• Aucun résultat trouvé

LOCAL MECHANICAL EFFECTS IN THE DESIGN OF THE SUPERCONDUCTING EUROPEAN LCT COIL

N/A
N/A
Protected

Academic year: 2021

Partager "LOCAL MECHANICAL EFFECTS IN THE DESIGN OF THE SUPERCONDUCTING EUROPEAN LCT COIL"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00223661

https://hal.archives-ouvertes.fr/jpa-00223661

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LOCAL MECHANICAL EFFECTS IN THE DESIGN OF THE SUPERCONDUCTING EUROPEAN LCT

COIL

H. Zehlein

To cite this version:

H. Zehlein. LOCAL MECHANICAL EFFECTS IN THE DESIGN OF THE SUPERCONDUCT- ING EUROPEAN LCT COIL. Journal de Physique Colloques, 1984, 45 (C1), pp.C1-905-C1-908.

�10.1051/jphyscol:19841185�. �jpa-00223661�

(2)

JOURNAL DE PHYSIQUE

Colloque C1, suppl6ment au no 1, Tome 45, janvier 1984 page C1-905

L O C A L MECHANICAL EFFECTS I N THE D E S I G N OF THE SUPERCONDUCTING EUROPEAN L C T C O I L

H. Zehlein

Kernforschungszentrwn K a r Z s m h e GmbH, Institut fur ReaktorbaueZemente, Arbeitsgruppe ZuverZtlssigkeit und Schadenskunde, Postfach 36 40, 0-7500 K a r Z s m h e 2, F.R.G.

Resume

-

On i l l u s t r e 2 s i t u a t i o n s d i f f e r e n t e s de contraintes mecaniques

-

q u i ont influence sensiblement l a construction de l'aimant Europeen

LCT.

Abstract

-

The paper i l l u s t r a t e s 2 d i f f e r e n t mechanical s t r e s s s i t u a t i o n s which sensibly determined the European design of the LCT c o i l .

Both examples presented in t h i s paper deal with the avoidance of intolerable shear s t r e s s e s which may a r i s e

-

between the superconductor layers within the winding pack of a toroidal f i e l d coil along the central support of a Tokamak reactor

-

within an individual superconductor cable during the winding procedure.

Althoug the detailed analyses of these problemes /1,2/ were undertaken f o r the par- t i c u l a r design of the European LCT coil / 3 / the s i t u a t i o n s illuminated seem generic enough f o r the manufacture and operation of any d i s c r e t e toroidal f i e l d coil of fu- t u r e Tokamak reactors t o use them as a basis f o r carrying over t h e lessons learned /4,5/ t o the harder conditions met with b r i t t l e superconductors and/or vault- forming central supports /6/. Proposals t o a l l e v i a t e such more general and harder fabrication and working conditions a r e made.

T

( T R ) and a 30 f l n i t e elemnt model (3D).(Dimsnsionr ,n m)

asymmetric loading

Yo = 0.062 m , v7 = 0.066 nm

Fig. 1

-

Exploded view of the LCT-coil (AE: A' support zones

EA

,

A'T f r e e bending zones) Fig. 2

-

Axial displacements

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19841185

(3)

C1-906 JOURNAL DE PHYSIQUE

I . SUPPORT LOAD DIFFUSION EFFECTS ALONG THE INNER LEG OF A TF COIL UNDER ASYMMETRIC

LOADING

Fig. 1 shows t h e EURO-LCT-coil and i l l u s t r a t e s t h e asymmetric l o a d i n g due t o a f a u l t i n g neighbour c o i l . Our aim i s t o g i v e a s i m p l e ( l 0 ) d e s c r i p t i o n o f t h e a x i a l displacement o f c e n t r o i d o f t h e c o i l cross s e c t i o n as w e l l as i t s e l a s t i c d i s t o r - t i o n by superimposing t h e fundamental "deformation modes" 1 i ke bending, shear and t o r s i o n a l t w i s t . As a 3D f i n i t e element model ( l i k e t h a t i n / I / ) cannot g i v e t h i s breakdown, and as a simple r i g i d cross s e c t i o n beam model f o r t h e e n t i r e c o i l i s on p r i n c i p l e unable t o describe c o r r e c t l y t h e cross s e c t i o n deformation p r e v a i - l i n g i n t h e l o a d - d i f f u s i n g support regions (AE and A' i n f i g . l) i t was proposed p r e v i o u s l y /4/ t o subdivide t h e contour i n t o "support zones" w i t h l o c a l cross sec- t i o n deformations and "bending zones" w i t h r i g i d cross sections. This understand- i n g was o u t l i n e d i n /4/ f o r bucking post supports. The corresponding new thumb r u l e i s i n acceptable agreement w i t h 3D r e s u l t s /1/ (see f i g . 2). Here we o n l y p o i n t o u t t h e p a r t i c u l a r l y e x c e l l e n t agreement o f t h e support zone displacements (values vl and v2 v a l i d along nodes 1 t o 31 and 71 t o 81, resp. i n f i g . 2 ) which are g e n e r a l l y described by a 3 r d o r d e r power s e r i e s expansion o f t h e d i s t a n c e 1 between c o i l / b u c k i n g p o s t i n t e r f a c e and c r o s s s e c t i o n c e n t r o i d :

