• Aucun résultat trouvé

RESULTS OF THE LEBAN DIAGNOSTIC PROCEDURE APPLIED TO TWO SMM - OBSERVED FLARES

N/A
N/A
Protected

Academic year: 2021

Partager "RESULTS OF THE LEBAN DIAGNOSTIC PROCEDURE APPLIED TO TWO SMM - OBSERVED FLARES"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00227579

https://hal.archives-ouvertes.fr/jpa-00227579

Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

RESULTS OF THE LEBAN DIAGNOSTIC PROCEDURE APPLIED TO TWO SMM -

OBSERVED FLARES

B. Sylwester, J. Sylwester, J. Jakimiec

To cite this version:

B. Sylwester, J. Sylwester, J. Jakimiec. RESULTS OF THE LEBAN DIAGNOSTIC PROCEDURE

APPLIED TO TWO SMM - OBSERVED FLARES. Journal de Physique Colloques, 1988, 49 (C1),

pp.C1-309-C1-314. �10.1051/jphyscol:1988165�. �jpa-00227579�

(2)

JOURNAL DE PHYSIQUE

Colloque C1, Suppl6ment au n03, Tome 49, Mars 1988

RESULTS OF THE LEBAN DIAGNOSTIC PROCEDURE APPLIED TO TWO SMM -

OBSERVED FLARES

B. SYLWESTER, J. SYLWESTER and J. JAKIMIEC'

Space Research Centre, Polish Acadamy of Sciences, Wroclaw, Pol and

*~stronomical Institute, Wroclaw University. Wroclaw, Poland

ABSTRACT

In a previous paper <B. Sylwester e t al., 1986) we proposed a new procedure called LEBAN <Loop Energy Balance Analvsis> f o r deriving the basic geometrical p a r a l n e t e r s of f l a r i n g loops. In a subsequent paper <B. Sylwester e t al., 1987> t h e Palermo Code r e s u l t s of hydrodynamic f l a r e loop modelling have been used t o confirm t h e validity of t h e LEBAN procedure f o r t h i s purpose. In t h e p r e s e n t i n v e s t i g a t i o n t h e LEBAN procedure has been applied t o analyse two SMM-observed f l a r e s Con 12 Nov. 1980. -17:OO UT and on 18 Nov. 1980, -15:OO UT>. Estimated f l a r e loop l e n g t h s and c r o s s - s e c t i o n s have been compared with t h o s e derived f r o m deconvolved H M S images a n d / o r e s t i m a t e d i n d i f f e r e n t way by o t h e r a u t h o r s . If t h e loop semi-length L is known from o t h e r o b s e r v a t i o n s , t h i s allows t o e s t i m a t e t h e p o r t i o n r ) of t h e loop which w a s heated. Time v a r i a t i o n s of o t h e r i m p o r t a n t p a r a m e t e r s c h a r a c t e r i z i n g t h e f l a r e plasma < t h e heating rate, t h e mean density. t h e t o t a l energy c o n t e n t ) are a l s o discussed.

INTRODUCTION

Recently (Sylwester e t al., 1986>, we have proposed a new diagnostic procedure called LEBAN f o r deriving basic geometrical p a r a m e t e r s of a f l a r i n g loop. Based on t h e t i m e v a r i a t i o n s of t h r e e easily measured p a r a m e t e r s , i.e.: t h e maxilnum and t h e mean t e m p e r a t u r e of t h e plasma, and t h e t o t a l emission measure, LEBAN allows t o estimate t h e e f f e c t i v e length and t h e c r o s s - s e c t i o n of t h e f l a r i n g loop. Since Last year w e have improved t h e method and t e s t e d i t s r e l i a b i l i t y using r e s u l t s of t h e hydrodynamic f l a r e loop modelling CPalermo Code Modelling

-

PCM>. R e s u l t s of t h e s e tests have been described i n Paper I <Sylwester e t al., 1987>. I t t u r n e d o u t t h a t it is possible t o e s t i m a t e t h e equivalent p a r t

<@> of t h e f l a r i n g loop which is h e a t e d

,

i f i n addition t o t h e

time h i s t o r y of t h e t h r e e basic p a r a m e t e r s t h e measured loop l e n g t h Cas derived, f o r i n s t a n c e , f r o m t h e X-ray f l a r e images> is known. Consequently, w e are able t o determine t h e amount of t h e thermally deposited f l a r e energy and o t h e r components of f l a r e energy balance. In t h e p r e s e n t paper w e apply t h e LEBAN method t o two well observed s o l a r f l a r e s .

