• Aucun résultat trouvé

IMPURITY DIFFUSION IN LIQUID METALS

N/A
N/A
Protected

Academic year: 2021

Partager "IMPURITY DIFFUSION IN LIQUID METALS"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00220541

https://hal.archives-ouvertes.fr/jpa-00220541

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

IMPURITY DIFFUSION IN LIQUID METALS

A. Bruson, M. Gerl

To cite this version:

(2)

JOURNAL DE PHYSIQUE Co ZZoque C8, suppZ6ment au n08, Tome 41, aofit 1980, page

C8-349

IMPURITY DIFFUSION

I N

LIQUID METALS

A . Bruson and M. Gerl

Universitd de Nancy L.A. 155.

1

-

I n t r o d u c t i o n

I, Laboratoire de Physique du SoZide, CO N0140

-

54037 NANCY Cedex, France.

number of i m p u r i t i e s h a s been undertaken i n l i q u i . ?

Cu and i n l i q u i d Sn

,

i n t h e temperature range (Tm

-

1850

K)

u s i n g a s h e a r c e l l d e v i c e whic!l prs-

Molecular dynamics (M.D.) c a l c u l a t i o n s i n l i q u i d s

v i d e s a c c u r a t e r e s u l t s , and which,has been d e s c r i b e d (1-4) show t h a t t h e t r u e d i f f u s i o n c o e f f i c i e n t D

E

d i f f e r s markedly from t h e d i f f u s i o n c o e f f i c i e n t D elsewhere ( 7 - 9 ) .

c a l c u l a t e d u s i n g Enskog's t h e o r y . D e t a i l e d M . D . The comparison of t h e d i f f u s i o n c o e f f i c i e n t s of

s i m u l a t i o n s on H.S. systems ( 5 - 6 ) show t h a t two r e - 6 4 ~ u , llOmAg

,

' 9 5 ~g i v e s a n experimental d e t e r - ~

gimes of v e l o c i t y c o r r e l a t i o n can be d e f i n e d : ( i ) mination of t h e mass e f f e c t and measurements on

a t l a r g e d e n s i t y , t h e b a c k s c a t t e r i n g of a given t e s t very d i l u t e d a l l o y s o f Cu o r Sn w i t h l l o m ~ g , " ' ~ n , p a r t i c l e on i t s f i r s t neighbour s h e l l l e a d s t o " 3 ~ n andX2'sb p r o v i d e an e s t i m a t i o n of t h e s i z e e f - E D/D < 1 and t h e v e l o c i t y a u t o c o r r e l a t i o n f u n c t i o n f e c t . Z ( t ) t a k e s l a r g e n e g a t i v e v a l u e s y ( i i ) a t i n t e r - 2 . t .

-

S e l f d i f f u s i o n : d e n s i t y e f f e c t

...

mediate d e n s i t y , Z ( t ) e x h i b i t s a l o n g time t a i l ,

d e c r e a s i n g a s t-3'2, which can be t r a c e d t o c o l l e c - The dynamical c o r r e l a t i o n s , which depend on t h e

t i v e motions i n f l u i d ; l o n g wavelength modes a r e d e n s i t y o f t h e f l u i d , a r e expressed a s t h e r a t i o

E

D/D of t h e experimental d i f f u s i o n c o e f f i c i e n t

D

e x c i t e d by t h e i n i t i a l motion o f a given atom and

m

E

g i v e r i s e t o an i n c r e a s e o f D with r e s p e c t t o D

.

