• Aucun résultat trouvé

PHOTO-INDUCED MICROCRYSTALLINE Inx(Si0.1Se0,9)1-x FILM-ITO SOLAR CELL

N/A
N/A
Protected

Academic year: 2021

Partager "PHOTO-INDUCED MICROCRYSTALLINE Inx(Si0.1Se0,9)1-x FILM-ITO SOLAR CELL"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00221795

https://hal.archives-ouvertes.fr/jpa-00221795

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PHOTO-INDUCED MICROCRYSTALLINE Inx(Si0.1Se0,9)1-x FILM-ITO SOLAR CELL

T. Matsushita, M. Okuda, H. Naito, A. Suzuki, T. Nakau

To cite this version:

T. Matsushita, M. Okuda, H. Naito, A. Suzuki, T. Nakau. PHOTO-INDUCED MICROCRYS-

TALLINE Inx(Si0.1Se0,9)1-x FILM-ITO SOLAR CELL. Journal de Physique Colloques, 1982, 43

(C1), pp.C1-277-C1-282. �10.1051/jphyscol:1982138�. �jpa-00221795�

(2)

JOURNAL DE PHYSIQUE

CoZZoque C1, supplgment au nOIO, Tome 4 3 , octobre 1 9 8 2 page C i - 2 7 7

PHOTO-INDUCED MICROCRYSTALLINE l n , ( s i O . I s e o n g ) l-x FILM -IT0 SOLAR CELL

T. Matsushita, M. Okuda*, H. Naito*

,

A. Suzuki and T. Nakau*

Co ZZege of Engineering, Osaka Industrial. University, Nakagaito, Daito, Osaka, Japan 574

"College of Engineering, University of Osaka Prefecture, Mozu, Sakai, Osaka, Japan 591

Resum@.- Ce papier decriB l e s proprietes Plectriques e t optiques des couches Inx (SiO, lSeO, 9)1

-x

e t 1 ' e f f e t photovol taPque de l a s t r u c t u r e ITO- Inx(Si0,1Se0,9)1-x

-

Au

.(Oc

x

2

0 , 5 ) . Les couches photoinduites microcris- t a l l ines Inos1 (Si0.1Se0.9)0. deposees sur des supports IT0 obtenus s o i t par evaporation s o i t puiverisation

o n t ete

examinees par rnicroscopie electronique

a

balayage. Dans l e cas d'ITO pulv&ris&s, la v i t e s s e de c r i s - t a l l i s a t i o n e t a i t plus grande e t l e rayon de l a zone c r i s t a l l i s e e plus pe- t i t que pour l e s IT0 @vapor@s. La reponse spectrale du systeme avec

x

= 0 , l apres r e c u i t optique a mis en @vidence une amelioration remarquable

0

de l a phototension de 3000

a

7000 A e t l e rendement de conversion a a t t e i n t 3,53 % (12 rn\/cmE).

Abstract.- This paper describes the e l e c t r i c a l and optical properties of Inx(Si0,1Se0,9),-x films, and the photovoltaic e f f e c t f o r IT0

-

I n x ( ~ i O s l Se0.9)1-x

-

AU s t r u c t u r e ( O ~ x ~ 0 . 5 ) . The photo-induced microcrystall ine In0., ( S i O . 1Se0,9)0,9 films deposited on both the evaporated and the sputt- ered IT0 layers were examined by scanning electron microscopy(SEM)

.

For the

case of the sputtered ITO, the c r y s t a l l i z a t i o n velocity was greater and the radius of the c r y s t a l l i z e d region was smaller than t h a t f o r the evaporated ITO. The spectral response of the system with

x

= 0.1 a f t e r the optical annealing showed the remarkable enhancement of the photovoltage from 3000 t o 7000 and the conversion efficiency reached 3.53 % ( I 2 mW/cm 2 ) .