DATA USED I N THE ANALYSIS

Accurate values of t h e t h r e e p a r a m e t e r s c h a r a c t e r i z i n g t h e f l a r i n g loop a t any time during t h e f l a r e are needed t o make possible t h e LEBAN diagnostic: t h e maximum and t h e mean t e m p e r a t u r e of t h e plasma <Tm and T respectively>, and t h e t o t a l

-

plasma emission measure E . In o r d e r t o e s t i m a t e values o f t h e s e p a r a m e t e r s , i n t h e p r e s e n t paper w e have used t h e X-ray fluxes measured by t h e

BCS

and

HXIS

i n s t r u m e n t s aboard t h e SMM

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1988165

(3)

C1-310

JOURNAL D E PHYSIQUE

s a t e l l i t e . R a t i o s o f t h e i n t e g r a t e d flare f l u x e s measured by

HXIS

i n s t r u m e n t i n channels 3 <8

-

11.5 keV> and 1 (3.5

-

5.5 keV>

have been used t o d e r i v e t h e maximum t e m p e r a t u r e o f t h e f l a r i n g plasma. R a t i o s o f t h e satellite t o t h e resonarace line f l u x e s <Ca k and w l i n e s in t h e n o t a t i o n o f Uabriel, 1972> o b s e r v e d i n BCS channel 1 have been used t o estimate t h e a v e r a g e plasma t e m p e r a t u r e . The value o f t h e a b s o l u t e f l u x o b s e r v e d i n t h e w Une has provided t h e t o t a l emission measure. R e l a t i o n s between t h e o b s e r v a t i o n a l l y derived <TS/*, Tca, sCa> and r e q u i r e d <Tm, T,

-

E > p a r a m e t e r s a r e as follows:

where. T9/* is t h e i s o t h e r m a l t e m p e r a t u r e f r o m HXIS channel 3 t o 1 r a t i o < i n MK>, Tca <MK> and eCa ax-e t h e t e m p e r a t u r e and emission m e a s u r e d e r i v e d by f i t t i n g a s y n t h e t i c s p e c t r u m t o t h e o b s e r v e d BCS channel 1 s p e c t r u m <see Lemen e t al., 1984).

Relations <I>, < 2 > and <3> have been o b t a i n e d by means o f d e t a i l e d modelling using t h e PCM r e s u l t s and will b e d i s c u s s e d i n a s e p a r a t e paper. In deriving t h e s e r e l a t i o n s w e have assumed that the BCS and H X I S f l u x e s used are formed i n the f l a r e plasma a t t e m p e r a t u r e s T

>

Tmin, where Tmin

-

10

MK.

THE 1 8 t h NOVEMBER 1980 FLARE

This limb f l a r e occured i n t h e NOAA a c t i v e r e g i o n 2779 a t 14:51

UT

and w a s c l a s s i f i e d as M 3 b a s e d on UOES s o f t X-ray data. H a p a t r o l s r e p o r t e d no f l a r e a t t h i s time. The f l a r e has been a l r e a d y e x t e n s i v e l y analysed by Simr.ett and S t r o n g . (1984) i n X-rays and by Schmahl e t al.. (1986) i n microwaves. A s recommended i n t h e method, a t f i r s t w e check whether. t h e q u a s i - s t e a d y - s t a t e <QSS> p h a s e is p r e s e n t f o r t h e i n v e s t i g a t e d f l a r e . In Figure 1 w e p r e s e n t t h e t i m e h i s t o r y o f t h e p a r a m e t e r C defined as:

A s is s e e n i n Figure 1, t h e QSS phase can b e f i n d in t h e period f r o m 15:OO t o 15:08

U T

with t h e a v e r a g e value of C indicated. The value o f C is r e l a t e d t o t h e g e o m e t r i c a l p a r a m e t e r s o f t h e loop i n t h e following way:

where L is t h e semilength o f flaring7 loop, A is t h e loop c r o s s - s e c t i o n area, and W

=

7.16 . l o - <cgs> is a c o n s t a n t r e l a t e d t o t h e scaling l a w f o r t h e QSS phase <c.f. Equation < I >

i n Paper I>. From C value one c a n o b t a i n L/A r a t i o f r o m Equation

<5>.

