• Aucun résultat trouvé

INTERNAL FRICTION OF GLASSY POLYCARBONATE DURING PLASTIC FLOW

N/A
N/A
Protected

Academic year: 2021

Partager "INTERNAL FRICTION OF GLASSY POLYCARBONATE DURING PLASTIC FLOW"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00221130

https://hal.archives-ouvertes.fr/jpa-00221130

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

INTERNAL FRICTION OF GLASSY

POLYCARBONATE DURING PLASTIC FLOW

J. Parisot, J. Astier, Arnaud Fernandez, O. Rafi

To cite this version:

(2)

JOURNAL DE PHYSIQUE

CoZZoque CS, supptdment au nO1O, Tome 4 2 , octobre 1981 page CS-569

INTERNAL FRICTION OF GLASSY POLYCARBONATE DURING PLASTIC FLOW

J. Parisot, J. Astier, A. Fernandez and 0. Rafi

EcoZe NationaZe SupQrieure de M&canique e t dlA&rotechnique, Laboratoire de Mdcanique e t Physique des Matdriaux, Equipe de Recherche Associd au C.N.B.S. n0123, 86034 Poitiers Cedex, France

A b s t r a c t .

- We have measured i n t e r n a l f r i c t i o n o f p o l y c a r b o n a t e

i n t o r s i o n , d u r i n g i ) a c o n s t a n t s t r a i n - r a t e t e n s i l e t e s t ; i i ) a d i f f e r e n t i a l s t r a i n - r a t e t e s t ; i i i ) s e v e r a l r e l a x a t i o n t e s t s . We show t h a t i n t e r n a l f r i c t i o n i s s t r o n g l y dependent on s t r a i n r a t e

,

b u t i n d e p e n d a n t on s t r a i n and s t r e s s . P o l y c a r b o n a t e b e h a v i o u r shows some a n a l o g i e s w i t h m e t a l s : t h e r e f o r e i n t e r p r e t a t i o n of t h e r e s u l t s i s b a s e d upon t h e a s - sumption t h a t d e f o r m a t i o n i n due t o d e f e c t s m o t i o n s . I n t h i s v i e w , i n t e r n a l f r i c t i o n c a n p r o v i d e means f o r e s t i m a t i n g i n t e r - n a l s t r e s s .

1. Experiment. - Measurements o f i n t e r n a l f r i c t i o n were performed du-

r i n g t e n s i l e t e s t s , a t a b o u t 1 Hz, on a t o r s i o n a l pendulum s e t a l o n g t h e v e r t i c a l a x i s o f a t e n s i l e machine.

The sample, t o o k from a "Makrolon" s h e e t , p r e s e n t s an i n i t i a l s e c t i o n o f 3 X 4 mm2 a n d t h e i n i t i a l l e n g t h a c t u a l l y s t r a i n e d ( b e t - ween h e a d s ) i s L.

-

38 mm. I t i s f i x e d between t h e c r o s s - h e a d o f t h e

t e n s i l e machine a t i t s lower p a r t , and t h e i n e r t i a b a r o f t h e pendu- lum a t i t s t o p . The i n e r t i a b a r i s hanged t o t h e l o a d - c e l l by a

2

s t r i p - i r o n , t h e s e c t i o n of which i s 30 x0.3 mm

.

T o r s i o n motion i s r e c o r d e d by an o p t i c a l d e v i c e and damping i s

measured by a f r e e decay method :

I n t e r n a l f r i c t i o n of t h e sample, A

,

i s deduced from A1 by t h e r e l a t i o n / l / :

where A~ i s t h e s t r i p - i r o n damping, measured by r e p l a c i n g t h e sample by a t h i n s t r i p - i r o n , t h e t o r q u e r i g i d i t y o f which is n e g l i g i b l e ;

W and W1 a r e t o r s i o n a l e l a s t i c e n e r g i e s r e s p e c t i v e l y s t o r e d i n

2

t h e upper s t r i p - i r o n and i n t h e whole system d u r i n g an o s c i l l a t i o n ; i t can be s e e n t h a t W2/W1 = ( f / f 1 2 , f l b e i n g t h e measured f r e q u e n -

2

1

(3)

C5-570 JOURNAL DE PHYSIQUE

cy o f t h e whole s y s t e m , and f 2 t h e f r e q u e n c y measured i n t h e same c o n d i t i o n s a s b 2 ; f 2 and A 2 a r e load-dependent.