V/p = all

+

a21 2

+

a313 (P = l i n e l o a d ) (1 )

The c o e f f i c i e n t s al=l/AG, a2=t/GJ a3=1/3EI ( 2 ) (A-cross s e c t i o n area; E,G=shear, e l a s t i c modulus, I = ( ( 2 ) ) area moment, J = t o r s i o n a l s t i f f n e s f a c t o r , t = t o r s i o n a l t w i s t l e n g t h ) represent t h e shear, t o r s i o n a l and bending deformation. The superposi- t i o n e q . ( l ) i s confirmed by t h e 3D-results /1/ shown i n f i g . 3. The h i g h e s t absolute stresses of t h e whole l o a d case catalogue occurred i n corner C (see f i g . 3) o f t h e casing ( e q u i v a l e n t s t r e s s 400 t o 600 MPa i s r e l e v a n t ) as w e l l as i n t h e winding ( i n t e r l a y e r shear s t r e s s 30 t o 40 MPa and a x i a l s t r e s s 60 t o 80 MPa are r e l e v a n t ) / 1 , 2 / so t h a t f o r t h e EURO-LCT c o i l a forged r a t h e r t h a n r o l l e d f r o n t p l a t e had t o be cho- sen /3/ (see a l s o f i g . 1 ) . This c r i t i c a l f i n d i n g shows t h a t r i g o r o u s s c r u t i n y must be observed, when t h e understanding of eq. ( 1 ) i s t o be c a r r i e d over t o t h e s o f t e r cen- t r a l support provided by a v a u l t i n s t e a d o f a bucking post.

I I

E

sandwich beam behaviour wmagnif i c a t i o n f a c t o r : 500

F i g . 3

-

Cross s e c t i o n deformation Fig-

-

(3D f i n i t e element model) and surface f o r c e s

If t h e c e n t r a l support s t r u c t u r e i s b u i l t as a v a u l t as envisaged f o r t h e INTOR r e a c t o r study /6/ then t h e s i t u a t i o n becomes more complex because t h e r i g i d support by t h e bucking p o s t i s replaced by t h e e l a s t i c f o u n d a t i o n p r o v i d e d by t h e c l u s t e r o f i n n e r legs. These a r e themselves under asymmetrie magnetic body f o r c e s as w e l l as under s u r f a c e loads d i f f u s e d through t h e i r wedge s i d e faces by t h e s t a c k i n g e f f e c t . I f the d i s t r i b u t e d body and surface loads a r e approximated by t h e i r s i n g l e f o r c e r e s u l t a n t s , and i f s l i d i n g between t h e sidefaces i s prevented, then t h e r e a c t i o n f o r c e s shown i n f i g . 4 a r e a c t i n g on t h e cross section. The l o c a l cross s e c t i o n deformation i s expected t o c o n t r i b u t e o n l y p a r t i a l l y t o t h e i n n e r l e g d i s t o r t i o n whereas t h e accumulated deformation o f t h e unsymmetrically loaded v a u l t (gaps and displacements under stacked body and surface f o r c e s ) dominates. Due t o t h e wedge shape t h e r e a r e a l s o in-plane components which may deform t h e cross s e c t i o n

(4)