In t h e a n a l y s i s o f t h e f l a r e i n i t i a l phase, w e i n v e s t i g a t e t h e e n e r g y balance e q u a t i o n f o r t h e whole loop i n t h e i n t e g r a l form.

This l e a d s t o t h e following r e l a t i o n <c.f. Equation <16> i n Paper I>:

(4)

where:

C *

=

K ) <AA>'" < 3 k ~ > - '

Time from 1451 UT (mln)

r 1 1 I I

Fig. 1. Plot of t h e time h i s t o r y of t h e p a r a m e t e r C <see t e x t f o r definition>. Time period when C is c o n s t a n t a t t h e lowest level correspond t o t h e Quasi-Steady-State phase of f l a r e evolution when classical s c e n g Law f o r loops is applicable. The constancy of C means a l s o t h a t t h e f l a r i n g loop geometry does n o t vary during t h e f l a r e decay.

Here: K I 9 - l o - ? , f

=

3.30, a

=

0.7'0 Cc.f. Paper I>, k is t h e Boltzman c o n s t a n t . 13 i s t h e f r a c t i o n of t h e f l a r i n g loop which is e f f e c t i v e l y h e a t e d , a i s t h e f r a c t i o n o f t h e enersgy conducted o u t which r e t u r n s back t o t h e high t e m p e r a t u r e region with t h e ififlowing s t r e a m of matter and Pr<T> is t h e r a d i a t i v e l o s s

18 Nov 1980 C = 9.50.10'~~

f u n c t i o n f o r t h e optically t h i n plasnia. Initially w e performed calculations by taking y

=

ycr

=

0.9 in Equation ( 7 ) . A s can be

-

- -

I I I I I

s e e n from Figure 2. during t h e i n i t i a l f l a r e phase, t h e observed behaviour of % ' ' 2 ~ s can be described by a c o n s t a n t value of C

.

By f i t t i n g a s t r a i g h t line t o t h e r i s i n g p o r t i o n o f t h e graph we obtained t h e Ci value. Using t h e C * . and L/A one can o b t a i n t h e upper l i n t i t s of t h e loop semilength

L+

and n e x t t h e c r o s s s e c t i o n A_. For t h e considered f l a r e , t h e corresponding

7

values a r e L

-

6.3.10' cm. and A* = 2 . 1 0 ' ~ cm2.From Figure 4 of S i m n e t t and S t r o n g . <1984>, <deconvolved channel 1 HXIS images of t h e f l a r e > , we have e$timated semilength of t h e main f l a r i n g s t r u c t u r e as L

=

2.10 on. So t h e upper limit derived i n o u r analysis is i n agreement with t h i s observation. From $he VLA o b s e r v a t i a n s Sclmahl e t al.. (1985) found A 6 . 1 0 ~ ~ cm

,

which

is above our upper limit. b u t is a t t h e level o f t h e b e s t i n s t r u m e n t a l resolution.

(5)

JOURNAL

DE

PHYSIQUE

I I

18 Nov 1980

,

-15 00 UT flare

& 1 I

Fig. 2. Dependence of

%"2

( c h a r a c t e r i z i n g t h e thermal energy>

v s t h e S ~ ~ < c h a r a c t e r i z i n g t h e t o t a l energy deposited ~ ~ d t f r o m t h e fLare o n s e t > . The r i s i n g p o r t i o n of t h e plot can be w e l l approximated by a s t r a i g h t line with a slope c o e f f i c i e n t C*. Constant Ci means a l s o t h a t t h e f l a r i n g loop geometry does n o t change during t h e initial heating.

When we made use of t h e observed value of L

,

and treat it as a n additional d a t a , t h e n we followed a n o t h e r path: from C and L values we derived

A =

6.3-lo'* cm2. This value i s much below t h e V L A resolution. N e x t , based on t h e measured C1 value, indicated i n Figure 2, w e calculated ). from Equation C7> and t h e corresponding I) from Equatio~> (8). For 18 Nov 1980 f l a r e t h e e s t i m a t e d 13 value w a s r )

=

0.42.

