• Aucun résultat trouvé

MODELING THE EBIC MEASUREMENTS OF DIFFUSION LENGTHS AND THE RECOMBINATION CONTRAST AT EXTENDED DEFECTS

N/A
N/A
Protected

Academic year: 2021

Partager "MODELING THE EBIC MEASUREMENTS OF DIFFUSION LENGTHS AND THE RECOMBINATION CONTRAST AT EXTENDED DEFECTS"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00229636

https://hal.archives-ouvertes.fr/jpa-00229636

Submitted on 1 Jan 1989

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MODELING THE EBIC MEASUREMENTS OF DIFFUSION LENGTHS AND THE

RECOMBINATION CONTRAST AT EXTENDED DEFECTS

C. Donolato

To cite this version:

C. Donolato. MODELING THE EBIC MEASUREMENTS OF DIFFUSION LENGTHS AND THE

RECOMBINATION CONTRAST AT EXTENDED DEFECTS. Journal de Physique Colloques, 1989,

50 (C6), pp.C6-57-C6-64. �10.1051/jphyscol:1989605�. �jpa-00229636�

(2)

R E W E DE PHYSIQUE

APPLIQUEE

Colloque C6, Supplbment au n06, Tome 24, Juin 1989

MODELING THE EBIC MEASUREMENTS OF DIFFUSION LENGTHS AND THE RECOMBINATION CONTRAST AT EXTENDED DEFECTS

C. DONOLATO

C N R , I s t i t u t o Lamel, V i a C a s t a g n o l i 1, I-40126 Bologna, I t a l y

Resume

-

h e d e s c r i p t i o n a l t e r n a t i v e , basee s u r l e concept de p r o b a b i l i t e d e e c t e , e s t proposee pour 1 'i n t e r p r e t a t i o n d'experiences typiaues

r e a l isees par l a technique du courant i n d u i t p a r f a i s c e a u d ' e l e c t r o n s (EBIC) associee au microscope e l e c t r o n i q u e

a

balayafle. On montre que l a d i s t r i b u t i o n

9

( r ) de c e t t e p r o b a b i l i t e dans 1 ' e c h a n t i l l o n o b e i t

a

une equation de d i f f u s i o n homogene e t que l e courant i n d u i t r e s u l t e de l ' e x c i t a t i o n des p r o p r i e t 6 s de l ' e c h a n t i l l o n par l a f o n c t i o n de qeneration du faisceau

e l e c t r o n i q u e . L ' o b j e c t i f des experiences ESIC e s t de determiner l e s paramstres e s s e n t i e l s c a r a c t e r i sant 1 e semi conducteur ou 1 e defaut, d o n t depend.

D i f f e r e n t e s m6thodes d'acces 2 c e t t e i n f o r m a t i o n sont discutees e t quelques nouvelles p o s s i b i l i t 6 s sont presentees.

A b s t r a c t

-

An a l t e r n a t i v e d e s c r i p t i o n i s proposed o f t y p i c a l experiments t h a t a r e performed w i t h t h e e l e c t r o n beam induced c u r r e n t (EBIC) technique o f t h e scanning e l e c t r o n microscope, on t h e b a s i s of t h e n o t i o n o f c h a r g e - c o l l e c t i o n p r o b a b i l i t y . I t i s shown t h a t t h e d i s t r i b u t i o n p ( r ) o f t h i s p r o b a b i l i t y i n t h e specimen obeys a homogeneous d i f f u s i o n equation, and t h e induced c u r r e n t r e s u l t s from probing t h i s sample p r o p e r t y w i t h t h e generation f u n c t i o n o f t h e e l e c t r o n beam.

EBIC experiments aim a t determining t h e e s s e n t i a l semiconductor o r d e f e c t parameters upon which i s dependent. D i f f e r e n t methods of r e c o v e r i n g t h i s i n f o r m a t i o n a r e discussed and some new p o s s i b i l i t i e s a r e presented,

1

-

INTRODUCTION

The e l e c t r o n beam induced c u r r e n t (EBIC) technique o f t h e scanning e l e c t r o n microscope (SEM) has been used e x t e n s i v e l y t o c h a r a c t e r i z e semiconductor m a t e r i a l s and devices; review a r t i - c l e s on t h e p r i n c i p l e s and a p p l i c a t i o n s o f EBIC are a v a i l a b l e 11-31.

