• Aucun résultat trouvé

POSSIBLE WAYS OF RELAXATIONS FOR EXCITED STATES OF RARE EARTH IONS IN AMORPHOUS MEDIA

N/A
N/A
Protected

Academic year: 2021

Partager "POSSIBLE WAYS OF RELAXATIONS FOR EXCITED STATES OF RARE EARTH IONS IN AMORPHOUS MEDIA"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00225092

https://hal.archives-ouvertes.fr/jpa-00225092

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

POSSIBLE WAYS OF RELAXATIONS FOR EXCITED

STATES OF RARE EARTH IONS IN AMORPHOUS

MEDIA

R. Reisfeld, M. Eyal

To cite this version:

(2)

P O S S I B L E WAYS OF R E L A X A T I O N S FOR E X C I T E D S T A T E S OF RARE EARTH I O N S I N AMORPHOUS M E D I A

R. Reisfeld and M. Eyal

Department of Inorganic and AnaZyticaZ Chemistry, The Hebrew University of JerusaZern, 91 904 JerusaZem, Israel

Abstract

-

The various mechanisms of relaxation of r a r e earths i n glasses a r e outlined. Examples a r e given f o r r a d i a t i v e t r a n s f e r as a means of increasing pumping e f f i c i e n c i e s . Nonradiative relaxation of r a r e earths in oxide and f l u o r i d e glasses follow an exponential law when two glass former phonons are subtracted. Cross-relaxations a r e calculated f o r P r ( I I I ) , Ho(II1) and Nd(II1).

The excited s t a t e of a r a r e earth ion in an amorphous matrix can relax by four main channels: 1. Radiative t r a n s f e r ; 2. Multiphonon relaxation; 3. Cross-relaxation t o another ion of the same nature; 4. Energy transfer t o an ion of different nature.

1. The r a d i a t i v e t r a n s f e r consists of absorption of the emitted l i g h t from a donor molecule or ion by t h e acceptor species. In order t h a t such transfer takes place the emission of the donor has t o coincide with the absorption of the acceptor. The r a d i a t i v e t r a n s f e r can be increased considerably by designing a proper geometry. Such t r a n s f e r may be important i n increasing pumping e f f i c i e n c i e s of glass l a s e r s

/1/ and luminescent s o l a r concentrators whereby energy emitted from organic molecu- l e s can be absorbed by ions such a s C r ( I I I ) , Mn(I1) o r Nd(II1) followed by c h a r a c t e r i s t i c emission from these ions.

2. Multiphonon relaxation in lanthanide ions i s today a well understood process contrary t o t r a n s i t i o n metal ions which s t i l l requires additional understanding. Excited electronic l e v e l s of r a r e earths (RE) i n s o l i d s decay nonradiatively by exciting l a t t i c e vibrations (phonons). When the energy gap between t h e excited level and the next e l e c t r o n i c level i s l a r g e r than the phonon energy several l a t t i - ce phonons a r e emitted in order t o bridge t h e energy gap. I t was recognized t h a t t h e most energetic vibrations a r e responsible f o r t h e non-radiative decay since such a process can conserve energy in t h e lowest order. In glasses the most ener- g e t i c vibrations a r e the stretching vibrations of the glass network polyhedra and i t was shown t h a t these d i s t i n c t vibrations a r e a c t i v e in the multiphonon process rather than the less energetic vibrations of the bond between t h e RE and i t s sur- rounding ligands. I t was demonstrated t h a t these l e s s energetic vibrations may

(3)

C7-350 JOURNAL DE PHYSIQUE

p a r t i c i p a t e i n cases when t h e energy gap i s n o t b r i d g e d t o t a l l y by t h e h i g h energy v i b r a t i o n s . The experimental r e s u l t s reveal t h a t t h e l o g a r i t h m o f t h e multiphonon decay r a t e decreases l i n e a r l y w i t h t h e energy gap, o r t h e number o f phonons b r i d g i n g t h e gap when t h e number o f phonons i s l a r g e r than two. F i g u r e 1 presents t h e loga- r i t h m o f t h e n o n - r a d i a t i v e r e l a x a t i o n r a t e versus t h e number o f phonons o f t h e glass-forming m a t e r i a l . F i g u r e 2 presents t h e same dependence however two phonons a r e taken as t h e o r i g i n o f t h e abscissa.

I

NUMBER OF PHONONS

Fig. 1. Dependence o f rnultiphonon r e l a x a t i o n o f t h e number o f phonons i n t h e g l a s s former.