t o t h e d i f f u s i o n c o e f f i c i e n t DL c a l c u l a t e d uying

These dynamical c o r r e l a t i o n s depend on t h e reduced EnSkog's according

mass M

=

mi/m and on t h e reduced s i z e

1

=

Ui/ Us

of t h e s o l u t e with r e s p e c t t o t h e s o l v e n t : ( i ) a s

M i n c r e a s e s , b a c k s c a t t e r i n g e f f e c t d e c r e a s e s and

hydrodynamic modes a r e more e q s i l y e x c i t e d ; t h e r e -

-

a

is t h e e q u i v a l e n t hard sphere diameter i n t h e

E

fore D/D increases ; ( i i ) as

1

increases, backscat- p r e s c r i p t i o n of PROTOPAPAS ( 1 0 ) according t o t e r i n g i n c r e a s e s and D / D ~ d e c r e a s e s when b a c k s c a t t e -

r i n g regime i s predominentbut, -- a t i n t e r m e d i a t ~ den-

s i t y , hydrodynamic modes a r e more e a s i l y e x c i t e d by where cr i s c a l c u l a t e d , from t h e d e n s i t y and t h e a l a r g e p a r t i c l e t h a n by a s m a l l one, and D/D= i n - packicg f r a c t i o n y , a t t h e m e l t i n g t e n p e r a t u r e T

.

m

c r e a s e s i n t h e p e r s i s t e n c e regime.

2

-

Experimental r e s u l t s

-

g ( a ) i s e s t i m a t e d u s i n g CARNP3l.W-STARLING'S equa- t i o n of s t a t e ( 1 1 )

The experimental r e s u l t s i n Sn and.Cu a r e recop- I n o r d e r t o i n v e s t i g a t e t h e s e e f f e c t s , s y s t e m a t i c

ded i n f i g u r e 1 a s a f u n c t i o n of V/Vo and compared measurements of t h e d i f f i ~ s i o n c o e f f i c i e n t of a with M.D. s i m u l a t i o n s . F i g u r e 1 shows t h a t t h e ex-

(3)

c8-350

JOURNAL DE PHYSIQUE E p e r i m e n t a l v a r i a t i o n o f C (V/V )

=

D/D

,

is c o r - 1 0 and

g , =

( 1 - y ) - 2

c

l + ~ + - ( a a - 0 3 y ~

) I

r e c t l y p r e d i c t e d by M.D. c a l c u l a t i o n s ; t h e two c o r -

2a8

6

r e l a t i o n r e g i m e s a r e , e x p e r i m e n t a l y p e r f e c t l y e x h i - The

measured d i f f u s i o n coefficient D . can be

1

b i t e d . It i s p o s s i b l e t o c a l c u l a t e , a t e a c h d e n s i t y , t h e v a l u e u ' ( T ) o f t h e h a r d s p h e r e d i a m e t e r which,

( 6 ) when used i n f o r m u l a ( 1 )

,

would l e a d t o t h e v a l u e

of D I D L p r e d i c t e d by A l d e r . Using c h i s p r o c e d u r e , we g e t f o r Sn i n s t e a d o f g i v e n by PROTOPAPAS. F i g . 1

-

E x p e r i m e n t a l v a l u e s o f t h e r a t i o D/DE i n Sn

( m

)

,

i n Cu ( 0 ). 2.2.

-

I m p u r i t y d i f f u s i o n : mass and s i z e e f f e c t s

...

I n t h e c a s e o f i m p u r i t y d i f f u s i o n , we u s e t h e same p r o c e d u r e : t h e c a l c u l a t e d Enskog d i f f u s i o n c o e f f i c i e n t i s g i v e n by

where

ais

=

( a i

+

u s ) / 2

,

i and s s t a n d f o r impu- r i t y and s o l v e n t r e s p e c t i v e l y ,

u

i s t h e r e d u c e d mass : gis i s c a l c u l a t e d u s i n g MANSOORI1 s

r u l e (11)

gis

= C

ai

gss ( a s ) +

as

gii ( a i ) ] / 2

ais

(4)

-

Mass-effect.

In liquids, the correlations are dominated

by the backscattering effect. The larger the mass

of the diffusing species, the smaller the backscat-

tering.

In figure

3,

the experimental dependence of C

2 On

M is given at a reduced volume V

/

Vo

=

1.6 and 1.75.

The results are compared with those calculated by

Alder (or extrapolated from Alder's data) at V/Vo

=

1.6

.

In Cu, the experimental results are in good

agreement with M.D. calculations.Xn Sn, a discre-

pancy of about 20

%

between the absolute values of

C is observed.