This paper aims a t demonstrating t h a t d i f f e r e n t EBIC experiments can be given a common pheno- menological d e s c r i p t i o n u s i n g t h e n o t i o n o f charge c o l 7 e c t i o n p r o b a b i l i t y , i.e. t h e proba- b i l i t y t h a t an i n j e c t e d m i n o r i t y c a r r i e r w i l l be c o l l e c t e d by t h e j u n c t i o n c o n t a c t and thus c o n t r i b u t e s t o t h e induced c u r r e n t . The concept o f one-dimensional charge c o l l e c t i o n proba- b i l i t y has been used by Possin and K i r k p a t r i c k /4/ t o analyze q u a n t i t a t i v e l y EBIC measure- ments on p l a n a r p-n j u n c t i o n s . Here t h i s n o t i o n w i l l be g e n e r a l i z e d t o t h r e e dimensions and moreover, i t w i l l be shown t h a t t h e c h a r g e - c o l l e c t i o n p r o b a b i l i t y d i s t r i b u t i o n i n a g i v e n s t r u c t u r e can be c a l c u l a t e d d i r e c t l y by s o l v i n g a homogeneous d i f f u s i o n equation, even i n t h e presence o f defects. The induced c u r r e n t can then be described as t h e r e s u l t o f probing t h i s l o c a l p r o p e r t y o f a device w i t h t h e generation volume o f t h e SEM e l e c t r o n beam.

As observed i n / 4 / , t h e c h a r g e - c o l l e c t i o n p r o b a b i l i t y d i s t r i b u t i o n c o n t a i n s a l l i n f o r m a t i o n about t h e motion o f m i n o r i t y c a r r i e r s t h a t can be obtained by t h e EBIC technique. Therefore c h a r a c t e r i z i n g q u a n t i t a t i v e l y a semiconductor s t r u c t u r e by EBIC means r e c o v e r i n g t h i s d i s t r i - b u t i o n ( o r the e s s e n t i a l parameters upon which i t i s dependent), under t h e assumption t h a t t h e probe f u n c t i o n o f t h e e l e c t r o n beam (i.e. t h e s p a t i a l d i s t r i b u t i o n o f t h e generation) i s known. Typical methods used t o perform t h i s r e c o n s t r u c t i o n and new p o s s i b i l i t i e s a r e discus- sed, making reference t o s p e c i f i c experiments f o r c l a r i t y o f t h e discussion.

2

-

THE CHARGE COLLECTION PROBABILITY

The usual way of d e s c r i b i n g an EBIC experiment f o l l o w s t h e sequence o f p h y s i c a l processes t h a t occur i n t h e semiconductor sample as a r e s u l t o f t h e e l e c t r o n bombardment, i . e . :

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1989605

(3)

F i g . 1

-

The two e q u i v a l e n t d e s c r i p t i o n s o f charge c o l l e c t i o n . ( a ) : through t h e d e n s i t y p ( 1 ) o f beam-injected m i n o r i t y c a r r i e r s ; (b): by t h e charge c o l l e c t i o n p r o b a b i l i t y cp

(1).

a) t h e generation o f e l e c t r o n - h o l e p a i r s by t h e e l e c t r o n beam b ) t h e t r a n s p o r t o f beam-generated m i n o r i t y c a r r i e r s

c ) the c o l l e c t i o n o f m i n o r i t y c a r r i e r s by t h e j u n c t i o n .

The process a ) i s described by i n t r o d u c i n g t h e generation f u n c t i o n g ( 1 ) s - I 1

,

which

g i v e s t h e generation r a t e o f p a i r s p e r u n i t volume a t t h e p o s i t i o n

1

i n t h e sample. A number o f a n a l y t i c a l approximations o f t h i s f u n c t i o n have been used, t o simp1 i f y t h e a n a l y t i c a l treatment o f t h e problem b) /I/, t h e s i m p l e s t generation model being t h a t o f t h e p o i n t source; Monte-Carlo s i m u l a t i o n s o f g(1) have a l s o been employed /5,6/.

The generation o f c a r r i e r s w i t h s p a t i a l r a t e g ( 1 ) b r i n g s about a steady-state c o n c e n t r a t i o n p ( 1 ) [ cm - 3 ] o f excess m i n o r i t y c a r r i e r s . The two f u n c t i o n s a r e connected by t h e d i f f u s i o n equation:

where D and z a r e t h e d i f f u s i o n c o e f f i c i e n t and l i f e t i m e o f m i n o r i t y c a r r i e r s , r e s p e c t i v e - l y ; z may depend on 1 i f the sample i s n o t homogeneous o r c o n t a i n s l o c a l i z e d defects. To s p e c i f y u n i q u e l y p f o r ,a given g, we must add t o E q . ( l ) s u i t a b l e boundary c o n d i t i o n s . For instance, i n t h e i d e a l i z e d case i l l u s t r a t e d i n F i g . l a ( s e m i - i n f i n i t e semiconductor, w i t h t h e surface as c o l l e c t o r ) , t h e boundary c o n d i t i o n s are:

