• Aucun résultat trouvé

NONLINEAR PROPAGATION OF WAVES INDUCED BY AN INFINITE VIBRATING CYLINDER

N/A
N/A
Protected

Academic year: 2021

Partager "NONLINEAR PROPAGATION OF WAVES INDUCED BY AN INFINITE VIBRATING CYLINDER"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00219507

https://hal.archives-ouvertes.fr/jpa-00219507

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

NONLINEAR PROPAGATION OF WAVES INDUCED BY AN INFINITE VIBRATING CYLINDER

Ali Nayfeh, Samuel G. Kelly

To cite this version:

Ali Nayfeh, Samuel G. Kelly. NONLINEAR PROPAGATION OF WAVES INDUCED BY AN IN- FINITE VIBRATING CYLINDER. Journal de Physique Colloques, 1979, 40 (C8), pp.C8-8-C8-13.

�10.1051/jphyscol:1979802�. �jpa-00219507�

(2)

JOURNAL DE PHYSIQUE CoZZoque C8, suppzdment au n o 11, tome 40, novembre 1979, page c8- 8

NONLINEAR PROPAGATION OF WAVES INDUCED BY AN ZNFINITE VIBRATING CYLINDER A l i H. Nayfeh and Samuel G . K e l l y

,?ngineering Science and Mechanics Department, Virginia PoZytechnic I n s t i t u t e and State University BZacksburg, Virginia 24061 U . S. A.

Resume.- On u t i l i s e l a methode de r e n o r m a l i s a t i o n pour determiner un developpement uniforme au premier o r d r e pour l a propagation non l i n e a i r e d'ondes i n d u i t e s p a r l a v i b r a t i o n d ' u n c y l i n d r e de s e c t i o n c i r c u - l a i r e e t de longueur i n f i n i e . Les v i b r a t i o n s t r a n s v e r s a l e s du c y l i n d r e o n t une expression gen6rale com- p o r t a n t des modes e t des frgquences quelconques. On presente des exemples montrant l ' e f f e t des d i f f e r e n t s paramet-es adimensionnels s u r l a d i s t o r s i o n de l a pression e t de l a v i t e s s e . On odonne en o u t r e des exemples i 1 lu s t r a n t 1 ' i n t e r a c t i o n d'ondes de frequences d i f f e r e n t e s .

Abstract.- The method o f r e n o r m a l i z a t i o n i s used t o determine a f i r s t - o r d e r u n i f o r m expansion f o r the n o n l i n e a r propagation of waves induced by t h e v i b r a t i o n o f an i n f i n i t e c i r c u l a r c y l i n d e r . The transverse v i b r a t i o n s o f t h e c y l i n d e r a r e general and c o n s i s t of multimodes and m u l t i - f r e q u e n c i e s . Examples a r e presented showing t h e e f f e c t o f t h e d i f f e r e n t dimensionless parameters on t h e d i s t o r s i o n o f t h e pressure and v e l o c i t y components. Mereover, examples a r e presented showing t h e i n t e r a c t i o n o f waves w i t h d i f f e r e n t frequencies.

1. I n t r o d u c t i o n .

-

The problem considered i s t h a t o f n o n l i n e a r waves produced i n a f l u i d by t h e p u l - s a t i o n s o f an i n f i n i t e c i r c u l a r cylinder.The f l o w f i e l d i s assumed t o be i n v i s c i d so t h a t i t can be described by a p o t e n t i a l function. The c y l i n d e r i s assumed t o execute g e n e r ~ l motions c o n s i s t i n g o f mu1 timodes and mu1 t i - f r e q u e n c i e s . The method o f r e n o r m a l i z a t i o n C1, Sec. 3.41 i s used t o o b t a i n a u n i f o r m expansion by n o r m a l i z i n g t h e pressure and v e l o c i t y components.

Using t h e method of m u l t i p l e scales [ I , chap. 6

1,

Nayfeh and Kluwick 121 showed t h a t a u n i f o r m expansion f o r a one-dimensional non-disper- s i v e wave can be o t a i n e d o n l y i f t h e s e c u l a r terms a r e e l i m i n a t e d from t h e p r i m i t i v e v a r i a b l e s (i.e., pressure, v e l o c i t y components, s t r e s s , s t r a i n ) . Ginsberg [3] used a dual t r a n s f o r m a t i o n t o o b t a i n an expansion f o r t h e n o n l i n e a r i n t e r a c t i o n o f an a c o u s t i c f i e l d w i t h a f l a t p l a t e under a harmonic e x c i t a t i o n . He used t h e method o f r e n o r m a l i z a t i o n t o remove t h e s e c u l a r terms from t h e p o t e n t i a l f u n c t i o n . C a l c u l a t i n g t h e pressure and v e l o c i t y from t h i s p o t e n t i a l , he found t h a t they a r e n o t

