• Aucun résultat trouvé

VIBRATIONAL PROPERTIES OF VACANCIES IN HOMOPOLAR SEMICONDUCTORS

N/A
N/A
Protected

Academic year: 2021

Partager "VIBRATIONAL PROPERTIES OF VACANCIES IN HOMOPOLAR SEMICONDUCTORS"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00221269

https://hal.archives-ouvertes.fr/jpa-00221269

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

VIBRATIONAL PROPERTIES OF VACANCIES IN

HOMOPOLAR SEMICONDUCTORS

K. Suzuki, D. Schmeltzer, A. Maradudin

To cite this version:

(2)

JOURNAL DE PHYSIQUE

CoZZoque C6, suppZ6ment au n o 12, Tome 42, de'cembre 1981 page C6-640

VIBRATIONAL PROPERTIES OF VACANCIES IN HOMOPOLAR SEMICONDUCTORS

K. Suzuki, D. Schmeltzer and A.A. Maradudin

Max-PZanek-Institut fiir Festk6'rp~rforsehungg Heisenbergstrasse 1, 7000 Stuttgart 80, F.R. G.

Abstract. Spectral densities of phonons i n the immediate v i c i n i t y of a vacan- cy i n Si and Ge a r e calculated in the continued fraction/recursion method. The r e s u l t s indicate t h a t both in Si and Ge the presence of vacancy gives r i s e to a sharp decrease in the COS i n t h e optical frequency range and a r a t h e r d i f f u s e increase i n t h e acoustic frequency range.

1. Introduction.

-

A t moderately high concentrations of hydrogen i n aworphous S i , four hydrogen atoms tend t o c l u s t e r as they s a t u r a t e qroups of four dangling bonds pointing towards a counterpart of t h e c r y s t a l l i n e vacancy.' Infrared a b s o r p t i o n l y 2 and %man s c a t t e r i n g 3 experiments on amorphous and c r y s t a l l i n e Si or Ge vith H ,

O,

or F a s impurities show t h a t the frequency of t h e resonant vibration i n the acoustic range depends only very sl ightly on inpuri ty snecies. This suogests t h a t such vi bra- tional modes involve a large number of a t o m of the host and leads one t o suspect t h a t the vacancy i n whose v i c i n i t y the clustering occurs nay i t s e l f qive r i s e t o resonant modes i n the frequency range where they have been observed.

As a step i n the direction of elucidating the nature of the resonant rrodes we have studied vibrational properties of crystal1 i ne Si and Ge containing an isolated vacancy. Use has been made of the real space version of the continued f r a c t i o n l r e - cursion method4, which does not require a periodic arrangement of atoms. The method has been applied successfully

to

several types of l a t t i c e dynalrical defect problems involving a lowering of symnetry5, although not to point defects a s f a r as we a r e aware.

The local density p m ( R . R ; w ) of vibrational nodes of polarization u a t s i t e L and frequency w i s d i r e c t l y related

to

the diagonal element of the Green's function

C

of the dynamical matrix D u B ( R , R ' )

.

In the recursion methodS the l a t t e r i s expressed in a continued f r a c t i o n

L

where the c o e f f i c i e n t s ( a o , a l , . ;.) and (bo, bl,

..

.) can be obtained a s functions of R and ci algebraically once D u B ( Z , R 1 ) of the systen! i s given.

(3)

2 . Perfect Crystal

.

-

To examine the a p p l i c a b i l i t y of the recursion rethod we f i r s t

c a l c u l a t e t h e phonon spectrum of Si crystal without vacancy. On t h e one hand the

phonon spectrurr, i s obtained in the recursion method by considering a f i n i t e crystal

containing up t o 18 000 atoms, a t t h e surface of which a l l bonds a r e terminated. The

dynamical matrix i s such t h a t includes only the f i r s t and second neighbor forces.

7

This requires s i x independent force constants, of which f i v e have been chosen t o

give a best least-squares f i t to the experimental phonon frequencies

a t

r,

X,

and

L

points.8 The l a s t one, the second neighbor force constant

6,

which a f f e c t s none of

t h e above phonons, has been e i t h e r fixed on the basis of the valence force f i e l d

9

illode1

( 6 =

(P-v-A)/2)

o r equated t o zero. The f i r s t 21 coefficients (ao,

.

.

,

azO)

and

(bo,

..,

bZ0) in Eq. ( 1 ) were d i r e c t l y calculated and t h e remining part of the

continued f r a c t i o n was replaced by an asymptotic form

where am and ba a r e chosen e i t h e r from an extrapolation of the calculated coeffi-

c i e n t s o r fro111

the requirement t h a t the obtained phonon spectrum extends from zero

t o the experimental highest frequency (namely that of the optical phonons a t

r ) .

The

phonon LEOS paa(R, R;w) calculated from E q . ( 1 ) i s independent of

a

and

a

(provided

R

i s close t o the center of c l u s t e r ) and i s represented by the upper curve i n Fig.

1.

On

the other hand t h e phonon spectrum

i s calculated f o r an i n f i n i t e l a t t i c e us-

ing the same force constants in the usual

k-space sampl ing method. With about

80 000 sample points in

1/48

of the B r i l -

louin zone we obtain a phonon 30s which i s

shown by the lower curve in Fig.

1.

-

u. 0

?

2

t-

-

Hi

t h

only up t o second neighbor for-

0

ces neither of the DOS reproduces t h e

sharp peak in the acoustic region which

0 ,. .. ... ,' : ,---..1 \

_.I'

._

....

,I

.

., ,

would be present i f the substantial f l a t -

O

6'

5 10 15

FREQUENCY 'ITHz)

tening of acoustic phonons in t h e v i c i n i t y

Fig.