(see f i g . 4). The s t i f f n e s s o f t h e v a u l t stack i s determined c o n s e c u t i v e l y s t a r t i n g w i t h t h e wedge opposite t o t h e f a u l t i n g c o i l . The c l u s t e r i s constructed by adding wedgeper wedge u s i n g t h e deformed shape ( w i t h p r e s t r e s s ) o f t h e already present stack as t h e support s t r u c t u r e t o be loaded by t h e c u r r e n t l y added wedge. The sum o f t h e t o t a l displacements o f v a u l t c l u s t e r and c o i l cross s e c t i o n i s found a f t e r a few e q u i l i b r i u m i t e r a t i o n s f o r each i n t e r m e d i a t e stack. I t i s azimuth-dependent and replaces eq. (1). The approximation o f t h e pure bending zone (see/4/ f o r d e t a i l s ) must be enhanced, however, t o i n c l u d e a gap and e l a s t i c r e s t r a i n t s a g a i n s t transverse and r o t a t i o n a l motion a t t h e i n n e r l e g t r a n s i t i o n . T h e purpose o f t h e procedure sket- ched here i s t o approximate t h e v a u l t response by a simple 1D beam f o r m u l a t i o n f o r t h e i n d i v i d u a l c o i l . The scheme should be as s i m i l a r as p o s s i b l e t o t h e one d e r i v e d f o r t h e bucking p o s t case. The simp1 i f i c a t i o n s behind the proposed approximation must o f course be corroborated by a thorough and more r e f i n e d 3D a n a l y s i s o f c o i l and v a u l t response. Work i n t h i s d i r e c t i o n i s under way and w i l l be r e p o r t e d i n a f u t u r e paper.

11. SHEAR RESULTANT WITHIN A SUPERCONDUCTOR CABLE DURING THE WINDING PROCEDURE Due t o t h e bending s t i f f n e s s o f t h e superconductor a boundary- 1 ayer-1 i ke concentrat- i o n o f s h a r p l y r i s i n g c u r v a t u r e as w e l l as bending and shear stresses must be expect- ed near t h e touching p o i n t (see R 1 i n f i g . 5) a t t h e bobbin. This e f f e c t was appro- x i m a t e l y described by a d i s c r e t e "Simp1 i f i e d E l a s t i c a Conductor Model" (SECM) /5/

which was used t o study t h e combined i n f l u e n c e s o f t h e e l a s t o p l a s t i c metal forming, t h e geometric arrangement o f t h e winding equipment ( f i g . 5) and t h e model s i m p l i f i - cations. Whereas i n /5/ t h e numerical scheme p e r t a i n i n g t o t h e SECM as w e l l as t h e c i r c u m f e r e n t i a l d i s t r i b u t i o n o f t h e peak stresses around t h e bobbin contour were g i - ven, here we a r e more i n t e r e s t e d i n t h e shape o f these l o c a l peaks. Fig. 6 shows t h a t t h e i n f l u e n c e o f t h e p u l l i n g f o r c e i s marginal f o r t h e bending moment a t the end o f the conductor, b u t t h a t t h e shape o f t h e peak i s s e n s i b l y a f f e c t e d . The dependence o f t h e ensuing shear r e s u l t a n t (=bending moment g r a d i e n t ! ) on the p u l l i n g f o r c e i s almost l i n e a r ( f i g . 7 ) i n t h e f e a s i b l e p u l l i n g f o r c e range. P l a s t i c forming occurs every- where o u t s i d e o f the i n n e r l e g section. Experimental evidence i n d i c a t e d t h a t no damage should be expected below a bending moment o f 220 Nm. Even i n t h e small r a d i u s s e c t i o n s (Rl, R3 i n f i g . 5 ) t h i s s a f e l i m i t o f damage-free forming i s n o t exceeded.

Biegemomentverlauf entlang des Leiters

conductor l e n g t h Fig. 7

-

Shear r e s u l t a n t d i s t r i - b u t i o n

;-

recommended

- -

~ u e e r

-

1 i m i t

-

0

freies Leitersttick' ~ c h w e n k b r u c k e ~ - . 00- 0

-v -m

+-

RM= 15.5 rn

Fig. 5

-

Geometric arrangement o f t h e winding 3 .

equipment

2 zz-

1 superconductor 2 supply bridge L, L~

a

z:

x

Fig. 6

-

Bending moment d i s t r i b u t i o n 250-

IHml 200

-

150- 100

-

50

-

0

R 1 = R 3 = 0 . 7 8 0 r n x ul a?- wC

3 0

0 0

4 . 5 0 6:00 5 . 5 0 5 . 0 0

L E I T E R L R E N G E I N M conductor l e n g t h

RAOlUS NR. 1 Z 9. SEKTURPUNKT

aZUGKRAFT= l O 0 0 0 . 0 WICKELRAOIU5= 0 . 7 8 0 AZUGKAAFT= 20000.0

+ZUGKRRFT= 3 0 0 0 0 . 0

XZIJGKRRFT= 400an.,

R1 = R3 = 0.780 m

(5)