2

to settle this point.

3

-

Conclusion

We have measured the diffusion coefficients of

64~U,"%~g, "'In,

Il3sn,

'24~b

and 195.4~

in liquid

Sn and Cu using a shear cell assembly which prbvides

data with a precision of about

5 %.

From a comparison

with Enskog's theory we have seen that the dynamical

correlations depend strongly on the density

of

the

solvent and on the relative size and mass of the

solute with respect to the solvent.

It would be interesting (i) to calculate the

binary collision diffusion coefficient of Sn and

Cu using realistic potentials (ii) to calculate

the diffusion coefficient of impurities in Sn

and Cu using interatomic potentials deduced from

liquid alloy theory.

-

Mass dependence of

C

(M,C

)

2

(1) Ag and Au in Sn.

(2) Cu, Ag and Au in Cu.

In liquid one would expect that C2 decrea-

ses as the size of the impurity increases.

Our experimental results, shown in figure 2, seem

to indicate the opposite trend when one goes from

Ag to In, Sn and Sb in Cu, and from Sn to Sb in Sn.

This can be interpreted as the effect of the valence

of the impurity on its diffusion coefficient. Because

of the,(screened) electrostatic potential aroundthe

impurity, the effective H S diameter used in the

Enskog

theory should

be

different from its value

in the pure solvent. Some calculation are in progress

(1) L.SJOGREN, A. SJOLANDER

Ann. Phys. 110

122, (1978)

( 2 )

B.J. ALDER, T.E. WAINWRIGHT Phys. Rev. Lett.

18, 988 (1967)

-

(3) A. RAHMAN, M.J. MANDELL

J. Chem. Phys.

P.C

.

MC

TAGUE

64, 1564 (1976)

7

(4) K. TOUKUBO, K.NAKANISHI

J. Chem. Phys.

N. WATANAGE

-

67, 4162 (1977)

( 5 )

B.J. ALDER, W.E. ALLEY

J. Chem. Phys.

J.H. DYMOND

6_1,

1415 (1974)

( 6 )

B.J. ALDER, M.D. GP.SS

J.

Chem. Phys.

T.E. WAINWRIGHT

-

53, 3813 (1970)

(7) A. BRUSON, M. GERL

Phys. Rev. 19

6123 (197g

(8) A. BRUSON, M. GERL

Phys. Rev.

(to be publis-

hed)(1980)

(9)

A. BRUSON, M. GERL

J. Phys.(to be

published)

(Juin 1980)

(10) P. PROTOPAPAS,

Chem. Phys. 11

N.A.D. PARLEE

201 (1973)-

(11) G.A. MANSOORI,

N.F. CARNAHAN J. Chem. Phys.

2

Références

Documents relatifs

k étant le coefficient de destruction de l’émanation de l’actinium, D son coefficient de diffusion. Cette for- mule est établie en supposant le vase illimité. 1)

Si l’on compare ce nombre à celui trouvé pour la diffusion du gaz carbonique dans l’air, et si l’on suppose que les coefficients de diffusion dans un même gaz

The influence of the N interstitials on the diffu- sion coefficient is correlated with the low-temperature diffusion anomaly of H in the pure metals.. For H in pure Nb and pure

Inference for epidemic data using diffusion processes with small diffusion coefficient.. Romain Guy, Catherine Laredo,

3 ~ e in solid He at fractional impurity content (x,) from to lo-'. vacancy, interstitial, substitu- tional impurity) that can tunnel to neighbouring equivalent sites in

Theoretical analysis of chemical diffusion can hardiy be nade because numerous factors are con- prised in the process. The studies of inpurity diffusion, that is, the diffusion

L’eau et le glycérol ayant des indi- ces optiques différents, la diffusion de l’un dans l’autre crée un gradient de concentration, et donc d’indice, dans la zone de mélange..

The ratio of lateral diffusion arbitrary part of the anode may be deter- coefficient to mobility D/p as a function mined by the integration of current den- of E/N in oxygen