1. Introduction.- L i t t l e information of the amorphous S i chalcogenide films i s known about the e l e c t r i c a l and optical p r o p e r t i e s ' ' 2 ) . T t i s d i f f i c u l t t o investi- gate the amorphous Si-Se system a s a device material, although t h i s system i s expec- ted f o r a good photoconductive material. The chemical decomposition by interaction with water vapor occurs a t the bulk surface and t h i s system leaves a surface compo- sed of Si02, Se, Hz and pungent H2Se vapor. B u t we have empirically known t h a t thin film samples prepared by evaporation seem t o be chemically s t a b l e in a i r . We have already reported the photovoltaic e f f e c t f o r the construction of -, Au

-

chalcogenide .,

\

film

-

Sn02 layer in the Si-Se systemL' and in other systems such as In-Se systemJ'.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1982138

(3)

C1-278 JOURNAL DE PHYSIQUE

I t i s , t h e r e f o r e , i n t e r e s t i n g t o study t h e p h y s i c a l p r o p e r t i e s and t h e p h o t o v o l t a i c p r o p e r t i e s o f t h e In-Si-Se system i n o r d e r t o o b t a i n a low c o s t s o l a r c e l l . Also, t h e study o f t h e e f f e c t o f annealing on In-Si-Se f i l m s i s e s s e n t i a l t o an under- standing o f t h e mechanism o f p h o t o - m i c r o c r y s t a l l i z a t i o n . I n t h i s paper, we describe e l e c t r i c a l and o p t i c a l p r o p e r t i e s o f amorphous and m i c r o c r y s t a l l i n e Inx(SiO.l

Se0.9)1-x f i l m s and t h e p h o t o v o l t a i c e f f e c t f o r Au

-

Inx(Si0,1Se0,9)1-x f i l m s

-

I T 0

s t r u c t u r e i n t h e composition range from x = 0 t o 0.5. Emphasis i s placed on how t h e p h o t o c r y s t a l l i z a t i o n o f amorphous I n 0 ~ 1 ( S i 0 ~ 1 S e 0 ~ 9 ) 0 ~ 9 f i l m s i s a f f e c t e d w i t h t h e c h a r a c t e r i s t i c s o f t h e s u b s t r a t e I T 0 and whether o r n o t t h e compositional change i n t h e c r y s t a l l i z e d r e g i o n i s recognized.

2. Experimental.- The f a b l i c a t i o n o f t h e p h o t o v o l t a i c c e l l i s as f o l l o w s :

Amorphous I n x ( S i O . lSeO.g)l-x f i l m was deposited by vacuum evaporation onto t h e I T 0

0

(.sheet r e s i s t a n c e 20 ohm/sq, 3 mm wide, 2000 A t h i c k s t r i p e ) coated g l a s s substrate.

D e p o s i t i o n r a t e i s 50 i / s e c ; pressure i s 2 x Torr; s u b s t r a t e temperature i s 30-C. F i n a l l y t h e sandwich s t r u c t u r e was completed by crosswise evaporation o f 500

t h i c k , 3 mm wide Au electrode. The t h i c k n e s s o f amorphous I n x ~ S i 0 , 1 S e 0 ~ 9 ) 1 - x f i l m

0

ranged 2000

-

5000 A. The e l e c t r i c a l and o p t i c a l p r o p e r t i e s o f Inx(Si0,1Se0,9)1-x f i l m s must be known p r i o r t o t h e measurement o f photovoltage. The thermal a c t i v a - t i o n energy

AE

i s determined by t h e i n v e r s e temperature dependence o f c o n d u c t i v i t y according t o t h e r e l a t i o n

w cc

exp(- A E / k T ) . The m o b i l i t y gaps Ecl a r e determined e x p e r i m e n t a l l y as an energy o f t h e peak value o f p h o t o c o n d u c t i v i t y ~ The i n t e r c e p t s

7 1 0

o f Id h

L') "'

vs h 3 curves extraporated t o

d

= 0 a r e taken as t h e value o f t h e o p t i c a l energy gaps E~~~ ; where d i s t h e a b s o r p t i o n c o e f f i c i e n t , h i s the P l a n k ' s c o n s t s n t and L, i s t h e 1 ig h t frequency. Experimental r e r u l t s o f 9 P