The purpose o f t h e p r e s e n t paper i s t o extend t h e a n a l y s i s [4] t o t h e case o f a c y l i n d e r execu- i n g general motions c o n s i s t i n g of multimodes and mu1 t i - f r e q u e n c i e s . Ginsberg

[ 6 ]

s t u d i e d t h e case o f a c y l i n d e r executing a harmonic motion.

2. Problem f o r m u l a t i o n . - The problem i s formulated by using a p o l a r coordinate system (F,B) such t h a t r i s t h e d i s t a n c e as measured from t h e c e n t e r o f t h e c y l i n d e r and 8 i s t h e p o l a r angle. The f o l l o - v i n g dimensionless q u a n t i t i e s a r e i n t r o d u c e d :

-+ -+

r = r / R , t = c t , p = p/p,, v = v/c

where R i s t h e undisturbed r a d i u s o f t h e c y l i n d e r , p, i s t h e pressure i n t h e undisturbed s t a t e , $ i s t h e f l u i d v e l o c i t y and c i s t h e speed o f sound i n t h e undisturbed f l o w .

The f l u i d motion i n assumed t o be i n v i s c i d and i r r o t a t i o n a l so t h a t i t can be described by a dimensionless p o t e n t i a l f u n c t i o n 4 (r,e,t) such t h a t

$ r

V@. The equations d e s c r i b i n g t h e f l u i d motion i n dimensionless q u a n t i t e s a r e 1 3 , 4 ) . u n i f o r m and had t o i n t r o d u c e a new t r a n s f o r m a t i o n 2 2

t o remove t h e s e c u l a r terms from t h e pressure and

v

@-

@,,-

(Y-1)

@tv

4

-

2V@

-

mpt

.

,

v e l o c i t y components. Nayfeh and K e l l y [4] obtained + = O a uniform expansion f o r t h i s problem by n o r m a l i z i n g Y-1

d i r e c t l y t h e pressure and v e l o c i t y components. Using + P)

7

'

-

( y - l ) [@t+

v@

v41 ( 3 ) a numerical example, Ginsberg [5]pointed o u t t h a t

the dual t r a n s f o r m a t i o n i s i n a c c u r a t e near t h e The kinematic c o n d i t i o n t h a t any p a r t i c l e on shock f r o n t s . t h e c y l i n d e r remains on t h e c y l i n d e r ( i . e . t h e

Article published online by EDP Sciences and available at

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1979802

(3)

JOURNAL DE PHYSIQUE

component of t h e r e l a t i v e v e l o c i t y o f t h e f l u i d w i t h r e s p e c t t o t h a t o f t h e c y l i n d e r i s tangent t o t h e c y l i n d e r ) gives

where r = 1

+

w(B,t) i s t h e instantaneous r a d i u s o f t h e c y l i n d e r . The v e l o c i t y p o t e n t i a l i s a l s o chosen t o s a t i s f y t h e r a d i a t i o n c o n d i t i o n ; th a t i s , t h e motion of t h e f l u i d must be an outgoing wave o f s u i t a b l y decaying amplitude f o r l a r g e distances from t h e c y l i n d e r . The dimensionless motion o f t h e c y l i n d e r i s taken t o be

w = E C Amncos(Qmnt

+

v )cos (no

+

+,) (5) mn

where E i s a small dimensionless q u a n t i t y Amn, vmn and T~ a r e constants.

3. S t r a i g h f o r w a r d Expansions.- Expansions f o r t h e p o t e n t i a l f u n c t i o n and pressure a r e sought i n t h e form.

S u b s t i t u t i n g ( 5 )

-

( 7 ) i n t o (2) and (4) and equating c o e f f i c i e n t s o f l i k e powers o f E, we o b t a i n

Order E 2

V

$ 1

-

@ltt =

0

2

Order E

The s o l u t i o n o f (8) and (9) t h a t s a t i s f i e s t h e r a d i a t i o n c o n d i t i o n i s

where

S u b s t i t u t i n g f o r i n t o (10) and (11) we o b t a i n an inhomogeneous problem f o r

( P ~ .

