• Aucun résultat trouvé

Cr´eation de paires

N/A
N/A
Protected

Academic year: 2022

Partager "Cr´eation de paires"

Copied!
51
0
0

Texte intégral

(1)

Cr´ eation de paires

Denis Bernard

LLR, Ecole polytechnique, IN2P3/CNRS

Master APIM Oct 2010

(2)

Le photon est stable

γ → e

+

e

dans le vide ?

• Masse “effective” d’une paire e+e (invariant de Lorentz) : M2 ≡ Etot2 − |p~tot|2

(convention c = 1)

• Dans le CMS, p~tot = 0,

M2 = Etot2 =

Xq

~

pi2 + m2i 2

> X mi

2

> 0

• Alors que la masse du photon est 0.

Besoin de “s’appuyer” sur un autre objet pour emporter un peu

(3)

Conversion par interaction avec la mati` ere

γr → re

+

e

r est une particule charg´ ee (noyau, ´ electron)

• (a) and (b) dominent la production de paire “nucl´eaire” (dans le champ d’un noyau) de par les rapports de masse e/r

(4)

Section efficace

Production de paire “nucl´ eaire” (dans le champ d’un noyau)

• Pas d’´ecrantage (no screening) E mc2/(αZ1/3)

σ = Ψ

28

9 ln (2E/mc2) − 218 28

, Ψ = αZ2re2

• ´ecrantage total E mc2/(αZ1/3)

σ = Ψ

28

9 ln (183Z1/3) − 2 27

• σ ∝ Z2 (Prod nucl´eaire, action coh´erente des protons du noyau)

• σ ∝ Z (Triplet γe → e+ee) mˆeme asymptote `a un facteur Z pr`es.

(5)

Photon interaction with matter

Compton γe

→ γe

“Nuclear” pair production : γZ → Ze

+

e

“Triplet” pair production : γe

→ e

e

+

e

(6)

“Longueur de Radiation” X

0

• trajet le long duquel une particule charg´ee perd en moyenne une fraction 1 − 1/e de son ´energie incidente, par rayonnement.

• 7/9 du libre parcours moyen par production de paire, asymptotique Phys. Rev. 93 788 (1954)

−2

(7)

Geometry, variables

• 5D distribution ϕ+, ϕ, θ+, θ, x = E+/Eγ

• Acoplanarity φ and azimutal ψ (ω±) angles related to the e and e+ azimuthal angles ϕ+, ϕ

ψ ≡ ϕ+ ψ + φ ≡ ϕ

• Minimize correlations φ, ψ, θ+, θ, x

(8)

Differential cross section

Pair production by linearly polarized gamma rays

= −2αZ2r20m2

(2π)2ω3 dE+dΩ+dΩ|p||p+|

|~q|4 F(q2)

"

2E+psinθcos (ψ + φ)

E p cosθ + 2E p+sinθ+cosψ E+ p+cosθ+

«2

−q2

p sinθcos (ψ + φ)

E pcosθ p+sinθ+cosψ E+ p+cosθ+

«2

−ω2 (p+sinθ+)2 + (p sinθ)2 + 2p+p sinθ+sinθcosφ (E pcosθ)(E+ p+cosθ+)

#

with

|~q|2 = |p~+ + p~ ~k|2

• E+ positron energy, polarization direction along x.

(9)

Non polarized photon

Averaging on ψ

= −αZ2r20m2

(2π)2ω3 dE+dΩ+dΩ|p||p+|

|~q|4 F(q2)

"

p+sinθ+ E+ p+cosθ+

«2

(4E2 q2) +

psinθ E pcosθ

«2

(4E+2 q2)+

2p+psinθ+sinθcosφ

(E pcosθ)(E+ p+cosθ+)(4E+E + q2 2)

−2ω2 (p+sinθ+)2 + (psinθ)2 (E+ p+cosθ+)(E pcosθ)

#

“The quantum theory of radiation”, W. Heitler, 1954.