Now w e could proceed t o i v e s t i g a t e t h e evolution of individual t e r m s in t h e energy balance equation Cc.f. Equation C5> in Paper I>. With a known value of 0 w e have calculated each of t h e terms and p l o t t e d t h e values i n Figure 3. I t is s e e n from t h e Figure, t h a t in t h e i n i t i a l phase t h e energy deposited i n t o t h e loop tH is nearly fully t r a n s f e r r e d i n t o t h e thermal energy lth of t h e h e a t e d plasma. During t h e decay phase, t h e radiatively l o s t energy I r becomes more Important, being comparable with t h e energy l o s t by conduction 18 which r e p r e s e n t s t h e t r u e l o s s e s of

c'

t h e energy o u t of t h e i n v e s t i g a t e d region <plasma with t h e t e m p e r a t u r e above 10 MK>. Derived e l e c t r o n density in t h e fl-ing loop is n_

- =

8.0.10'~ cm-a a t t h e beginning of t h e heatirrg, and i n c r e a s e s t o 3.0.

loii

cm-a a t t h e end of t h e impulsive phase of t h i s f l a r e . L9;er on t h e d e n s i t y slowly d e c r e a s e s , being s t i l l above 10" cm half a n hour a f t e ~ t h e maximum. The e s t i m a t e d value of t h e energy deposition r a t e is a t maximum 50 e r g cm -3 s -1

.

In t h e Q S S phase t h e heating of t h e plasma still takes place b u t a t t h e level 20 t i m e s smaller.

(6)

18 Nov 1980.

Time from 1451 UT (rnin)

Fig. 3. Time N s t o r v of t h e energy balance devided i n t o main components. XH s t a n d s f o r t h e t o t a l energy deposited from t h e f l a r e o n s e t . Sth is t h e thermal energy c o n t e n t a t a given time,

lr

i s t h e energy r a d i a t e d away and 15 is t h e

C

energy l o s t from t h e i n v e s t i g a t e d high t e m p e r a t u r e f l a r e by conduction.

THE 12 NOVEMBER FLARE

This f l a r e occured n e a r t h e disc c e n t e r a t 17:OO

UT

and was c l a s s i f i e d as a n Ha e v e n t of importance 1B. For t h i s f l a r e a s e t of ground-based as well as X-ray o b s e ~ v a t i o n s were available. The f l a r e was extensivelv studied by Mac Neice e t al., C1985> as a typical example of a compact f l a r e . The comparison of t h e Palermo Code hydrodynamic models with t h e S M M o b s e r v a t i o n s f o r t h i s f l a r e w a s made by P e r e s e t al.. (1987). Based on combined analvsis of t h e Ha and s o f t X-ray o b s e r v a t i o n s , t h e y i n f e r r e d t h a t t h e se8niiengt.h of t h e main f l a r i n g loop s t r u c t u r e w a s 2 . 1 0 ~ cm and t h e c r o s s - s e c t i o n 2 . 5 ~ 1 0 ' ~ c m ~ .

A s in t h e previous c a s e , f i r s t w e e s t i m a t e d t h e upper &imits - f o r t h e length and t h e c r o s s - s e c t i o n based on t h e

Tm,

T, and s

. .

v a r i a t i o n s only. In this c a s e

L+ =

5 . 1 . 1 0 ~ cm and A+ = 5 . loid cm2. Next we adopted d i f f e r e n t value f o r t h e loop semilength L

=

3 . 8 . 1 0 ~ cm. which we derived from deconvolved HXIS images in t h e energy bmd 3.5

-

8 keV, and obtained t h e following values f o r t h e p a r a m e t e r s : A

=

3.8.l0'*cm2, (3 = 0.74.. In t h i s f l a r e r e l a t i v e l y l a r g e r p o r t i o n of t h e loop was heated. In c o n t r a r y t o t h e previous c a s e , t h i s f l a r e w a s of very s h o r t dur'ation

-

6 min

only. During t h e main p a r t of t h e f l a r e evolution t h e d e n s i t y w a s n o t changing s u b s t a n t i a l l y , being in t h e r a n g e 1.2

-

1.6~!0"cm-~. The maximum r a t e of energy d $ p e ~ i t i o n w a s 0.4 e r g cm s -i and during t h e Q S S phase 1.4 e r g c m - s .