, a

E, EQ and E : ~ ~ a r e shown i n Table I . The annealing process was performed under i l l u m i n a t ~ o n ( . 1 0 0 -

r,

mt\l/cmLj f o r 15 min, a t 70 C which was t h e optimum c o n d i t i o n f o r t h e m i c r o c r y s t a l l i- z a t i o n . The photo-annealed m i c r o c r y s t a l 1 in e Inoal ( S i 0 ~ l S e o ~ 9 ) 0 ~ 9 f i l m s deposited on both t h e evaporated and the s p u t t e r e d I T 0 l a y e r s were examined by scanning e l e c t r o n microscopy(SEb7). The photovoltage measurement was c a r r i e d o u t by i r r a d i a t i n g t h e c e l l through t h e transparent I T 0 l a y e r u s i n g t h e AFI-1 l i g h t source. The cleaved cross s e c t i o n o f t h e p h o t o v o l t a i c c e l l was observed by SEM.

Table I.- The data o f c o n d u c t i v i t y , a c t i v a - t i o n energy and energy gaps obtained from t h e e l e c t r i c a l and t h e o p t i c a l measurements i n amorphous I n x ( S i O . Se0,9)1-x f i l m s .

x 0

0.1

0.2

0.3 0.4 0.5

at 30"C(S/cm) E (eV) Eg (eV1 ' : E (ev)

4.9 x 10-l1 1.20 2.63 1.85 as deposited

c7.4 x (0.951 (2.05) (1.52) after annealins

7.1 x 10-l1 1.27 2.68 1.86 as deposited

(4.8 x (0.93) (2.03) (1.43) after annealing

-- - - -

2.3 x 1.19 2.65 1.86 as deposited

(3.5 (0.82) (1.97) (1.42) after annealing

4.3 x 10-lo 0.60 2.30 1.67 as deposited

3.9 x lo-' 0.44 2.18 1.35 as deposited

1.8 x 0.39 1.93 0.62 as deposited

(4)

3. Results.-

3.1 Spectral response.- I t i s e v i d e n t from Table I t h a t t h e dark c o n d u c t i v i t y , t h e a c t i v a t i o n energy and t h e energy gaps do n o t change e s s e n t i a l l y w i t h composi, t i o n s o f x = 0.1 and 0.2, b u t these decrease w i t h i n c r e a s i n g t h e I n c o n t e n t f o r

~ 2 0 . 3 . Tn a d d i t i o n t o these r e s u l t s , the samples o f x = 0.1 and 0.2 showed t h e l a r g e s t . value o f t h e p e r s i s t e n t p h o t o c o n d u c t i v i t y below 250 K i n t h e In-Si-Se system4'. The s p e c t r a l response o f t h e system w i t h d i f f e r e n t x values i s shown i n Pm.T t i s recognized t h a t t h e p h o t o v o l t a i c e f f e c t o f t h e samples o f x = 0.1 and

-

0.2 i s remarkably enhanced by t h e annealing process described above. F i g u r e 2 g i v e s t h e open c i r c u i t photovoltage Voc f o r t h e cases o f b o t h "as deposited" samples and

" a f t e r forming" ones which process was described below. The f a c t t h a t t h e maximum open c i r c u i t v o l t a g e i s observed f o r t h e samples o f x = 0.1 and 0.2 i n b o t h cases o f "as deposited" and " a f t e r forming" i s w e l l corresponding t o t h e c h a r a c t e r i s t i c s

P i g . :

Spectral response o f t h e photo- c u r r e n t f o r (a) "as deposited" and ( b )

" a f t e r nnealing". Large enhanced e f f e c t of t h e photocurrent i s caused a f t e r t h e anneal i ng

.

o f s p e c t r a l response shown i n Fig. 7 (a) and (b). I n t h e f o l l o w i n g , t h e e x p e r i - mental r e s u l t s , which were c a r r i e d o u t f o r t h e I n 0 , 1 ( S i 0 ~ , S e 0 , 9 ) 0 ~ 9 f i l m , w i l l be shown.

