• Aucun résultat trouvé

e !" !" !"!! !"!! !"!! !"!! !" M M M M M M M F F r , C () () () 0 = B A e !"! O C D () () () () , , , e e !"! !"! e !" !"! Fe F !" !" F !" F F , e !"! !"! () () () z x !" !" F F !" F

N/A
N/A
Protected

Academic year: 2021

Partager "e !" !" !"!! !"!! !"!! !"!! !" M M M M M M M F F r , C () () () 0 = B A e !"! O C D () () () () , , , e e !"! !"! e !" !"! Fe F !" !" F !" F F , e !"! !"! () () () z x !" !" F F !" F"

Copied!
2
0
0

Texte intégral

(1)

TD M5 Mécanique 2012/13

O.KELLER – TSI1 Page 1 sur 2 Lycée Louis Vincent Metz

Travaux dirigés de Mécanique n°5

Exercice 1 : Calcul de moments

On considère un point matériel M(m) soumis à une force F!"

=Fe!"!x

constante.

Exprimer et calculer les moments de la force F!"

suivants : 1) M! "!!0

!"F

( )

; M! "!!B

( )

F!" ; ! "M!!A

( )

F!" ; M! "!!C

( )

!"F

2) M

O,e!"!z

( )

F

!"

( )

; M

( )

C,e!"!z

( )

!"F ; M

( )

D,e!"!z

( )

F!" ;

Données : F=1,0.103N ; l=1,0m ; θ0=45°.

Exercice 2 : Balancier d’une horloge

On s’intéresse au balancier d’une horloge à poids. Le balancier est composé d’une tige de longueur l de masse négligeable fixée en O et portant à son autre extrémité un disque modélisable par un point matériel M de masse m. Le référentiel d’étude est supposé galiléen.

1) Ecrire l’équation différentielle du mouvement du balancier en utilisant le TMC.

2) Le mouvement du balancier est considéré de faible amplitude. Déterminer les expressions de la période et de la fréquence des petites oscillations.

3) Le balancier possède un réglage qui permet d’ajuster la longueur l afin que l’horloge donne l’heure exacte. Faut-il augmenter ou diminuer l si l’horloge avance ? retarde ?

Exercice 3 : Pendule relié à des ressorts

Un pendule simple est constitué d’un fil rigide de masse négligeable et de longueur l, à l’extrémité duquel est fixé un point matériel M de masse m. Il est accroché au point O, fixe par rapport au référentiel R du laboratoire.

M est également attaché à deux ressorts (1) et (2) identiques, de raideur k et de longueur à vide l0, fixés entre deux points A et B distants de 2l0 : lorsque le pendule est vertical, les ressorts sont au repos.

On déplace légèrement M par rapport à la verticale puis on le laisse évoluer librement. Il oscille alors en

décrivant un petit arc de cercle de centre O, dans un plan vertical, et on repère sa position par l’angle θ avec la verticale. Cet angle restant toujours faible, on pourra considérer que les ressorts restent horizontaux.

1. Donner l’expression du moment cinétique de M par rapport à O dans R en utilisant une base cylindrique (e!"r

,e!"!! ,e!"!z

) d’origine O.

2. Calculer les moments des forces s’exerçant sur M, en fonction de la seule variable θ.

3. Par application du théorème du moment cinétique, déterminer l’équation différentielle vérifiée par θ et en déduire la pulsation des petites oscillations.

(2)

TD M5 Mécanique 2012/13

O.KELLER – TSI1 Page 2 sur 2 Lycée Louis Vincent Metz

Exercices des héros costauds

Exercice 4 : Superman est démasqué !

Intéressons nous aux exploits de Superman. On peut le voir lever des véhicules pour venir au secours de la veuve et de l’orphelin. Supposons la situation esquissée ci-contre.

On notera m la masse de Superman et M celle de la voiture.

1. Donner un ordre de grandeur de l’énergie dépensée par Superman pour soulever la voiture. Commenter.

2. En étudiant les forces appliquées au système {superman + voiture}, expliquer ce qu’il devrait se passer.

3. Peut on éviter ce phénomène ? Par quels moyens ?

Exercice 5 : Un archéologue très sportif…

Au cours d’une de ses aventures, Indiana Jones se retrouve glissant parfaitement sur un plan horizontal verglacé, lié par un filin inextensible et de masse négligeable à un poteau d’axe vertical placé en 0. Le fil ne s’enroule pas sur le poteau mais glisse autour sans frottement.

Pour simplifier, on assimile notre héros à un point matériel A de masse m.

1. Indiana Jones tourne autour du poteau à la distance l OA= avec la vitesse v!"!0

=v0e!"!!

dans le référentiel lié au plan, supposé galiléen. Quelle est la nature de son mouvement ? Exprimer le module T de la tension du filin.