(7)

JOURNAL

DE

PHYSIQUE DISCUSSION

Cross-sections obtained in LEBAN a r e based on e s t i m a t e s of t h e loop length f r o m HXIS d a t a . These loop l e n g t h s are n o t c o r r e c t e d f o r t h e p r o j e c t i o n e f f e c t s , t h e r e f o r e derived c r o s s - s e c t i o n s should be understand as lower limits. Nevertheless t h e calculated values of c r o s s - s e c t i o n f o r b o t h f l a r e s are much l e s s t h a n t h e r e s o l u t i o n of e x i s t i n g radio o r X-pay o b s e r v a t i o n s .

I n d i r e c t information on t h e c r o s s - s e c t i o n may be obtained by e s t i m a t i n g t h e measured axen of Ha kernels

.

Mac Neice e t al.,

<1985> found t h e kernel a r e a as 5 . 1 0 ' ~ c m ~ < f o r t h e 12 November f l a r e > which is i n a good agreement with o u r value. These e s t i m a t e d c r o s s - s e c t i o n s provide a typical r a d l u s of t h e loop r

=

1

-

2 a r c s e c , and consequently t h e loop a s p e c t r a t i o L/r -20.

T h e r e f o r e f o r a f l a r e loops similar t o t h o s e d y s e d , t h e filling f a c t o r f o r t h e SUM i n s t r u m e n t s can be -0.05, which is comparable t o t h e filling f a c t o r s e s t i m a t e d by Wolfson e t al., (1983) and de Jager e t al., (1983).

Derived (3 values correspond t o t h e c a s e when s i g n i f i c a n t p o r t i o n of t h e = f l a r i n g loop volume is heated, of t h e o r d e r o f 50 % <2

lo2*

cm i n a b s o l u t e terms>. I t is possible t o understand t k i s l a r g e volumes h e a t e d within t h e hypothesis t h a t MHD turbulence a c t s as i m p o r t a n t f a c t o r in t h e p r o c e s s of magnetic field energy d i s s i p a t i o n Ccf. Jakimiec e t al., 1986).

ACKNOWLEDGEMENTS

This work w a s p a r t l y funded by Polish Academy of Sciences Program CPBP 01.20

-

Development and Exploatation o f Space Research.

The BCS is p a r t of t h e X-ray Poiychromator built by a consortium involving Lockheed Palo Alto Research Laboratory, Mullard Space Science l a b o r a t o r y , and Rutherford Appleton Laboratory. HXIS i n s t r u m e n t is built by t h e Laboratory f o r Space Research, U t r e c h t , and t h e University of Bimingham.

REFERENCES

Gabriel A.H.: 1972, Mon. Not. R. astr. Soc., 160, 99.

Jakimiec J., Fludra A.. Lemen J.R., Dennis B.R.. Sylwester J.:

1986. Adv. Space Res., Vol. 6, No. 6.,191.

de Jager C., Machado M.E., Schade A., S t r o n g K.T., S v a s t k a Z., Woodgate B.E., van Tend W.: 1983, Solar Phys., 84, 205.

Lemen J.R.. Phillips K.J.H.. Cowan R.D,. H a t a J.. and Grant I.P.:

1984, A s t r . Astrophvs., 135, 313.

Mac Neice P., Pallavicini R., Mason H.E., S i m n e t t G.M. Antonucci A., Shine R.A., Rust D.M., Jordan C., Dennis B.R.: 1985, Solar Phys., 99, 167.

P e r e s U., Reale F., S e r i o S., Pallavicini R.: 1987, Astrophys.

J., 312, 895.

PalLavicini R.. Peves G., Vaiana Q., Acton L.A.: 1983, Astrophys.

J., 270, 270

Schmahl E.J., Kundu M.R., Dennis B.R.: 1985, Astrophys. J.. 299, 1017.

Simnett Q.M., S t r o n g K.T.: 1984, Astrophys. J., 284, ,839.

Sylwester, B.. Farnik, F., Sylwester,

J.,

Jakimiec,

J.,

Valnlcek, B.: 1986, Adv. Space Res, 6, 233.

Sylwester B., Sylwester J., Jakimiec J., Fludra A., Peres. U., S e r i o S.: 1987, Proceedings of t h e IAU 10th European Regional Astronomy Meeting

.

Prague, <Paper I>.

Wolfson C.J., Doyle J.Q.. Leibacher J.W.. Phillips K.J.H.: 1983, Astrophys. J., 269, 319.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to