NUMBER OF PHONONS

(4)

ses, the vibrational frequencies show in homogeneous broadening due to t h e variation of s i t e s . Table I shows t h e average frequencies of t h e network formers. The vibra- tions involving the network modifiers a r e lower by a f a c t o r of 2 t o 4. Considering the dependence of the multiphonon relaxation r a t e , Wp, on t h e phonon occupation number f o r a p-order multiphonon decay a t temperature T>O

where AE i s t h e energy gap between the emitting and next lower level

a = - t n ( ~ ) / f i ~ (2) and a and B are dependent on t h e host but independent of the specific electronic level of RE from which the decay occurs.

In calculating t h e o r e t i c a l l y the mu1 tiphonon relaxation Siebrand /2/ has used the Condon approximation in which the electronic matrix elements a r e separated from the vibrational ones and assuming t h a t t h e t r a n s i t i o n i s dominated by a small number of promoting modes which consume t h e energy Kw. The accepting modes provide only f o r the remaining energy difference AEo-Rwmax

.

The theoretical r e s u l t s a r i s i n g from t h i s theory a r e

WNR = Belexp[-AE

-

2hw)al

The multiphonon decay r a t e from a given level t o the next lower level decreas- es with t h e lowering of energy of the stretching frequencies of t h e glass former. Since a l a r g e number of phonons i s needed in f l u o r i d e glasses and more so i n chalco- genide glasses in order t o reach the same energy gap the nonradiative relaxations a r e smallest in these hosts.

A tabulation of the parameters B and a of eq. ( 1 ) together w i t h the highest phonon energy f o r a variety of glasses and c r y s t a l s i s presented in Table I . For oxide glasses a i s f a i r l y constant while B d i f f e r s by several orders of magnitude between various glasses. Recently t h i s phenomenon was elaborated by Schuurmans and Van Dijk /3/ who propose formula (3) r a t h e r than eq. (1 ). Hence one can define a re- vised Bel as

The loglo of e l e c t r o n i c f a c t o r B i s a l s o presented i n Table I where i t can be seen t h a t i t i s of the same order o? magnitude f o r a l l glasses contrary t o B which varies by several orders of magnitude f o r various glasses. See Fig. 2.

The multiphonon t r a n s i t i o n r a t e s f o r r a r e earths in a variety of glasses can be obtained from formula ( 4 ) by use of the tabulated values of Bel, a and iiw in Table I and energy differences t o the next e l e c t r o n i c level AE. The correspondence of theory with experiment has been shown f o r P r ( I I 1 ) /4/, Nd(II1) /5/, Ho(II1) /6/,

and E r ( 1 I I ) /7/.

(5)

C7-352 JOURNAL DE PHYSIQUE

c o n s i d e r a t i o n t h e l a s t process i s much l e s s e f f i c i e n t .

TABLE I. Parameters f o r N o n r a d i a t i v e Relaxations i n Glasses

M a t r i x B s - I a cm Rw cm-l 10g,~B~, - - T e l l u r i te Phosphate Borate S i l i c a t e Germana t e ALS, GLS ZBLA

ALS 3AlZS3, 0.872LazS3, 0.1 28NdzS3

GLS 3GazS,,0.85LazS3,0.15NdzS3

ZBLA 57ZrF,, 34BaF,, 3LaF3, 4A1 F,

,

ZREF, mole % (RE = r a r e e a r t h )

3. Cross-relaxations. Special cases o f energy t r a n s f e r a r e c r o s s - r e l a x a t i o n where t h e o r i g i n a l system l o s e s t h e energy (E,-E,) b y o b t a i n i n g t h e lower s t a t e E, (which may a l s o be t h e groundstate E l ) and another system a c q u i r e s t h e energy by going t o a h i g h e r s t a t e E,. C r o s s - r e l a x a t i o n may t a k e p l a c e between t h e same l a n t h a n i d e (being a major mechanism f o r quenching a t h i g h e r c o n c e n t r a t i o n i n a g i v e n m a t e r i a l ) o r between two d i f f e r i n g elements, which happen t o have two p a i r s o f energy l e v e l s separated by t h e same amount.

The c r o s s - r e l a x a t i o n between a p a i r o f RE i o n s i s g r a p h i c a l l y presented i n Fig. 3.

