),

5

1 4 , 1 9 7 9 , p. 349.

-

C. L. S n e a d , Jr., D. M. P a r k i n , a n d M. W. G u i n a n , J. Nucl. Mat. 1 0 3 a n d 1 0 4 , 749 ( 1 9 8 1 ) . C. L. S n e a d , Jr. a n d J. F. B u s s i e r e , P h i l . Mag. ( a c c e p t e d for p u b l i c a t i o n ) . B. S. B e r r y , W. C. P r i t c h e t , a n d J.F. B u s s i e r e , S c r i p t a Met.

11,

327 ( 1 9 8 3 ) .

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to