(10)

Partially polarized photon

= Φ(Xu + P × Xp)dE+dΩ+dΩ , with :

Φ = −αZ2r20m2 (2π)2ω3

|p||p+|

|~q|4 F(q2) , P polarization fraction of the incident photon beam,

Xu =

"

p+sinθ+ E+ p+cosθ+

«2

(4E2 q2) +

psinθ E pcosθ

«2

(4E+2 q2)+

2p+psinθ+sinθcosφ

(E pcosθ)(E+ p+cosθ+)(4E+E +q2 2)

−2ω2 (p+sinθ+)2 + (p sinθ)2 (E+ p+cosθ+)(E pcosθ)

#

Xp = cos 2(φ +ψ)(4E+2 q2)

psinθ E pcosθ

«2

+ cos 2ψ(4E2 q2)

p+sinθ+ E+ p+cosθ+

«2

(11)

Quelques distributions : x, ψ

(12)

Quelques distributions : θ

and φ

• θ Strongly peaked forwards.

• φ distribution is peaked at π

(13)

Checks : 1 : opening angle

RMS, for energy equi-partition (x ≈ 0.5, E

+

≈ E

) : θ

0

≈ m

ω ln ω m

M. Stearns, Phys. Rev. 76, 836 - 839 (1949).

(14)

Checks : 2 : Polarization asymmetry

Polarization asymmetry is correctly ≈ 20 % at high energy.

(15)

Layout

– Introduction

• Why measure the (linear) polarization of γ-Ray sources ?

• MeV γ-Ray astronomy : “filling the gap”

– One detector, two functions :

• γ-Ray polarimetry in the MeV - GeV range

• High-angular precision γ-Ray astronomy

– HARPO : 2008 – 2012 “ground” phase : One project, Two goals :

• Experimental characterization of the technique.

• High precision measurement of the polarization asymmetry

(16)

Cosmic gamma ray polarimetry : Why ?

– γ Rays produced in very violent events : (AGN’s, GRB’s ..)

– γ polarization fraction key ingredient to understanding mecha- nism at work.

• jets of relativistic matter impinging on intra galactic matter

⇒ hadronic interactions → π0’s → γ’s : P = 0

• Radiative processes (synchrotron, inv Compton) : P up to 70%

Linear Polarization

(17)

Cosmic gamma ray polarimetry : AGN’s

Example : 3C279

Rept. Prog. Phys. 71, 116901 (2008)

From left to right :

• synchrotron

• thermal from accretion disk

• SSC synchrotron-self Compton

• Compton on accreation disk photons

• Compton on photons from gas clouds

• ESC : P low (3 – 4 %)

• SSC : P 65 – 70 %

Mon. Not. R. Astron. Soc.395, (2009) 1507.

(18)

Cosmic gamma ray polarimetry : pulsars’s

Fast-rotating neutron stars with huge magnetic field. eg : Crab

• Prediction for P model dependent. (Polar Cap 0, Outer gap medium, Slot Gap “caustic” high ) Kaspi et al. arXiv :astro-ph/0402136.

• Here : Outer gap model Takata et al. ApJ 670 (2007) 677

(19)

Cosmic gamma ray polarimetry : GRB’s

– Origin of γ -Ray bursts : unknown (supernovae ? mergers ?) – Most models involve 2 relativistic jets.

– γ emission ?

• Synchrotron Radiation : P low

( “efficient shock acceleration needs highly disordered magnetic fields”

• Inverse Compton Scattering : P high

Dado, Dar, De Rujula, arXiv :astro-ph/0403015.

(20)

γ Astronomy : filling the gap

V. Sch¨onfelder, New Astr. Rev. 48 (2004) 193 Fermi LAT Performance web page,

• Good angular resolution key factor in background rejection

• Angular Resolution @ 100 MeV :

(21)

Polarimetry :

Modulation of the azimutal angle of the debris

– φ azimuthal angle dΓ

dφ ∝ (1 + AP cos [2(φ − φ

0

)])

(22)

Photon interaction with matter

Compton γe

→ γe

“Nuclear” pair production : γZ → Ze

+

e

“Triplet” pair production : γe

→ e

e

+

e

(23)

Compton

A number of hard X-Ray and soft-γ ray polarimeter projects

New Astr. Rev. 48 (2004) 215

Low polarimetry sensitivity for γ energy range [1 MeV - 1 GeV]

(24)

“Nuclear” pair production : in principle

In principle : very good

– Dominates cross section at high energy

– A ≈ 0.2 at high energy

(25)

“Nuclear” pair production : in practice

In practice : Problem

• At low Eγ, a lot of multiple scattering ⇒ φ badly measured.

• At high Eγ, tight pair ⇒ φ badly measured.