The two energy gaps may be equal o r can be matched by one o r two phonons. C r o s s - r e l a x a t i o n has been measured i n a v a r i e t y o f i o n s and i t i s a dominating f a c - t o r i n n o n r a d i a t i v e r e l a x a t i o n s a t h i g h concentration. The n o n - r a d i a t i v e r e l a x a t i o n r a t e s can be obtained by a n a l y s i s o f t h e decay curves o f RE fluorescence u s i n g t h e formula o f t h e general form where t h e p o p u l a t i o n number o f s t a t e i, Ni i s propor- t i o n a l t o t h e i n t e n s i t y o f e m i t t e d l i g h t Ii.

d N . ( t ) / d t i s t h e decrease o f i n t e n s i t y a f t e r p u l s e e x c i t a t i o n , y i s t h e r e c i p r o c a l

.

of'the l i f e t i m e o f t h e e x c i t e d s t a t e i n t h e absence o f c r o s s - r e l i x a t i o n process.

CW.. i s W e p r o b a b i l i t y f o r c r o s s - r e l a x a t i o n , W.i i s t h e p r o b a b i l i t y o f i n v e r s e d prh$ess, and Wij i s t h e r a t e o f c r o s s - r e l a x a t i o a .

T h e o r e t i c a l l y t h e c r o s s - r e l a x a t i o n r a t e f o r a d i pole-dip01 e t r a n s f e r can be

(6)

Ion A

I o n

A'

Fig. 3. Scheme f o r cross-relaxation between two ions of t h e same o r d i f f e r e n t nature.

Here R a r e the Judd-Ofelt i n t e n s i t y parameters, < J ~ ~ u ( ~ ) I ] J ' > i s t h e matrix element of the t r a n s i t i o n between the ground and excited s t a t e of the s e n s i t i z e r and a c t i v a t o r respectively ( t h e calculation of these matrix elements in the intermediate- couplfng scheme i s now a well known procedure and may be found i n references 181 and

/9/: S i s the overlap integral and R i s t h e i n t e r i o n i c distance.

The measured lifetime of luminescence i s related t o t h e t o t a l relaxation r a t e by

1

r

=

zwNR

+ IA + pCR =

f

+ pCR (7

1

0

where LA i s t h e t o t a l r a d i a t i v e r a t e , CW i s t h e nonradiative r a t e and PCR i s the r a t e of cross-relaxation between adjacenKRions.

The possible cross-relaxation channels f o r p r ( I I I ) , ~ o ( I 1 1 ) and Nd( 111) a r e outlined i n Table 11. /lo/

In order t o obtain the c r i t i c a l radii which a r e the distances a t which the probability f o r cross-relaxation i s equal t o the sum of the r a d i a t i v e and multiphonon p r o b a b i l i t i e s t h e decay curves a r e analyzed with respect t o the Inokuti-Hirayama model /I I / .

The energy t r a n s f e r between Cr(II1) and Nd(II1) /12/ and Cu(II1) and Yb(II1)

(7)
(8)

/ I / Reisfeld, R., Chem. Phys. L e t t .

114

(1985) 306. /2/ Struck, C.W. and Fonger, W.H., J. Lumin.

10

(1975) 31.

/3/ Schuurmans, M.F.H. and Van D i j k , J.M.F., Physica 123B (1984) 131.

/4/ Eyal, M., Greenberg, E., Reisfeld, R. and Spect,,or Chem. Phys. L e t t . (1985) i n press.

/5/ Lucas, J., Chanthanasinh, M., Poulain, M., Poulain, M., Brun, P. and Weber, M.J., J. Noncryst. Solids,

7

(1978) 273.

/6/ R e i s f e l d , R., Eyal, M., Greenberg, E. and Jbrgensen, C.K., Chem. Phys. L e t t . (1985) i n press.

/7/ R e i s f e l d , R., Katz, G., Jacoboni, C., de Pape, R., Drexhage, M.G., Brown, R.N. and Jbrgensen, C.K., J. S o l i d S t a t e Chem. 4 8 (1983) 323.

/8/ R e i s f e l d , R., S t r u c t u r e and Bonding 30 ( 1 9 z ) 65.

/9/ Riseberg, L.A. and Weber, M.J., R e l a z t i o n Phenomena i n Rare E a r t h Luminescence, i n Progress i n Optics, Ed. E. Wolf, Vol. X I V , North-Holland, Amsterdam (1976). / l o / R e i s f e l d , R., N o n r a d i a t i v e R e l a x a t i o n o f Rare Earths i n F l u o r i d e Glasses, 3 r d

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to