3.2 Forming e f f e c t . - F i g u r e 3 shows t h e amblent temperature dependence o f t h e photovoltage f o r t h e sample o f x = 0.1.

Tn t h e f i r s t r i s i n g process(at 4"C/min.

r a t e ) , the open c i r c u i t v o l t a g e Voc decreases u n t i l l t h e ambient tempera- t u r e reaches 70°C(A+B) and a f t e r t h a t , Voc continues t o increase w i t h tempera- t u r e , l e a d i n g t o a s a t u r a t e d value(B+C).

Fig. 2 : V a r i a t i o n o f t h e open c i r c u i t

-

voltage, obtained as a f u n c t i o n o f x ( f o r t h e case o f evaporated ITO).

6OOr

0 3 k 40 50 60 70 80 90 ,433 110 1201 Ambient temperature T('o F i g . 3 : R e l a t i o n of t h e photovoltage

-

vs t h e ambient temperature f o r x = 0.1.

The forming e f f e c t i s induced through t h e c o o l i n g p e r i o d between C and 0.

(5)

C 1-280 JOURNAL DE PHYSIQUE

Film Film

Au, \ I TOJE vapo) \I TO(Evapo1

&

F i g . 4 : A SEM

and ( b ) t h e forming one under i l l u m i -

I

nation(100 m ~ / c m 2 ) f o r 15 min. a t

As deposited After forming

70°C.

( a ) ( b )

I n t h e subsequent c o o l i n g process, Vnr increases from C t o D. T h i s i s a s o - c a l l e d

"

-

forming process, by which a r e p r o d u c i b l e temperature dependence o f V,, between D and C has been obtained. The forming e f f e c t i n t h e s t r u c t u r e u s i n g

the

evaporated I T 0 i s l a r g e r than t h a t f o r t h e s p u t t e r e d ITO. F i g u r e 4 shows SEM micrographs o f a cleaved cross s e c t i o n o f t h e I n 0 m 1 ( S i 0 ~ 1 S e 0 , 9 ) 0 ~ 9 s o l a r c e l l : ( a ) t h e as deposited c e l l and ( b ) t h e forming one under i l l u m i n a t i o n . The SEM micrograph i n Fig.4 (b) r e v e a l s t h e c y l i n d r i t i c a l c r y s t a l l i n e . Large s t r u c t u r a l change i s recognized t o be caused by t h e forming process. The s p e c t r a l response o f t h e photovoltage was enhan- ced i n t h e wide wavelength range from 3000 t o 7000 A a f t e r t h e forming process.

The value o f photovol tage increased a1 so a f t e r t h e forming process, corresponding t o " a f t e r forming" curve o f F i g . 2 o r t o D p o i n t o f Fig.3. Furtheremore, t h e power conversion e f f i c i e n c y i n t h e sample o f x = 0.1 reached 3.53, 2.37 and 1.9 % f o r t h e AM-1 12, 40 and 100 mw/cmZ; t h a t i s t h e e f f i c i e n c y decreased w i t h i n c r e a s i n g t h e i l l u m i n a t i o n i n t e n s i t y . T h i s behavior o r i g i n a t e s i n t h e presence o f a h i g h s e r i e s r e s i s t a n c e i n t h e h e t e r o s t r u c t u r e s o l a r c e l l which was measured t o be about 50 ohm under i l l u m i n a t i o n i n t e n s i t y o f 100 mW/cm 2

.