A = A

0

e

−2σφ2

, σ

φ2

∝ z

After 3 × 10

−4

X

0

, σ

φ

≈ 0.6rad, A = A

0

/2

(26)

Triplet : γe

→ e

e

+

e

– The recoiling electron is emitted at a large angle

– Triplet / pair ∼ 1/Z at high energy.

– Same asymmetry at high energy.

– 6 additional Feynman diagram (wrt “Nuclear” pair production )

(27)

Triplet : High Energy Approximation

(and e

↔ e

exchange in final state for triplet)

• Nuclear pair production (a) and (b) dominate due to mass ratios

• Triplet : (a) and (b) dominate asymptotically at high energy

So keeping (a) and (b) is a high energy approximation for Triplet

(28)

Polarisation Asymmetries A

– Theory : many approximations

• Born

• Screening from atomic electrons parametrized F(q)

• High energy.

– Experiment : very few measurements

Reviews :

JW Motz, HA Olsen and HW Koch, Rev. Mod. Phys. 41, 581 - 639 (1969) J. H. Hubbell, S. M. Seltzer, NIM B 213 (2004) 1

(29)

Relevant Energy Range 3 – 30 MeV

Triplet

Approx :

Baier et al. Sov. Phys. JETP 23, 104 (1966)

Generator :

Endo, Kobayashi, Nucl. Instrum. Meth. A 328, 517 (1993).

(30)

Satellite flight : Precision of P measurement

N

int

= R L Λ(E )

dF

dE (E )ST dE = M × T R 1

[ρΛ(E )]

f

E

2

dE

1 ton, 1 year, time fraction 50%, efficiency 100%, A ≈ 0.2

• Nint = 1.5 × 105 σP ≈ 1

A

r 2

N ≈ 0.0185

(31)

Nuclear pair production : High Energy

Compton scattering of laser beam @ Spring-8

“Asymmetry” is here : A × P

de Jager, et al., Eur.Phys.J.A19 :S275-S278,2004.

(32)

Triplet : High Energy

Coherent Bremsstrahlung on Si Crystal.

“Polarisation Max 50 % at 365 MeV”.

( ◦ data, • MC )

“Asymmetry” is here : A × P

Y. Iwata et al., NIM A336 (1993) 146

(33)

q : kinematic limits

q transferred momentum

Threshold : nuclear 2mc

2

, triplet 4mc

2

(34)

Sizing the detector

in 5 bar of Argon gas

⇒ Cubic TPC, 30 cm, pitch 1mm, spatial resolution 1 mm ..

(35)

Detector Layout

(36)

Detector Layout : 2

(37)

Amplification – Collection

• Amplification by micro-mesh micromegas

• Signal collection by strips on PCB, pitch = 1mm

• Sampling / acquisition performed by AFTER chip — IRFU

P. Baron et al., IEEE Trans. Nucl. Sci. 55 (2008) 1744.

• To be made at CERN workshop

(38)

Le PCB ` a Strips

(39)

T2K-like Gas

• Ar :95 ISO :2 CF4 :3 `a 1 bar, D. Karlen NIM A (2010)

• Ar :99 ISO :0.4 CF4 :0.6 `a 5 bar, Quencher partial pressure kept unchanged

• matching of shaping (100 ns) resolution (1 mm) ⇒ vd ≈ 1cm/ µs

• P = 5 bar

(40)

Trigger

– Cosmic Rays

• 2 scintillator coincidence

• Rate 1 /( cm2 min), 15 Hz.

– γ -Ray beam

• U T

G T D

The chip used can digitize data up to 1 kHz F × Max flux F

1 kHz 1% 10

5

/s

– Scintillator, WaveLength shifter, PMT

(41)

Angular Resolution

• Black line is analytic prediction

• Points are from Kalman-filter reconstruction Fr¨uhwirth NIM A 262, 444 (1987).

(42)

Effective Area

• Thin detector : Effective Area depends on Mass only

• 1 ton, efficiency 100%, fiducial volume 100%,

Effective Area asymptotically 3.7 m

2

, (Fermi/Glast 1 m

2

)

(43)

γ Astronomy : filling the gap

V. Sch¨onfelder, New Astr. Rev. 48 (2004) 193 Fermi LAT Performance web page,

• Good angular resolution key factor in background rejection

• Angular Resolution @ 100 MeV :

• EGRET 5.5 , Fermi/Glast 4.0,

• HARPO 0.4 “Hermetic ARgon POlarimeter”

(44)

Many Thanks

– IRFU / CEA

• Ioannis Giomataris, Alain Delbart (micromegas / Strips PCB design)

• Paul Colas (TPC)

• Eric Delagnes (AFTER – FEC)

• Denis Calvet (Firmware)

• Georges Vasseurs (PM’s)

– CERN

• Rui De Oliveira (micromegas / Strips PCB design) .. and their collaborators.