2. Après calcul, notre héros décide, pour sortir de sa situation, de "remonter" lentement le long du fil.

a. Montrer qu’au cours de l’opération son moment cinétique par rapport à O reste constant.

b. En déduire la vitesse finale v’ d’Indiana Jones en A’ tel que ' 2 OA = l .

c. Exprimer la variation d’énergie mécanique au cours de la remontée. Du point de vue énergétique, quel a été le rôle de notre héros ?

3. Discuter de ce qui va arriver s’il continue sa remontée.

Exercice 6 : Super zéro

Monsieur G, assimilé à un point matériel G de masse m, décide de faire de la luge. L’ensemble arrive au niveau d’un profil circulaire avec une vitesse horizontale v0. Tant que la luge suit ce profil, elle décrit une trajectoire circulaire de rayon R=5m et est repérée par l’angle θ. On néglige tout frottement.

1. Ecrire l’équation différentielle du mouvement à l’aide du TMC.

2. En déduire l’expression de !! en fonction de θ et v0.

3. A l’aide d’une autre équation de la dynamique, donner l’expression de la réaction du sol.

4. En déduire l’angle θd à partir duquel monsieur G et la luge quittent le profil circulaire.

5. Tracer θd en fonction de v0. Indiquer la valeur limite de v0. Que se passe-t-il au delà de cette valeur ?

O + G +

G’+

Références

Documents relatifs

´ E crire l’´eq uation d’E uler de ce prob l`eme et en d´eduire q ue la valeur du minimum est b ien la premi`ere valeur propre et q ue les points de minimum sont des vecteurs

◊ remarque : on dit que ces forces sont “dissipatives” d'énergie mécanique ; l'étude énergétique complète nécessite alors de prendre en compte lʼénergie

En tant que Technicien(ne) de Laboratoire, vous aurez pour missions de : - Participer chaque jour à l’amélioration du laboratoire en termes de sécurité, d’environnement, de

Cette fragilité, cet équilibre précaire seront à rechercher dans un processus d’échange avec les musicien.nes de l’ensemble Offrandes, avec l’idée de créer un vrai

Vous allez programmer une feuille de calcul permettant de déterminer les solutions d'un système de deux équations à deux inconnues, en vous aidant des

It was however thought desirable to adhere to the familiar expressions since, as will be shown (a) each "vector" is uniquely determined by certain components, and

I In the present paper we are concerned with the same special case and employ the like representation though instead of treating our function with

L’ordonnance 2017-1162 du 12 juillet 2017 prise en application de la loi Sapin 2 a redistribué entre le rapport de gestion et le rapport sur le gouvernement d’entreprise

La dissolution de la Société peut également être prononcée dans le cas où les capitaux propres de la Société deviendraient inférieurs à la moitié du montant

* Des explications concernant cette rubrique sont données dans la notice n° 2032 (et dans la notice n° 2058–NOT pour le régime de groupe). Désignation

[r]

Embarquez à bord du train du Volcan de Lemptégy pour découvrir l’intérieur d’un volcan : Une visite insolite et unique qui vous transporte dans l’univers volcanique et vous

Pour répondre à vos besoins d’accompagnement d’apprentis et donc la montée en compétences de vos tuteurs, ERASME vous propose une formation maître

MODALITÉS D’INSCRIPTION & D’ADMISSION EN FORMATION Habilitation de Service Public (HSP) jusqu’au 31/12/22 reconductible 1 an avec inscription obligatoire par le prescripteur

▶ Graphique 1 Les effectifs en formation continue dans le secteur du BTP suivent principalement trois cycles économiques structurels au cours du temps.. L’évolution des

• la nature du produit doit être telle qu’il existe bien une relation entre prix et qualité dans l’esprit du consommateur : tous les produits ne peuvent faire

Le fils, assimilé à un point M de masse m, se lâche sans vitesse initiale depuis le point A d’une rampe, située à une hauteur h au dessus de O, point le plus bas de la rampe..

On pense qu’à la fin de sa vie actuelle, dans environ 5 milliards d’années, le Soleil s’effondrera en une Naine Blanche, un astre à très forte densité concentrant la

2. Estimer le couple exercé par un moteur de voiture de 90 cv. Il est mobile autour de l’axe Δ par l’intermédiaire d’une liaison pivot parfaite. L’axe Δ est fixe dans le

2. Estimer le couple exercé par un moteur de voiture de 90 cv. Il est mobile autour de l’axe Δ par l’intermédiaire d’une liaison pivot parfaite. L’axe Δ est fixe dans le

Le plan du terrain (avec le mur sur un des côtés, l’emplacement du sapin et l’emplacement du réverbère), une lampe alimentée par un générateur (réverbère), un cylindre ou

En 2018, suite à une commande de la Triennale de Yokohama et de la Biennale de la Danse de Lyon elle crée Reverse au Japon, puis Samsara en 2019 création produite par Chaillot

Montrer que, si on fait tendre ∆t et ∆x v ers 0 de telle mani`ere que le rap p ort ∆t/∆x tende aussi v ers 0 , alors le sch´ema de DuFort-Frankel est conv