2. R e s u l t s .

2.1.

-

C o n s t a n t s t r a i n - r a t e t e n s i l e t e s t .

-

F i g . 1 shows t h e s t r e s s c u r v e U = F/S v e r s u s t i m e , f o r an e l o n g a t i o n r a t e d L / d t = 0 . 5 mm/mn

( t h a t i s

;

= :/Lo

.

d L / d t = 0 . 2 2 . 1 0 - ~ S-').

There a r e t r e e p a r t s i n t h i s s t r e s s c u r v e . The f i r s t p a r t (OA) c o r r e s p o n d s t o a r e c o v e r a b l e and homogeneous d e f o r m a t i o n : i n t e r n a l - 3 f r i c t i o n i n c r e a s e s from A = 30.10 b e f o r e l o a d i n g , t o A A = 120. I O - ~ . The second p a r t ( A B ) i s a P i o b e r t - L u d e r s p l a t e a u w i t h a L P 50 MPa. P l a s t i c s t r a i n i n g ( e = 55 %) i s l o c a l i z e d on one o r L

two f r o n t s which move a l o n g t h e sample. T h i s h e t e r o g e n e i t y o f t h e de- f o r m a t i o n makes d i f f i c u l t t h e a n a l y s i s o f i n t e r n a l f r i c t i o n measure- ments i n t h i s p a r t o f t h e t e n s i l e c u r v e . The t h i r d p a r t o f t h e c u r v e ( B C ) c o r r e s p o n d s t o a homogeneous d e f o r m a t i o n up t o t h e r u p t u r e which o c c u r s by c r a c k - p r o p a g a t i o n ( e R = 9 3 % ) . I n t e r n a l f r i c t i o n i n c r e a s e s from A = 1 1 0 . 1 0 - ~ t o B = 2 0 0 . 1 0 - ~ . 2 . 2 . D i f f e r e n t i a l s t r a i n - r a t e t e n s i l e t e s t .

-

The c u r v e s t r e s s v s t i - me o f t h e f i g , 2 a h a s been o b t a i n e d by t a k i n g t u r n s w i t h two s t r a i n r a t e s : 0 . 5 and 0 . 0 5 mm/mn. The p a r t B C o f t h e c u r v e shows s t r e s s

Fig.l

m

a ) Tensile curve.: s t r e s s vs time Influence of strain-rate (Strain-rate L = 0.5 m/m) a ) on the s t r e s s

(4)

d r o p s 6 0 = 8 . 3 MPa. F i g . 2b shows t h e d r o p s o f i n t e r n a l f r i c t i o n c o r - r e s p o n d i n g w i t h s t r a i n - r a t e d e c r e a s e s . Theses d r o p s a r e i m p o r t a n t i n t h e B C p a r t o f t h e s t r e s s c u r v e ( 6 8 = 1 0 0 . 1 0 - ~ f o r t h e f i r s t o f them) ; t h e y a l s o e x i s t i n t h e OA p a r t . When t h e s t r a i n r a t e i s i n c r e a s e d a g a i n , t h e s t r e s s - c u r v e shows a t r a n s i e n t i n c r e a s e 6 5 a s i n m e t a l s s u b j e c t t o a g i n g e f f e c t s . Then i n - t e r n a l f r i c t i o n does n o t immediately r e a c h t h e s t e a d y - s t a t e v a l u e a s measured i n t h e i n i t i a l c o n s t a n t s t r a i n - r a t e c o n d i t i o n s . 2 . 3 . S t r e s s - R e l a x a t i o n t e s t s . - The t e n s i l e s t r a i n i n g t e s t i s sudden- l y s t o p p e d a t t h e s t r e s s o o ( = 58 MPa), c o r r e s p o n d i n g t o a deforma- t i o n e o ( = 66 % ) . There a r e t h r e e p o s s i b i l i t i e s .