TO determine a f i r s t - o r d e r u n i f o r m expansion, we do n o t need t o s o l v e e x p l i c i t y f o r $ 2 . I t i s s u f f i c i e n t t o e x h i b i t i t s behavior f o r l a r g e r where t h e nonuni- f o r m i t y e x i s t s . To t h i s end, we f i n d t h a t

cos (ne+rn)

- - I

BmnBkai$,,,

IT m,n,k,R cos (n8+rn)

1

cos(R0+rR) (.Qmn+QkR)- CO~(R,,,~+Q~,) ( t - r )

4. Renormalized Expansion.- We note t h a t poten- t i a l f u n c t i o n c o n t a i n s s e c u l a r terms. However, as i n t h e one-dimensional case 127 one does n o t know w i t h o u t c a r r y i n g o u t a s o l u t i o n buy u s i n g t h e method o f m u l t i p l e scales which p a r t o f t h e s e c u l a r terms belong t o t h e f i r s t - o r d e r expan- s i o n and hence does n o t produce a n o n u n i f o r m i t y and which p a r t belongs t o t h e second-order expansion and hence produces a n o n u n i f o m i t y . Thus, t o determine a u n i f o r m expansion, one cannot use t h e method r e n o r m a l i z a t i o n t o norma- l i z e a p o t e n t i a l f u n c t i o n unless ke knows t h e p a r t o f t h e s e c u l a r terms t h a t t o a n o n u n i f o n n i t y Nayfeh and Kluwick C2

1

showed t h a t a u n i f o r m expansion can be obtained i f t h e method o f

(4)

C8- 10 A l i H. Nayfeh and Samuel G . K e l l y

remormalization i s used t o normalize p r i m i t i v e v a r i a b l e s such as t h e pressure and v e l o c i t y . Thus, t o determine a u n i f o r m expansion, we normalize the r a d i a l v e l o c i t y which we c a l c u l a t e next. I t f o l l o w s from (14) t h a t

3/2 l/2

C O S ( ~ ~ + T ~ )

-

E 2 (Y + I )

I

R

BmnBkenmn ke

TI m,n,k,ll cos (n8+rn) x

c o s ( e e + ~ ~ ) s i n [Rmn(t-r)-timn +L(n +L)TI] x

2 2

3 / 2

cos

[S~~~(~-~)-~~~+L(II+L)T]+

O ( E ~ Y E r )

2 2

a s r - + m (15

We n o t e t h a t v norluniform f o r l a r g e r. To determine a Uniform expansion, we use t h e method of renormal i z a t i o n and l e t

S u b s t i t u t i n g f o r r from (16) i n t o (15), expanding f o r small E w i t h q k e p t f i x e d and choosing

r

t o e l i - minate t h e terms t h a t produce t h e nonuniform?ty i n v, we o b t a i n

l/2

r = - ( y + l ) E "%n cos

[am,,

( t-q)+amn m,n Bmn (+

+

L

( n + L ) r l cos (no + T ~ ) +f(n,e,t)

2 2

(17

where f

5

0 (1) as q -+ m. Then (15) and (16) become

l / 2

v =

-

C Bmn(-) %n cos p.,,,,(t-n)+brnn m,n TI^

Hence,

Comparing (18) and (19), we note t h a t (18) can be r e w r i t t e n as

2

r = n+ ( y + l ) q v + ~ f ( q , 8 , t ) + O ( ~ ) (21 where f ( 0 ( 1 ) as n -+ m . We choose f so t h a t r =n when r = 1. Hence, (21) becomes

Therefore, t o t h e f i r s t approximation, v i s g i v e n by (20) where

n

i s d e f i n e d by (22). Moreover, t h e pressure and c i r c u m f e r e n t i a l v e l o c i t y component become

5. Examples.- For g i v e n values o f 8 and t, t h e pressure and v e l o c i t y components may be c a l c u l a t e d by s e l e c t i n g a value o f q and c a l c u l a t i n g v, u and p from (20), (24) and (23). Then, (22) i s used t o s o l v e d f o r t h e corresponding value o f r. T h i s pro- cedure may be continued u s i n g small increments of q t o y e i l d t h e v a r i a t i o n o f v, u and p w i t h r a d i a l d i s t a n c e along l i n e s o f constant 8 a t any i n s t a n t t.