Once t h e s o l u t i o n o f Eq.(l) w i t h ( 2 ) has been determined ( s t e p b ) ) , t h e c o l l e c t e d p a r t i c l e c u r r e n t I [ s - l ] i s c a l c u l a t e d by i n t e g r a t i n g over t h e c o l l e c t i o n plane z=O t h e d e n s i t y o f t h e d i f f u s i o n c u r r e n t ( s t e p c ) ) :

+co tal

The r e s u l t i n g expression f o r I i s /7/:

CO

I = (exp(-z/L) g,(z) dz

0

where

L

= ( D z ) i s t h e m i n o r i t y - c a r r i e r d i f f u s i o n length, and

f

(4)

J J - 0 0 - 0 0

i s t h e depth d i s t r i b u t i o n o f t h e generation. Equation ( 4 ) shows t h a t I can be expressed through two one-variable f u n c t i o n s : exp(-z/L), which i s r e l a t e d t o a specimen p r o p e r t y ( L ) , and g ( z ) which describes t h e e x t e r n a l generation. Therefore, one m i g h t wonder whether i t was r e a l 1 4 necessary t o c a l c u l a t e f i r s t the three-dimensional d i s t r i b u t i o n p ( r ) t o o b t a i n Eq.(4).

A c t u a l l y t h e c a l c u l a t i o n o f p ( 1 ) can be avoided by i n t r o d u c i n g t h e f i n c t i o n cp(r) which represents t h e charge c o l l e c t i o n p r o b a b i l i t y a t t h e p o i n t

r.

On t h e b a s i s o f a r e c i p r o c i t y theorem f o r charge c o l l e c t i o n /8/, i t has been shown t h a t

~ ( 1 ) obeys t h e homogeneous v e r s i o n o f E q . ( l ) :

w i t h t h e boundary c o n d i t i o n s

Equations (6), ( 7 ) i n v o l v e o n l y device p r o p e r t i e s and n o t those o f t h e generation, and a l s o t a k e i n t o account t h e symmetry o f t h e sample. I n f a c t , i t i s easy t o see t h a t t h e s o l u t i o n t o Eqs. (6), ( 7 ) i s t h e simple one-variable f u n c t i o n

Y ( Z ) = exp(-z/L) ( 8 )

The independence o f cp o f x, y i s a consequence o f t h e t r a n s l a t i o n a l symmetry o f t h e s t r u c - t u r e o f Fig.la along these d i r e c t i o n s . The induced c u r r e n t I i s then obtained by m u l t i p l y i n g t h e generation r a t e a t a depth z by t h e corresponding charge c o l l e c t i o n p r o b a b i l i t y and i n t e g r a t i n g over z; t h i s leads again t o Eq. ( 4 ) . The presence o f a d e p l e t i o n l a y e r , where a l l generated c a r r i e r s a r e assumed t o be c o l l e c t e d , can be taken i n t o account simply by speci- f y i n g t h a t cp = 1 w i t h i n t h e depleted region. I n t h e more general case o f a specimen where

cp = ~ ( r ) , Eq. ( 4 ) becomes:

I ( & ) =

I

v cp(r) g ( r - 1 ) dV = 0 (9)

where t

=

( x ,y ) i s t h e v e c t o r d e s c r i b i n g t h e beam p o s i t i o n i n t h e xy plane and t h e symbol

*

denoTes t h & t8o-dimensional convolution.

The a l t e r n a t i v e p i c t u r e o f charge c o l l e c t i o n f o l l o w i n g from Eq.(9) i s represented schemati- c a l l y i n F i g . l b and i n c l u d e s t h e two f o l l o w i n g steps o f t h e modeling:

a l ) t h e d i s t r i b u t i o n o f t h e charge c o l l e c t i o n p r o b a b i l i t y i n t h e specimen b l ) t h e sampling o f t h i s d i s t r i b u t i o n w i t h t h e beam probe.

This f o r m u l a t i o n corresponds c l o s e l y t o t h e theory o f image formation i n scanning microscopes /9/; i t may s i m p l i f y both t h e a n a l y t i c a l c a l c u l a t i o n s , as j u s t shown i n a p a r t i c u l a r case, and t h e numerical treatment o f t h e charge c o l l e c t i o n problem i n c o n f i g u r a t i o n s o f 1 ow symme- t r y . I n f a c t , t h e homogeneous Eq.(4) i s w e l l s u i t e d t o numerical s o l u t i o n ; once cp(r) has been c a l c u l a t e d over a s u i t a b l e g r i d , t h e value o f I f o r d i f f e r e n t g ( 1 ) ( e i t h e r known a n a l y - t i c a l l y o r through Monte C a r l o s i m u l a t i o n ) can be computed by u s i n g t h e d i s c r e t i z e d v e r s i o n o f Eq. (9).