1.

Lattice vibration spectrum of

Of

BZ

edge

were

properly

taken into ac-

m g

f i r s t and second neighbor

count.1° Except f o r t h i s , both of t h e

forces

i n t h e and i n

the

curves reproduce t h e general features of

k-space sampling method. The f o r c e

constants a r e those defined by Her-

the known phonon spectrum f a i r 1 y we1 1 . The

man.

two curves a r e very s i m i l a r , the only d i f -

ference being t h a t t h e recursion method general 1 y smoothes sharply edged van Hove

s i n g u l a r i t i e s c h a r a c t e r i s t i c of i n f i n i t e crystal s . 11

DOS FOR PHONONS IN SI

(4)

C6-642 JOURNAL DE PHYSIQUE

3. Vacancy.

-

To model a vacancy i n the s i m p l e s t way we remove t h e c e n t r a l S i atom a t R=o and equate t o zero a l l forces connected t o t h i s atom. I n c o n t r a s t t o t h e preceding case, t h e LDOS does depend on t h e l a t t i c e s i t e R a n d we evaluate i t a t one o f t h e four nearest neighbors o f t h e vacancy. The r e c u r s i o n c a l c u l a t i o n pro- ceeds i n a s i m i l a r way as before u s i n g t h e same s e t o f f o r c e constants, except t h a t we equate 6=0, which i s r e q u i r e d if t h e t r a n s l a t i o n a l i n v a r i a n c e c o n d i t i o n 6 i s t o be s a t i s f i e d w i t h o u t i n t r o d u c i n g new f o r c e constants. No r e l a x a t i o n o f atomic p o s i t i o n i s assumed. The s p e c t r a l d e n s i t y f o r t h e p e r f e c t c r y s t a l (6=0), t h a t o f t h e vacancy and t h e i r d i f f e r e n c e a r e shown i n F i g . 2.

DOS FOR PHONONS IN SI

I

RECURSION METHOD

NCYC = 21 ,

I

a=5 6206 x

lo4

dynlcrn

pc3.7417

A=-0.7221 (a1 PERFECT ~ ~ 0 . 3 8 2 1 CRYSTAL v.0.4695

1 6A

$

-0.1 IC 1 DIFFERENCE Z W lb)

-

la) a -0.2 0 5 10 15 FREQUENCY (THz) Fig. 2 . V i b r a t i o n spectrum o f t h e s i n g l e v a c a n c y i n Si c a l c u l a t e d i n t h e r e c u r s i o n method. 4 . Discussion.

-

I n F i g . 2 we see a d i f f u s e i n - crease o f DOS i n the lower acoustic frequency r e g i o n and a decrease i n t h e o p t i c a l r e g i o n . T h i s i s expected i f we consider t h e presence of a vacancy as a p a r t i a l s o f t e n i n g o f t h e force a c t i n g on i t s neighbors. The i n t r o d u c t i o r o f H or F, on t h e o t h e r hand, corresponds t o a hardening (decreased i o n i c mass) and gives r i s e t o a r a t h e r sharp resonant mode a t t h e upper edge o f t h e a c o u s t i c spectrum, as has been ob- served. A f u r t h e r d i s c u s s i o n on t h e change o f DOS f o r various p o i n t d e f e c t s can be made on the b a s i s o f the f u n c t i o n ( 1 ) f o r t h e p e r f e c t c r y s t a l

.

E s s e n t i a l l y s i m i l a r r e s u l t s a r e ob- t a i n e d f o r a vacancy i n Ge.

5. Acknowledgement.

-

We a r e indebted t o

M. Cardona, H. B i l z , and W . Kress f o r discus- sions and t o H.J. StXrke f o r advice on numeri- c a l work.

References

1. S.C. Shen, C.J. Fang, W. Cardona, and L. Genzel, Phys. Eev.

B

22, 2913 (1980).

2. H. Shanks, C.J. Fang, L. Ley,

M.

Cardom, F.J. Cernon, and S. K g b i t z e r , Phys. S t a t . Sol. ( b )

100,

43 (1980);

S.C. Shen, C.J. Fang, and M. Cardona, Phys. S t a t . Sol. ( b ) 101, 451 (1980). 3. D. Bermejo and

M.

Cardona, J . Pioncryst. S o l i d s 32, 405 ( 1 5 7 v

4. R. Haydock, S o l i d S t a t e Phys

.

35, 215 (1980),

Mx.

K e l l y

,

i b i d 35, 295 (1980).. 5.

M.

M o s t o l l e r and U. Landman, PGs. Rev. B 20, 1755 (1979), J . E . T a c k , B. Laks,

and O.L. M i l l s , Phys. Rev. B 22, 1818 (198DJ.

6. A.A. Maradudin e t a1

.,

S o l i d R a t e Phys. Suppl. 3 (2nd ed.), 1 (1971).

7. Our n o t a t i o n o f f o r c e constants i s t h e same as Fy H e r ~ a n , J . Phys. Chem. Sol i d s 8, 405 (1959).

8.

ST.

B i l z and

W.

Kress, Phonon D i s p e r s i o n R e l a t i o n s i n I n s u l a t o r s , Springer, 1979.

9. K. Kunc, PI. Balkanski, and ivl. Nusimovici, Phys. Rev. B

-

12, 4346 (1975). 10. IJ. Ueber, Phys. Rev. B 15, 4789 (1977).

11. S i m i l a r conclusions h a v f i e e n obtained f o r a simpler case by P.E. Meek, P h i l . Mag. 33, 897 (1976). See a l s o C. H e r s c o v i c i and M. F i b i c h , J . Phys. C - 13, 1635

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to