The e f f e c t of t h e n o n l i n e a r i t y i s t o steepe- n t h e wavefronts f o r i n c r e a s i n g r a d i a l d i s t a n - ces from t h e c y l i n d e r . T h i s steepening e v e n t u a l l y r e s u l t s i n t h e f o r m a t i o n o f a shock wave a t t h e f i r s t l o c a t i o n where t h e wave p r o f i l e s a t t a i n a v e r t i c a l tangent. T h i s i s t h e f i r s t l o c a t i o n

(5)

JOURNAL DE PHYSIQUE

P

where av/ar = m. However, (20) and (22) seem t o be t o o complicated t o a r r i v e a t an a n a l y t i c a l expression f o r t h e shock l o c a t i o n f o r m u t i - frequencies o r multimodes. Hence, t h e l o c a t i o n o f t h e shock wave i s obtained numerically.

Figures 1-8 present waveforms f o r v and p f o r d i f f e r e n t o s c i l l a t i o n s o f t h e c y l i n d e r . A l l

l r

A

p l o t s presented a r e along €I= 22.5O f o r t = 0,

E = .07 and y = 1.4. Figures 1 and 2 show t h e comparison o f v and p f o r two d i f f e r e n t s i n g l e frequency o s c i l l a t i o n s . These f i g u r e s show t h a t the shock forms a t an e a r l i e r l o c a t i o n f o r t h e

h i g h e r frequency o s c i 1 la t i o n s as expected. r

Fig. 2 : Pressure p r o f i l e s ; a) w =

-

Ecos t c0s28 and b ) w =

-

~ c o s 2 t cos2e

r

I

Fig. 1 : Radial v e l o c i t y p r o f i l e s ;

a) w =

-

E cos t cos 28, b ) w = -E cos 2 t cos20

F i g . 3 : Radial v e l o c i t y p r o f i l e s ; a) w =

-

36

cos2t cos20,b) w = - € ( c o s t

+

.3cos2t)

Figures 3 and 4 show t h e e f f e c t o f adding a cos28 subharmonic frequency t o a s i n g l e frequency o s c i l -

l a t i o n o f t h e c y l i n d e r . The shock forms a t a

Figures 7 and 8 compare a two-frequency s l i g h t l y e a r l i e r l o c a t i o n i n t h e case o f t h e two-

o s c i l l a t i o n w i t h three-frequency o s c i l l a t i o n s . frequency o s c i l l a t i o n .

These f i g u r e s show t h a t . t h e steepening increases Figures 5 and 6 compare a single-frequency as t h e number o f frequencies i n t h e o s c i l l a t i o n o s c i 1 l a t i on w i t h two frequency o s c i l l a t i o n s . These of t h e c y l i n d e r increases. Moroever, t h e higher f i g u r e s show t h a t t h e shock f o r m a t i o n d i s t a n c e t h e frequency o f an added o s c i l l a t i o n i s t h e decreases w i t h i n c r e a s i n g t h e added o s c i l l a t i o n 1 a r g e r t h e n o n l i n e a r steepening i s and hence t h e

frequency. s m a l l e r t h e shock formation d i s t a n c e i s .

(6)

A.H. Nayfeh and S.G. Kelly

C8- 12

Fig. 4

:

Pressure profiles

;

a) w

=

- .3~cos2t

~ 0 ~ 2 8 , b) w

=

-~(cost+.3cos2t)cos28

v

Fig. 5

:

Radial velocity profiles

;

a) w

=

&cost

~0.~28, b) w

=

-~(cost+cos 5 t)cos28

c) w

=

-~(cost+cos 7t)cos2i

B

Fig. 6

:

Pressure profiles

;

a) w

=

-&cost ~ 0 ~ 2 8 ,

b )

w

=

-&(cost +5 t)cos28,

C)

w

=

-

E

4

(cos t+coslt) cos

28

v

I 4

Fig. 7

:

Pressure profiles

;

a) w

=

-~(cost+cos~t)cos2e,

(7)

Fig. 8 : Pressure p r o f i l e s ;

a) w

,

, ~ ~ c o s t + c o s ~ t ) c o s 2 8 ,

References

/1/ Nayfeh, A.H., P e r t u r b a t i o n Methods, Wiley I n t e r s c i e n c e , 11Y/3).

/2/ Nayfeh, A.H. and Kluwick, A., J. Sound Vib.

48, (1976), 293.

-

/3/ Ginsberg, J.H., J. Sound Vib.

-

40 (1975), 351.

/4/ Nayfeh, A.H. and K e l l y , S.G., J. Sound

Vib.,

( i n press).

/5/ Ginsberg, J.H.,

J.

Sound Vib., ( i n press).

/6/

Ginsberg, J.H., J. Acoust.Soc. Am. ( t o be pub1 ished)

.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to