i ) The c r o s s - h e a d i s k e p t immobile. Under t h e a c t i o n o f t h e s t r e s s o o t h e specimen c o n t i n u e s t o e l o n g a t e v e r y s l o w l y , and t h e s t r e s s d e c r e a s e s f o l l o w i n g a l o g a r i t h m i c f u n c t i o n o f time : t h a t i s t h e r e l a x a t i o n ( F i g . 3 a ) . During t h e d e c r e a s e o f o

,

t h e i n t e r n a l f r i c t i o n d e c r e a s e s a l s o and t e n d s towards a l i m i t c l o s e t o i t s i n i - t i a l v a l u e measured on t h e s t r a i n e d m a t e r i a l ( F i g . 3 b ) .

i i ) The cross-head i s r a p i d l y moved b a c k and i s s t o p p e d as t h e s t r e s s i s z e r o . Then t h e specimen c o n t r a c t s w i t h a d e c r e a s i n g s t r a i n r a t e and t h e s t r e s s i n c r e a s e s , 6 > 0 : t h a t i s t h e a n t i - r e l a x a t i o n

( F i g . 4 a ) . The i n t e r n a l f r i c t i o n i s immediatly r e d u c e d , t h e n i t de- c r e a s e s w i t h time a s ;r

,

t e n d i n g a g a i n towards i t s i n i t i a l v a l u e ( F i g . 4 b ) .

Fig.3

Evolution of the Internal Friction (b) during stress-relaxation ( a ) .

v:F/So MPa

C l

-

Fig.4

Evolution of the Internal Friction (b)

during antirelaxation after total. un-

(5)

CS-572 JOURNAL DE PHYSIQUE

i i i ) The t h i r d p o s s i b i l i t y i s t o move back t h e c r o s s - h e a d and s t o p i t a f t e r a p a r t i a l u n l o a d i n g a t a s t r e s s d < U

.

F o r t h e u p p e r 0 0 v a l u e s of U;, 'O i s n e g a t i v e ; f o r t h e l o w e r v a l u e s o f U' 6 i s p o s i t i - 0 ' v e ( f i g . 5 a ) . There i s a v a l u e o f u ' f o r which 6 i s z e r o , t h i s 0 s t r e s s i s u s u a l l y c o n s i d e r e d a s t h e i n t e r n a l s t r e s s . J u s t a f t e r t h i s p a r t i a l u n l o a d i n g t h e v a l u e o f i n t e r n a l f r i c t i o n i s r e d u c e d ( F i g . 5 b ) . The i n s t a n t a n e o u s v a l u e s o f i n t e r n a l f r i c t i o n a r e p l o t t e d v e r s u s U ' i n f i g u r e 6 . From t h i s f i g u r e i t i s c l e a r t h a t 0 i ) t h e i n s t a n t a n e o u s v a l u e o f A i s a l w a y s h i g h e r t h a n i t s v a l u e be- f o r e s t r a i n i n g , 30. I O - ~ ; i i ) t h e c u r v e shows a minimum o f A f o r t h e s t r e s s a ' = 20 MPa, t h i s s t r e s s i s s m a l l e r t h a n t h e s t r e s s f o r which 6 i s z e r o : 45

MPa.

D i s c u s s i o n . - I n t e r n a l f r i c t i o n o f t h e u n l o a d e d s p e c i m e n , A = 30.103,

c o r r e s p o n d s t o t h e background between t h e two t r a n s i t i o n s or and B o f t h e p o l y c a r b o n a t e which a r e r e s p e c t i v e l y a t 150 O C and -100 O C f o r

1 Hz / 2 / . The i n c r e a s e o f i n t e r n a l f r i c t i o n o b s e r v e d d u r i n g s t r a i n

o=F/So

MPa

L

Fig. 5

a ) Beginning of the relaxation after p a r t i a l unloading

b) Correspondent values of the Inter- nal Friction.