These conversion e f f i c i e n c i e s a r e more than one thousand as l a r g e as t h a t obtained before t h e forming process. Now, we determined t h e m i n o r i t y c a r r i e r l i f e t i m e from t h e o p e n - c i r c u i t photovoltage decay

r \

i n amorphous c e l l s and m i c r o c r y s t a l 1 in e ones3'. The obtained m i n o r i t y c a r r i e r 1 if e - times a r e 6.12 and 104 p s e c f o r t h e as deposited c e l l and f o r t h e annealed one under i l l u m i n a t i o n r e s p e c t i v e l y . Next, a slope o f a p l o t o f 1/C 2 vs V

-

gives

-

t h e value o f t h e acceptor c o n c e n t r a t i o n which was measured t o be 7.6 x 10" and 8.6 x 1016 l / c m f o r t h e as deposited c e l l and f o r t h e annealed one under i l l u m i n a t i o n 3 r e s p e c t i v e l y . I t i n d i c a t e s t h a t t h e annealing process under i l l u m i n a t i o n causes t h e r e d u c t i o n o f t h e e f f e c t i v e d e n s i t y o f recombination center.

4. Discussion and summary.-

In

order t o c l a r i f y the mechanism o f t h e forming e f f e c t as shown i n Fig.3, t h e c r y s t a l l i z a t i o n process was observed a t t h e v a r i o u s stage of t h e annealing process under i l l u m i n a t i o n and i n darkness by o p t i c a l microscope,

(6)

i f t h e r e a r e d i f f e r e n c e s between t h e 1 TO(Evapo) ITO(Sputter) i l l u m i n a t i o n e f f e c t and o n l v t h e -tinated :Iluminat ed h e a t i n g e f f e c t i n darkness. I t was

recognized from these r e s u l t s t h a t t h e c r y s t a l l i z a t i o n r a t e induced by

i l l u m i n a t i o n was g r e a t e r than t h a t

.

f o r h e a t i n g i n darkness6). F i g u r e 5

shows the c r y s t a l 1 iz a t i o n process L

under i l l u m i n a t i o n f o r amorphous Inosl (Si0.1Se0.g)0,9 f i l m s deposited b o t h (a) on the evaporated I T 0 and (b) on t h e s p u t t e r e d ITO. I t has been c l e a r l y by SEM t h a t t h e surface o f t h e s p u t t - ered I T 0 i s more smooth than t h a t o f the evaporated ITO; namely, t h e nucle- a t i o n f o r c r y s t a l l i z a t i o n induced by i l l u m i n a t i o n i s smaller and t h e number o f t h e n u c l e a t i o n i s muchlarger f o r the case o f t h e s p u t t e r e d I T 0 than t h a t f o r t h e evaporated ITO. These surface c h a r a c t e r i s t i c s o f both IT0 a r e w e l l r e f l e c t e d i n Fig.5. Now, as shown i n Fig.3, t h e forming e f f e c t i s

more remarkable i n the evaporated I T 0 (3) l i P 1 1 n

than i n t h e s p u t t e r e d ITO. Uhen com-

pared Fig.3 w i t h Fig.5, i t seems t h a t ( a ) (b)

the l a r g e r t h e c r y s t a l l i z e d r e g i o n i n

the f i l m s i s , t h e l a r g e r t h e a b i l i t y F i g . 5 : Observation o f t h e c r y s t a l l i z a - generating the P~~~~~~~ tage is * Figure

Grocess

under i 11 umination(tungsten 5 i s t h e photographs u s i n g t r a n s m i t t i n g

l i g h t t o observe t h e c r y s t a l l i z e d region. lamp 100 mW/cm 2 ) f o r amorphous Inosl(

Therefore, i t i s recognized t h a t t h e nu-

c l e a t i o n f o r c r y s t a l l i z a t i o n i s formed Si0.1Se0.9)0.9 deposited both ( a ) a t t h e i n t e r f a c e between t h e s u b s t r a t e on the evaporated I T 0 and ( b ) on t h e IT0 and t h e f i l m , and grows upward t o s p u t t e r e d ITO.