3

-

THE CHARGE COLLECTION EFFICIENCY

Having o u t l i n e d how t h e beam-induced c u r r e n t can be c o n v e n i e n t l y computed, l e t us consider t h e i n v e r s e problem i.e. how from EBIC measurements, through proper modeling, i n f o r m a t i o n can be gained on e l e c t r i c a l p r o p e r t i e s o f t h e m a t e r i a l / d e v i c e under i n v e s t i g a t i o n .

Here t h e simple one-dimensional case o f a Schottky diode i r r a d i a t e d w i t h a s t a t i o n a r y e l e c - t r o n beam w i l l be examined (Fig.2). From Eq. (9), w i t h

t

= 0, and w r i t i n g more e x p l i c i t l y g,(z).= g .h(z,E), where g [s-']is t h e t o t a l generation r a t e and h(z,E) i s t h e normalized one-d~men!?~onal generation ?unction, we have

(10) 0

I t i s convenient t o i n t r o d u c e t h e charge c o l l e c t i o n e f f i c i e n c y o f t h e device q ( E ) = I ( E ) / g o /2,4/, i.e. t h e f r a c t i o n o f t h e i n j e c t e d c a r r i e r t h a t i s c o l l e c t e d and gives r i s e t o t h e

(5)

electron

I beam

Schottky I

Fig.2

-

Schematic r e p r e s e n t a t i o n o f charge c o l l e c t i o n e f f i c i e n c y measurements on a Schottky diode.

induced c u r r e n t . A measurement o f q(E) f o r d i f f e r e n t values o f E y i e l d s t h e data from which i n f o r m a t i o n about 9 ( z ) i s obtained /4,11,12/.

I t i s convenient t o r e w r i t e Eq. ( l o ) u s i n g i n p l a c e o f ,E t h e primary e l e c t r o n range R, which f o r a given m a t e r i a l i s a known f u n c t i o n o f E. Thus q and 9 w i l l be expressed as f u n c t i o n s o f v a r i a b l e s w i t h t h e same p h y s i c a l dimension ( t h a t o f a l e n g t h ) ; moreover, t h i s s u b s t i t u t i o n a l l o w s e x p l o i t i n g t h e e m p i r i c a l r e s u l t

/ l o /

t h a t h(z,E(R)) i s o n l y dependent upon z/R and n o t on z and R separately. Hence Eq.(lO) becomes /4/:

where A(z/R) i s a u n i v e r s a l f u n c t i o n independent o f t h e beam energy

/lo/.

I f we were a b l e t o probe t h e device w i t h a p o i n t source o f c a r r i e r s , t h e measured c o l l e c t i o n e f f i c i e n c y would equal t h e c o l l e c t i o n p r o b a b i l i t y a t t h e source p o s i t i o n . Since e x p e r i m e n t a l l y we can o n l y probe t h e sample w i t h an extended source, we measure a smeared v e r s i o n o f q ( z ) , i.e. q(R).

The method most f r e q u e n t l y used t o recover i n f o r m a t i o n about (p ( i n p a r t i c u l a r t o determine t h e value o f t h e b u l k d i f f u s i o n l e n g t h L o f t h e semiconductor) from q(E) data assumes t h e form o f 9 t o be known a p r i o r i i n terms o f a small number o f device parameters; t h e values o f these parameters a r e then found by f i t t i n g t h e t h e o r e t i c a l expressions obtainend from E q . ( l l ) t o experiment /4,11,12/. Typical parameters f o r a Schottky diode a r e t h e thickness h o f t h e m e t a l l i z a t i o n , t h e w i d t h W o f t h e d e p l e t i o n l a y e r and L. For t h e purpose o f determining L, however, i t i s n o t necessary t o f i t t h e whole q(R) p r o f i l e , b u t o n l y i t s h i g h energy p a r t , which i s more s e n s i t i v e t o t h e value o f L /2,11/. An approximate expression f o r q(R) v a l i d

i n t h e l i m i t o f R >>h

+

W has been proposed r e c e n t l y 1131:

where q o i s t h e c o l l e c t i o n e f f i c i e n c y o f an i d e a l Schottky b a r r i e r w i t h h=W=O.

The method o f the model f u n c t i o n i s u s e f u l as l o n g as t h e form assumed f o r 9 i s known t o describe adequately t h e device and t h e number o f parameters i n v o l v e d i s small.