CI-908 JOURNAL D E PHYSIQUE

Overbending t e s t s have a l s o shown t h a t t h e forming l i m i t i s determined by the shear s t r e n g t h of t h e s o l d e r i n g seams w i t h i n t h e cable. Due t o measurements of t h e shear s t r e n g t h t o g e t h e r w i t h p r e l i m i n a r y assumptions on t h e d i s t r i b u t i o n o f shear s t r e s - ses over t h e cross s e c t i o n i t seems recommendable t o keep t h e shear r e s u l t a n t below 2500 N. This value i s nowhere reached i n the LCT-design (broken l i n e i n f i g . 7). For f u t u r e s t i f f e r superconductors l i k e Nb3Sn lower l i m i t s must be expected, however.

Therefore, i t seems reasonable t o consider t h e m i t i g a t i o n o f shear c o n c e n t r a t i o n e f - f e c t s near t h e touching p o i n t a t t h e bobbin contour by a b e t t e r arrangement o f t h e winding equipment. The shear-resul t a n t as t h e 1 im i t i n g parameter i n t h e forming pro- cess peaks over a l e n g t h o f about 1 m ( f i g . 7). I f i t i s p o s s i b l e t o p l a c e a r o l l e r ( o r r o l l e r s e t ) i n t h i s space near t h e bobbing then such a device would appear a t t r a c t i v e f o r t h i s purpose, because

-

i t c o u l d impose a d e f i n e d i n t e r m e d i a t e bending moment thus l o w e r i n g t h e bending moment g r a d i e n t (= shear r e s u l t a n t ) a t t h e bobbin,

-

t h e bending moment a t t h e bobbin contour must then no l o n g e r be provided by t h e p u l l i n g f o r c e alone, so t h a t t h e shear peak i n h e r e n t t o t h e f r e e SECM can be

"smoothed down".

a,b r o l l e r s e t c one r o l l e r d no r o l l e l

c o n d u c t o r a r c l e n g t h

F i g . 8

-

M i t i g a t i o n o f t h e shear r e s u l t a n t by a r o l l e r gate

F i g u r e 8 g i v e s a schematic o f t h e envisaged arrangement. The r o l l e r gate R may be c u r - ved o r s t r a i g h t , staggered o r f a c e - t o face. An a d d i t i o n a l s u i t a b l y moving holddown r o l l e r H m i g h t h e l p f o r compaction ( e s p e c i a l l y near contour r a d i u s jumps!). To keep t h e r o l l e r s close enough t o t h e bobbin t h e y should be a b l e t o make a s i m p l e - s t ~ a i g h t motion (see arrows i n f i g . 8) which compensates f o r t h e change o f t h e d i s t a n c e t a b l e a x i s / t o u c h i n g p o i n t d u r i n g the winding (see arrows i n f i g . 8). Then t h e swivel of t h e supply b r i d g e may probably become unnecessary. Conductor branch b c o u l d be s t r a i g h t ( o r s u i t a b l y curved). The p r a c t i c a l importance of an improved arrangement l i e s i n t h e promise t o enhance t h e f e a s i b l e range o f p u l l i n g forces f o r t h e winding o f t h e f u t u r e s t i f f e r superconductors.

I I I. REFERENCES

/1/ MESSEMER, G., ZEHLEIN, H., Proc. 1 1 t h SOFT, EUR-7035EN (1981) 533 /2/ MAURER, A., t h i s conference MT-8, paper 4P1-03

/3/ KRAUTH, H. e t a l . IEEE-T.rans.Magnetics, MAG-17 (1981), 1726

/4/ ZEHLEIN, H., I n t . Conf. SMIRT7, Chicago, Aug--22-26, 1983, Paper N5/2, t o be published , i n Res Mechanica

/5/ MESSEMER, G., ZEHLEIN, H., I n t . Conf. SMIRT7, Chicago, Aug. 22-26, 1983, Paper N5/6, t o be published i n Res. Mechanica

/6/ ERB, J. e t al., IEEE-Trans.Magnetics, MAG-17 (1981), 1699

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to