t h e f r e e surface side. I n order t o i n -

v e s t i g a t e t h e aspect of surface and cross s e c t i o n i n d e t a i l , s t r u c t u r a l change due t o t h e annealing was observed by SEM F i u r e 6 and 7 e x h i b i t a s t r u c t u r a l change due t o the annealing e f f e c t o f Inosl i~*film deposited on both t h e eva- porated and t h e s p u t t e r e d ITO. For t h e case u s i n g the s p u t t e r e d I T 0 o f Fig.7, t h e c y l i n d r i t i c a l c r y s t a l l i n e s a r e e a s i l y induced by t h e annealing e f f e c t , and t h e rugged surface appears, which i s w e l l corresponding t o t h e o p t i c a l observation o f Fig.5 (b)

.

A compositional a n a l y s i s using t h e e l e c t r o n probe microanalysis(EPMA) was performed on t h e c r y s t a l 1 i z e d and t h e amorphous regions shown i n Fig.6 and 7.

For t h e case o f evaporated ITO, the weight percent o f Se increased from 82.6 t o 90.3 % w i t h i n c r e a s i n g t h e annealing time from 5 t o 15 minutes. On t h e o t h e r hand, the weight percent of Se, f o r t h e case of s p u t t e r e d ITO, a l s o increased from 87.1 t o 89.2 % w i t h i n c r e a s i n g t h e annealing t i m e from 5 t o 15 minutes. I t i s , t h e r e f o r e deduced t h a t the degree o f c r y s t a l l i z a t i o n o f Se i n c r e a s i n g w i t h t h e i l l u m i n a t i o n time i s r e s p o n s i b l e f o r t h e progress o f c r y s t a l l i z a t i o n i n t h e f i l m .

I n summary, t h e photovol t a i c c e l l c o n s i s t i n g o f t h e m i c r o c r y s t a l 1 in e Inx(SiO.

Se0.9)1,x f i l m

-

I T 0 s t r u c t u r e reached t h e maximum conversion e f f i c i e n c y 3.53 % a t room temperature(AM-1 12 mW/cm 2 ) . Therefore, we regard the m i c r o c r y s t a l l i n e I n x ( Si0.1Se0,9)1-x s o l a r c e l l as promising f o r i t s p r a c t i c a l a p p l i c a t i o n s .

(7)

C1-282 JOURNAL DE PHYSIQUE

Fig. 6 : A SEM micrographs e x h i b i t i n g t h e annealing e f f e c t o f Ino,1(Si0,1Se0,g)0~9

-

f i l m deposited on t h e evaporated ITO. The l e f t i s t h e surface, t h e r i g h t two t h e

,.

cross sections. The anneal i n g process was performed under i 11 umination(100 mw/cmL) f o r 15 min. a t 70°C.

Fig. 7 : A SEM micrographs e x h i b i t i n g t h e annealing e f f e c t o f I n o s 1 (Si0~1Se0,9)0,9

-

f i l m deposited on t h e s p u t t e r e d

ITO.

The l e f t i s t h e surface, the r i g h t two t h e cross sections. The annealing process was performed under illumination(.lOO mW/cm 2 ) f o r 15 min. a t 70°C.

References.- 1) Petersen K.E., B i r k h o l z U., and Adler D., Phys. Rev.

88

(1973) 1453. 2) Matsushita T., Okuda M., Suzuki A., N a i t o H., and Nakau T., Jpn. J . Appl.

Phys.

20

(1981) Supple. 20-2, 147. 3) Matsushita T., Suzuki A,, Okuda M., and Sakai T., Jpn. 3. Appl. Phys.

19

(1980) Supple. 19-2, 123. 4) Suzuki A., Matsushita T., Okuda M., N a i t o H., and Nakau T., Jpn. 3. Appl. Phys.

21

(1982) 407. 5) Mahan J.E., Ekstedt T.W., Frank R.I., and Kaplow R., I.E.E.E.

-

ED-26 (1979) 733.

6) Matsushita T., Suzuki A., Okuda I,?,, and Nang T.T., T h i n S o l i d ~ i l m s

58

(1979)

413.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to