There a r e r e l e v a n t p r a c t i c a l cases, however, where these c o n d i t i o n s a r e n o t met; t h i s hap- pens, f o r instance, w i t h t h e Schottky s t r u c t u r e o f Fig.2 i f l a y e r s w i t h enhanced recombina- t i o n (and g e n e r a l l y unknown w i d t h and p o s i t i o n ) a r e present i n t h e device. I n t h i s case a d i r e c t method o f r e c o v e r i n g 9 from q(R) w i t h o u t any assumption about t h e form o f appears d e s i r a b l e . This i s p o s s i b l e i n p r i n c i p l e , s i n c e E q . ( l l ) i s an i n t e g r a l equation which has a unique s o l u t i o n f o r a given q(R) and a known A / 4 / . When A i s a polynomial o f t h e v a r i a - b l e

5

= z/R, as i n t h e approximation by Everhart and H o f f 1101, an e x p l i c i t s o l u t i o n f o r

(6)

E B I C C1

E L E C T R O N B E A M

S C H O T T K Y

X

Fig.3

-

Schematic i l l u s t r a t i o n o f c o l l e c t i o n e f f i c i e n c y measurements on bevels f o r depth p r o f i l i n g o f t h e d i f f u s i o n l e n g t h . The a c t u a l value o f a i s about 3'.

(p o f Eq. (11) can be found and has t h e form /14/:

where q' and q " a r e t h e f i r s t and second d e r i v a t i v e o f q(R), r e s p e c t i v e l y . The a p p l i c a t i o n o f Eq.(13) t o p r a c t i c a l cases, however, r e q u i r e s e v a l u a t i n g r e l i a b l y q ' and q " from a c t u a l n o i s y experimental data, and has n o t y e t been attempted.

Another s i t u a t i o n where i t i s d i f f i c u l t t o g i v e a p r i o r i t h e form o f y occurs when L i s depth-dependent, i . e . when L = L ( z ) , f o r i n s t a n c e as r e s u l t o f g e t t e r i n g treatments. The r e c o n s t r u c t i o n o f t h e r e l e v a n t f u n c t i o n L ( z ) i s made easier, i f t h e experimental arrangement o f Fig.3 i s used, i.e. i f q i s measured a t a f i x e d beam energy a t d i f f e r e n t p o s i t i o n s on a Schottky diode f a b r i c a t e d on t h e sample a f t e r angle beveling. This makes i t p o s s i b l e t o probe t h e semiconductor a t d i f f e r e n t depths w i t h a f i x e d generation volume, whereas i n energy-de- pendent measurements o f q d i f f e r e n t depths a r e reached by changing t h e e x t e n s i o n o f t h e generation region. Sampling a v a r i a b l e property, as L ( z ) , w i t h a f i x e d probe i s expected t o y i e l d b e t t e r chance o f r e c o v e r i n g d i r e c t l y t h i s property.

I n f a c t , i f q ( z ) i s t h e value o f t h e c o l l e c t i o n e f f i c i e n c y when t h e beam i s a t a d i s t a n c e x = z / s i n a from t h e bevel edge ( a i s t h e bevel angle), i t i s p o s s i b l e t o g i v e a simple r e l a t i o n between L ( z ) and q ( z ) i n t h e i d e a l case o f n e g l i g i b l e thickness o f t h e d e p l e t i o n l a y e r /15/:

where

a being t h e average generation depth. The presence o f t h e d e r i v a t i v e i n Eq.(14) sharpens up t h e smooth experimental q ( z ) p r o f i l e t o y i e l d L ( z ) (Fig.4). The advantage o f performing t h e measurements a t a f i x e d beam energy i s a l s o r e f l e c t e d i n t h e form o f Eq:(14), which i n v o l v e s t h e f i r s t d e r i v a t i v e o f q only, and n o t t h e second one as i n Eq.(13).

The modeling o f experiments t h a t i n v o l v e a two-dimensional d i s t r i b u t i o n o f (p (e.g. t h e a n a l y s i s o f EBIC scans obtained on a cross-section o f a p-n j u n c t i o n ) i s o b v i o u s l y more d i f f i c u l t and f u r t h e r approximations must be i n t r o d u c e d t o l i m i t t h e complexity o f t h e discussion. Some methods and problems o f t h e two-dimensionalcase a r e discussed i n /16/.

4

-

THE EBIC CONTRAST OF DEFECTS

Equation ( 6 ) f o r t h e c h a r g e - c o l l e c t i o n probabi 1 i t y a l s o holds i f z i s position-dependent, and t h e r e f o r e can be used t o describe charge c o l l e c t i o n i n t h e presence o f semiconductor defects. By r e p r e s e n t i n g a d e f e c t as a r e g i o n F where t h e l i f e t i m e z' (supposed constant

(7)

Fig.4

-

Computer simulated c o l l e c t i o n e f f i c i e n c y p r o f i l e q ( z ) f o r a h y p o t h e t i c a l d i f f u s i o n l e n g t h p r o f i l e (continuous 1 in e ) . The r e c o n s t r u c t e d d i f f u s i o n l e n g t h p r o f i l e ( d o t s ) has been c a l c u l a t e d u s i n g Eqs. (14), (15).

w i t h i n F) i s s m a l l e r than t h e b u l k l i f e t i m e z /7/, we o b t a i n from Eq.(6)

where Y = ( l / r l '

-

1 / z ) and e ( r ) = 1 i n s i d e F and vanishes elsewhere; t h e boundary c o n d i t i o n s a r e s t i l l those o f Eq.(7).