Fig.G

Internal Friction vs stress im- mediately a f t e r p a r t i a l unloa-

(6)

d o e s n o t seem t o be r e l a t e d t o t h e s e t r a n s i t i o n s b u t more l i k e l y i t i s c o n n e c t e d t o t h e s t r a i n r a t e i

.

T h i s i s c l e a r l y o b s e r v e d on t h e d i f f e r e n t i a l s t r a i n r a t e t e s t ( F i g . 2 ) and on t h e r e l a x a t i o n and an- t i - r e l a x a t i o n t e s t s : e a c h t i m e A d e c r e a s e s w i t h t . I n t h e r e l a x a - t i o n and a n t i r e l a x a t i o n t e s t s , t h e same t i m e i s n e c e s s a r y f o r

b e i n g c l o s e t o z e r o and f o r A r e a c h i n g a g a i n i t s i n i t i a l v a l u e . The

same r e s u l t h a s been o b t a i n e d on a specimen s t r a i n e d up t o r u p t u r e and k e p t a t room t e m p e r a t u r e f o r 48 H : i t shows t h e same damping s p e c t r u m a s undeformed m a t e r i a l from 77 t o 370 K .

I t c a n be s e e n from t h e p r e s e n t r e s u l t s t h a t t h e s t r a i n beha- v i o u r o f p o l y c a r b o n a t e shows s e v e r a l a n a l o g i e s w i t h m e t a l s : s t r a i n - r a t e s e n s i t i v i t y , e x i s t e n c e o f a n i n t e r n a l s t r e s s and e x i s t e n c e of

O 3

a n a c t i v a t i o n volume which h a s been c a l c u l a t e d ( P 1000 A ) b o t h from d i f f e r e n t i a l s t r a i n - r a t e t e s t s and from r e l a x a t i o n t e s t s .

Those a n a l o g i e s s u g g e s t two a s s u m p t i o n s . F i r s t l y , t h e p l a s t i c s t r a i n i n g o f g l a s s y - s t a t e p o l y c a r b o n a t e i s made p o s s i b l e by c r e a t i o n and motion o f d e f e c t s /3/. S e c o n d l y , when t h o s e d e f e c t s a r e moving under t h e a c t i o n o f t h e t e n s i l e s t r e s s , t h e i r motion c a n be m o d i f i e d by a s m a l l t o r q u e : t h i s m o d i f i c a t i o n i s d i s s i p a t i n g e n e r g y , s o t h a t i t p r o d u c e s i n t e r n a l f r i c t i o n when t h e t o r q u e i s s i n u s o i d a l . Using t h o s e two a s s u m p t i o n s , a c o h e r e n t i n t e r p r e t a t i o n o f t h e r e s u l t s c a n be g i v e n . I n a l l t h e t e s t s , a s t r a i n - r a t e d e c r e a s e i s r e - l a t e d t o an i n t e r n a l f r i c t i o n d e c r e a s e ( F i g . 2 , 3 , 4 ) : s o t h e number o f t h e m o b i l e d e f e c t s a l s o d e c r e a s e s .