(45)

Conclusion

A 5 bar TPC for precision MeV – GeV γ - astronomy and polarimetry

• Astro γ : Angular Resolution 1/10 trackers with W converters

• MeV — GeV γPolarimetry

• High sensitivity :

• High efficiency ; All sky detector : 4π acceptance

• Evt imaging : Excellent non-γ (and upgoing γ) background rejection

• No combinatoric background

• Deadtime-free GRB detector

• First precision validation of low energy (MeV) polarization asymmetry within reach.

(46)

Thanks for your kind attention

A 10 MeV γ photon undergoing triplet conversion in argon at 5 bar (EGS5).

(47)

Back-up Slides

(48)

Our 3 preferred sources

F(Eγ > 100 M eV ) Γ δ Flux COMPTEL , ph cm−2 s−1 ph cm−2 s−1 South :

Vela (834 ± 11) × 10−8 1.7 −45 (1 − 30)M eV : 8 × 10−5. North :

Geminga (353 ± 6) × 10−8 1.7 +17 (2 − 10)M eV : 6 × 10−5. Crab (226 ± 5) × 10−8 2.2 +21 (2 − 10)M eV : 9 × 10−5.

Typical target : Γ = 2, f = 1 MeV/ m

2

s.

dF

dE (E ) = f 1

E

2

(49)

Gain

• 5 bar, 1 mm, 1250 eV ⇒ 62.5 mip electrons

• AFTER noise : 570 e @ 10 pF

• 10 × noise : 5700 e,

⇒ gain > 100 ..

NIM A 608 (2009) 259

(50)

Measurements at SPRing-8 / Subaru

Linearly polarized γ beams

– SPRing-8

– High energy

• BL33LEP 1.5 – 2.4 GeV, Eur.Phys.J.A19 :S275-S278,2004

– Low energy

Kawase et al., NIM A 592 (2008) 154.

• BL38B2 diagnosis beamline I, 10 MeV (taken down)

• BL05SS diagnosis beamline II, 10 MeV (planned)

– New Subaru

• YAG, 17.6 MeV Aoki et al., NIM A 516 (2004) 228

• CO2, 3.9 MeV Amano et al., NIM A 602 (2009) 337

(51)

General Schedule

• 2008

• MC studies

• 2009

• Oct : Approved by LLR scientific Council

• Group formation (engineers)

• Budget request

• 2010

• March : funding received for 2010 : detector

• Design in progress

• Start construction in the Fall.

• 2011

• Mounting, tests

• Cosmic rays runs ⇒ NIM A.

• γ Beam request

• 2012

• γ beam runs, analysys, NIM A, PRL

Références

Documents relatifs

Exprime en fonction de x et sous la forme d'une expression simplifiée l'aire du rectangle

Effectue ce programme pour un nombre x de départ et écris une expression simplifiée du résultat en fonction de

On estime f 00 par un estimateur ` a noyau avec une fenˆ etre que l’on qualifie de “pilote” et dont le choix est loin d’ˆ etre une question triviale.. Notons que les probl`

On estime f 00 par un estimateur ` a noyau avec une fenˆ etre que l’on qualifie de “pilote” et dont le choix est loin d’ˆ etre une question triviale.. Notons que les probl`

Illustrer de mani` ere empirique ` a partir de donn´ ees simul´ ees et analyser le comportement des trois estimateurs (m´ ethode des s´ eries orthogonales, histogramme, convolution)

Illustrer de mani` ere empirique ` a partir de donn´ ees simul´ ees et analyser le comportement des trois estimateurs (m´ ethode des s´ eries orthogonales, histogramme, convolution)

Illustrer de mani` ere empirique ` a partir de donn´ ees simul´ ees et analyser le comportement des trois estimateurs (m´ ethode des s´ eries orthogonales, histogramme, convolution)

Illustrer de mani` ere empirique ` a partir de donn´ ees simul´ ees et analyser le comportement des trois estimateurs (m´ ethode des s´ eries orthogonales, histogramme, convolution)