The f a c t o r Y [ s - I ] represents t h e recombination s t r e n g t h o f t h e d e f e c t . Equation (16) can be solved approximately by t r e a t i n g t h e term c o n t a i n i n g y as a p e r t u r b a t i o n and w r i t i n g y =

= IP, + 9,

,

where yo i s t h e s o l u t i o n t o Eq. (16) i n absence o f t h e d e f e c t (see Eq. ( 8 ) ) , and 9, i s a ( s m a l l ) d e v i a t i o n from 9, produced by t h e presence o f t h e d e f e c t ; t h e approximate s o l u t i o n i s /16/:

~ ( 1 ) =

'PO+

IP, = exp(-z/L)

-

y,/ exp(-zl/L) G(1.1' ) dV1 (17)

F

where G i s t h e Green's f u n c t i o n o f Eq.(6) t h a t vanishes a t t h e surface. The second term i n Eq.(17) represents t h e decrease o f t h e charge c o l l e c t i o n p r o b a b i l i t y i n t h e device due t o t h e presence o f t h e defect. T h i s produces a decrease o f t h e EBIC c u r r e n t , which can be c a l c u l a t e d from Eq. (9) t o be

I * =

lm

g

*

9, dz (18)

The corresponding image c o n t r a s t i s given by

where 10 i s t h e background c u r r e n t and has t h e expression a l r e a d y given i n Eq.(4). I t i s n o t d i f f i c u l t t o check t h a t Eq.(19) reproduces t h e expression d e r i v e d p r e v i o u s l y /7/ s t a r t i n g from t h e s o l u t i o n o f t h e d i f f u s i o n equation f o r p ( r ) .

The two approaches t o t h e d e f e c t c o n t r a s t c a l c u l a t i o n correspond t o d i f f e r e n t b u t e q u i v a l e n t d e s c r i p t i o n s o f charge c o l l e c t i o n , as i n Sec.2. According t o t h e former model /7/, t h e presence o f a d e f e c t m o d i f i e s t h e d i s t r i b u t i o n p ( r ) o f t h e beam-injected m i n o r i t y c a r r i e r s ( i n a way t h a t i s dependent on t h e beam-defect d i s t a n c e ) and hence t h e induced c u r r e n t through a r e d u c t i o n o f t h e g r a d i e n t o f p a t t h e c h a r g e - c o l l e c t i n g surface. I n t h e present

(8)

approach, a d e f e c t reduces i n i t s surroundings t h e p r o b a b i l i t y t h a t a generated c a r r i e r reaches t h e j u n c t i o n ( i . e . (p ); t h e induced c u r r e n t i s t h e r e s u l t o f sampling (p w i t h t h e generation volume, and t h e r e f o r e i s lower when t h e beam i s near t h e d e f e c t .

The f o r m u l a t i o n o f t h e problem i n terms o f charge c o l l e c t i o n p r o b a b i l i t y does n o t s i m p l i f y , i n general, t h e expression o f t h e image c o n t r a s t , s i n c e t h e presence o f a d e f e c t breaks t h e symmetry o f t h e o r i g i n a l device. For d e f e c t s o f s p e c i a l shape, however, t h e defect-device c o n f i g u r a t i o n may r e t a i n some symmetry and t h e i n t r o d u c t i o n o f (p w i l l a l l o w some s i m p l i f i c a - t i o n o f t h e treatment.

Eq.(19) has been g e n e r a l l y used t o determine y from EBIC measurements by computing i*m,,, i.e. t h e maximum c o n t r a s t , and comparing t h i s value t o t h e experimental one. There i s , how- ever, a f u r t h e r c h a r a c t e r i s t i c p r o p e r t y o f i * ( t ) = i " ( x ,y ) t h a t can be used advantageously f o r t h e same purpose, i.e., i t s i n t e g r a l over th< imageopl%ne:

- w -00

I f i* i s p l o t t e d on t h e z a x i s as a f u n c t i o n o f x

,

y t h e q u a n t i t y V [cm 2 ] represents a volume, which describes tf?e o v e r a l l i n f l u e n c e o f tRe d @ f e c t on t h e image c o n t r a s t . Substi- t u t i n g Eq. (19) i n t o Eq. (20) and t a k i n g i n t o account t h a t G ( z , r t ) = G(x-x'

,

y - y '