The motion o f e a c h d e f e c t i n t h e m a t e r i a l i s opposed by t h e i n - t e r n a l s t r e s s e s . So, t h e e f f e c t i v e s t r e s s a c t i n g on a d e f e c t i s : U = a

-

oiwhere o i s t h e e x t e r n a l a p p l i e d s t r e s s , and 0. i s t h e i n - t e r n a l s t r e s s . C o n s e q u e n t l y when a p p l y i n g a n e x t e r n a l s t r e s s = o i ' t h e e f f e c t i v e s t r e s s o e becomes z e r o and t h e p l a s t i c s t r a i n - r a t e i s a l s o z e r o . I n t h e r e l a x a t i o n t e s t , d e f e c t s c o n t i n u e t o move a s l o n g a s a e > 0 , b u t b e c a u s e t h e sample l e n g t h i n c r e a s e s , t h e s t r e s s d e c r e a s e s a n d t h e p l a s t i c s t r a i n r a t e

Z p

a l s o ; a s t h e d e f e c t s a r e l e s s and l e s s m o b i l e , t h e i n t e r n a l f r i c t i o n a l s o d e c r e a s e s ( F i g . 3 ) . I n t h e a n t i r e l a x a t i o n t e s t , f o r G = 0 , t h e e f f e c t i v e s t r e s s i s o e =

-

a .

-

1 '

t h a t s t r e s s i n d u c e s t h e backward motion of some d e f e c t s and macrosco- p i c a l l y , t h e s t r a i n r a t e

GB

i s n e g a t i v e ; t h e i n t e r n a l f r i c t i o n A i s n o t s e n s i t i v e t o t h e d i r e c t i o n o f t h e d i s p l a c e m e n t o f t h e d e f e c t s , and d e c r e a s e s w i t h

EB

.

I n t h e p a r t i a l u n l o a d i n g t e s t , t h o s e two e f f e c t s a r e i n competi-

. .

t i o n : t h e whole s t r a i n - r a t e i s E = E~

+

E ~ AS . s c h e m a t i c a l l y shown

(7)

C5-5 74 JOURNAL DE PHYSIQUE p l i e d a f t e r u n l o a d i n g . When a p p l y i n g a s t r e s s do = U . t h e p l a s t i c 1' s t r a i n Qp becomes z e r o a n d t h e t o t a l s t r a i n r a t e

;

i s i = k < 0 . But B t h e i n t e r n a l f r i c t i o n A v a r i e s a s 'cp

+

I

C B

I

: c o n s e q u e n t l y , i t p a s - s e s t h r o u g h a minimum when C p becomes z e r o ( F i g . 7 b ) a n d t h e c o r r e s - p o n d i n g v a l u e o f t h e a p p l i e d s t r e s s ( F i g . 6 ) i s t h e m a c r o s c o p i c va- l u e o f t h e i n t e r n a l s t r e s s o i . T h a t v a l u e i s l e s s t h a n t h e s t r e s s f o r which Er = 0 , c o r r e s p o n d i n g t o a t r a n s i e n t e q u i l i b r i u m b e t w e e n t h e p l a s t i c s t r a i n - r a t e and t h e backward s t r a i n - r a t e :

+

B = 0 ( s a m p l e 2 on f i g . 5 a ) . a ) S c h e m a t i c d r a w i n g o f c p a n d v s t h e s t r e s s i m m e d i a t e l y a f t e r u n l o a d i n g b ) L P

+ l

tgl r

4 . Aknowledgements.

-

The a u t h o r s a r e g r a t e f u l t o P

.

B. E s c a i g and D ~ . J . L . G a c o u g n o l l e f o r h e l p f u l d i s c u s s i o n s and a s s i s t a n c e f o r w r i - t i n g t h e p a p e r .

5 . R e f e r e n c e s .

/ l / G . COLLETTE

-

C . R . Hebd. S h a n c e s Acad. S c i . B

*,

2756, ( 1 9 5 8 ) Mgtaux C o r r o s . I n d .

9,

1 4 3 , ( 1 9 6 4 ) .

/ 2 / N . G . MC CRUM, B.E. READ and G . WILLIAMS,

A n e l a s t i c a n d D i e l e c t r i c E f f e c t s i n P o l y m e r i c S o l i d s . J o h n WILEY and SONS, London.

/ 3 / B. ESCAIG.

D i s l o c a t i o n s e t d g f o r m a t i o n p l a s t i q u e pp.261-286 E c o l e d ' E t 6 d g Y r a v a l s 1979.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to