,

z,zl), s i n c e t h e s t r u c t u r e o f Fig.1, i n absence o f t h e d e f e c t , has t r a n s l a t i o n a l i n v a r i a n c e along x,y, we o b t a i n :

where

GI

i s t h e one-dimensional Green's f u n c t i o n r e s u l t i n g from t h e i n t e g r a t i o n o f G w i t h r e s p e c t t o x,y. The e v a l u a t i o n o f t h e i n t e g r a l i n l a r g e brackets r e q u i r e s a c t u a l l y an i n t e - g r a t i o n w i t h r e s p e c t t o z ' only, since t h e f u n c t i o n t o be i n t e g r a t e d over F depends o n l y on t h i s v a r i a b l e . Equation (21) shows t h a t , f o r a given d e f e c t geometry, V can be c a l c u l a t e d i n terms o f t h e one-variable f u n c t i o n s h and GI, whereas t h e e v a l u a t i o n o f i*,,, would i n v o l v e t h e t h r e e - v a r i a b l e f u n c t i o n s g and 6.

The e v a l u a t i o n o f V from an experimental image does n o t r e q u i r e much a d d i t i o n a l e f f o r t , i f a d i g i t a l a c q u i s i t i o n system i s connected t o t h e SEM, and g r e a t l y simp1 i f i e s t h e c a l c u l a t i o n s r e q u i r e d t o recover y from EBIC c o n t r a s t data. An example o f t h e use o f an i n t e g r a l p r o p e r t y o f t h e EBIC image ( t h e area o f t h e c o n t r a s t p r o f i l e ) t o e v a l u a t e t h e recombination s t r e n g t h o f d i s l o c a t i o n s has been r e p o r t e d i n /17/.

To i l l u s t r a t e another u s e f u l p r o p e r t y o f V, l e t us consider a s t r a i g h t s e m i - i n f i n i t e d i s l o c a - t i o n t i l t e d by an angle a from t h e normal t o t h e sample surface ( t h e z a x i s ) . I n t h i s case dV' = ( a /cos a )dzl, a being t h e cross-section o f t h e recombination c y l i n d e r associated w i t h t h e d i s l o c a t i o n ; t h e p r o d u c t yd = y o [cm2 s-']can be c a l l e d l i n e recombination v e l o c i t y o f t h e d i s l o c a t i o n . Hence Eq. (21) becomes

e x p ( - z t / L ) GJz,zl) dz'

which gives, i n p a r t i c u l a r , t h e r e l a t i o n

between t h e value o f V o f a s t r a i g h t d i s l o c a t i o n t i l t e d by a from t h e

z

a x i s and t h a t o f a perpendicular d i s l o c a t i o n w i t h t h e same yd

.

Therefore, f o r t h i s d e f e c t , a d e v i a t i o n from t h e normal incidence changes t h e maximum c o n t r a s t and lowers t h e symmetry o f t h e EBIC image, b u t leaves t h e product V - c o s a unaffected. This p r o p e r t y can be u s e f u l t o compare t h e a c t i v i t y o f approximately s t r a i g h t d i s l o c a t i o n s w i t h d i f f e r e n t , b u t known, i n c l i n a t i o n angles w i t h r e s p e c t t o t h e surface.

5

-

DISCUSSION AND CONCLUSIONS

The d e s c r i p t i o n o f steady-state EBIC experiments i n terms o f c h a r g e - c o l l e c t i o n p r o b a b i l i t y o f f e r s some formal and computational advantages, b u t r e l i e s on t h e same p h y s i c a l approximat- i o n s used p r e v i o u s l y /7/. Thus, f o r instance, t h e model assumes low i n j e c t i o n c o n d i t i o n s , where ~ ( 1 ) can be c a l c u l a t e d independently o f g ( r ) . Injection-dependent e f f e c t s ( b o t h i n t h e b u l k /18/ and a t d e f e c t s /19,20/) can be described by t a k i n g i n t o account t h a t t h e p r o b e

(9)

f u n c t i o n g ( 1 ) can modify t h e p r e - e x i s t e n t d i s t r i b u t i o n o f t h e c h a r g e - c o l l e c t i o n p r o b a b i l i t y , so t h a t t h e c a l c u l a t i o n steps a l ) and b l ) o f Sec.2 would no l o n g e r be independent.

The present d i s c u s s i o n o f t h e d e f e c t c o n t r a s t uses t h e f i r s t o r d e r ( l i n e a r ) approximation o f 9 i n t h e presence o f a d e f e c t . Higher oder approximations t o the c o n t r a s t have been develo- ped by Pasemann /21/ f o r a s t r a i g h t d i s l o c a t i o n p a r a l l e l t o t h e surface, and an exact calcu- l a t i o n has been g i v e n f o r a plane g r a i n boundary perpendicular t o t h e sample s u r f a c e /22/.

These treatments, w h i l e a l l o w i n g a more accurate d e t e r m i n a t i o n o f t h e s t r e n g t h o f h i g h l y recombining defects, produce a n o n - l i n e a r c o n t r a s t f u n c t i o n (i.e. i* i s n o t p r o p o r t i o n a l t o

y ) and t h e r e f o r e t h e advantages r e l a t e d t o l i n e a r i t y a r e l o s t . The s u b j e c t o f EBIC c o n t r a s t modeling has been reviewed r e c e n t l y by Jakubowicz /23/.

F u r t h e r extensions o f t h e l i n e a r model have a l s o been considered. Thus Joy and Pimentel /24/

and Sieber /25/ have described recombination a t a d i s l o c a t i o n p a r t i a l l y l y i n g i n t h e deple- t i o n region, where c a r r i e r motion i s n o t l o n g e r p u r e l y d i f f u s i v e , by a t t r i b u t i n g t o t h e d i s l o c a t i o n an e f f e c t i v e r a d i u s (and hence a recombination s t r e n g t h yd ) dependent on t h e depth p o s i t i o n ( o r , e q u i v a l e n t l y , on t h e e l e c t r i c f i e l d ) i n t h e d e p l e t i o n l a y e r . Wilshaw and Booker /20/ have spe,cified i n yd

,

which has been i n t r o d u c e d i n Sec.4 on a p u r e l y phenomeno- l o g i c a l basis, i t s dependence on t h e temperature and i n j e c t i o n l e v e l by modeling a d d i t i o n a l l y t h e u n d e r l y i n g microscopical recombination process.

REFERENCES

/1/ HANOKA, J.I. and BELL, R.O., Ann.Rev.Mater.Sci.

11

(1981) 353.

/2/ LEAMY, H.J., J.Appl .Phys. 53 (1982) R51.

/3/ HOLT, D.B. and LESNIAK, M, Scanning E l e c t r o n Microsc. 1985/I (SEM Inc., AMF 0 ' Hare I L 60666, 1985) 67.

/4/ POSSIN, G.E. and KIRKPATRICK, C.G., Scanning E l e c t r o n Microsc. 1979/1 (SEM Inc., AMF O'Hare I L 60666, 1979) 245.

/5/ AKAMATSU, B., HENOC, J. and HENOC, P., J.Appl.PHys.

52

(1981) 7245.

/6/ JOY, D.C., J.Microsc. 143 ( 3 ) (1986) 233.

/7/ DONOLATO C.

,

O p t i k 52 (1978/1979) 19.

/8/ DONOLATO C., Appl .PGs.Lett. 46 (1985) 270.

/9/ CREME, A.V., Ul tramicroscopy r ( 1 9 8 0 ) 131.

/lo/

EVERHART, T.E. and HOFF, P.H., J.Appl .Phys. (1971) 5387.

/11/ WU, C.J. and WITTRY, D.B., J.Appl .Phys. 49 (1978) 2827.

/12/ KITTLER, M. and SCHRODER, K.W., Phys.StaESo1. (a)

11

(1983) 139.

/13/ DONOLATO, C., S o l i d - S t . Electron., i n press.

/14/ DONOLATO, C., I n v e r s e Problems 2 (1986) L31.

/15/ PONOLATO, C. and KITTLER, M., JTAppl.Phys.

63

(1988) 1569.

/16/ DONOLATO, C., Scanning Microscopy

2

(1988) 801.

/17/ DONOLATO, C. and BIANCONI, M., Phys.Stat.So1. ( a ) 102 (1987) K7.

/18/ DAVIDSON, S.M., INNES, R.M. and LINDSAY, S.M., S o m - S t . E l e c t r o n i c s

25

(1982) 261.

/19/ KITTLER, M., K r i s t a l l und Technik 15 (1980) 575.

/20/ WILSHAW, P.R. and BOOKER, G.R., ~ z r o s c o p y o f Semiconducting M a t e r i a l s 1985. Conf .Ser.

No.76 (The I n s t i t u t e o f Physics, B r i s t o l

,

1985) 329.

/21/ PASEMANN, L., Ul tramicroscopy 6 (1981) 237.

/22/ DONOLATO, C., J.Appl .Phys. 54 71983) 1314.

/23/ JAKUBOWICZ, A., Scanning Microscopy 1 (1987) 515.

/24/ JOY, D.C. and PIMENTEL, C.A., MicriSscopy o f Semiconducting M a t e r i a l s 1985. Conf .Ser.

No.76 (The I n s t i t u t e o f Physics, B r i s t o l , 1985) 355.

/25/ SIEBER, B., Phil.Mag.

855

(1987) 585.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to