• Aucun résultat trouvé

Basement heat loss studies at DBR/NRC

N/A
N/A
Protected

Academic year: 2021

Partager "Basement heat loss studies at DBR/NRC"

Copied!
62
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Paper (National Research Council of Canada. Division of Building Research),

1982-09

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=26e3bb42-ef58-49cc-ab61-c8bd109814f4 https://publications-cnrc.canada.ca/fra/voir/objet/?id=26e3bb42-ef58-49cc-ab61-c8bd109814f4

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20378029

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Basement heat loss studies at DBR/NRC

(2)
(3)

NATIONAL RESEARCH COUNCIL OF CANADA

DIVISION OF BUILDING RESEARCH

BASEMENT HEAT LOSS STUDIES AT DBR/NRC

by

G. P. Mitalas

DBR Paper No. 1045

of the

Division of Building Research

(4)

BASEMENT HEAT LOSS STUDIES AT DBR/NRC by G.P. M i t a l a s

ABSTRACT

A s i m p l i f i e d c a l c u l a t i o n method h a s been developed f o r p r e d i c t i n g : 1 ) maximum r a t e of h e a t l o s s from a basement

2) t h e basement t o t a l h e a t l o s s o v e r t h e h e a t i n g s e a s o n T h i s method d i f f e r s from p r e v i o u s o n e s mainly b e c a u s e i t

r e c o g n i z e s t h e a n n u a l v a r i a t i o n of basement h e a t l o s s a s a s i g n i f i c a n t component of t h e t o t a l basement h e a t l o s s . The development o f t h e method i s b a s e d o n b o t h e x p e r i m e n t a l and a n a l y t i c a l s t u d i e s of basement h e a t l o s s . The e s s e n t i a l d a t a needed t o c a l c u l a t e t h e basement h e a t l o s s a r e t h e s t e a d y - s t a t e and p e r i o d i c s h a p e f a c t o r s , t h e a m p l i t u d e a t t e n u a t i o n f a c t o r and t h e time-lag f a c t o r and ground s u r f a c e

t e m p e r a t u r e s . The basement h e a t l o s s f a c t o r s f o r s e v e r a l i n s u l a t i o n systems a s w e l l a s t h e ground t e m p e r a t u r e d a t a f o r s e v e r a l l o c a t i o n s i n , Canada a r e l i s t e d i n t h e pgper. A comparison of t h e c a l c u l a t e d and measured basement h e a t l o s s v a l u e s i n d i c a t e t h a t t h e method i s c a p a b l e of r e a s o n a b l y a c c u r a t e p r e d i c t i o n of basement h e a t l o s s .

LES ~ T U D E S DE LA DRBICNRC SUR LES PERTES DE CHALEUR PAR LES SOUS-SOLS p a r G.P. M i t a l a s

Une methode d e c a l c u l s i m p l i f i e e a 15tg mise a u p o i n t en vue d e p r b v o i r : 1 ) l e t a u x maximal d e d e p e r d i t i o n d e c h a l e u r p a r l e s o u s - s o l ; 2 ) l e t o t a l d e s p e r t e s d e c h a l e u r p a r l e sous-sol d u r a n t l a p g r i o d e d e c h a u f f a g e . C e t t e mgthode est l e r e s u l t a t d ' e t u d e s e x p g r i m e n t a l e s e t a n a l y t i q u e s . E l l e d i f f e r e d e s a u t r e s e n c e q u ' e l l e c o n s i d k r e l e s v a r i a t i o n s a n n u e l l e s de p e r t e s d e c h a l e u r comme un 6lement s i g n i f i c a t i f d e s p e r t e s t o t a l e s d e c h a l e u r . Les d o n n s e s n g c e s s a i r e s aux c a l c u l s d e s p e r t e s d e c h a l e u r p a r l e s s o u s - s o l s s o n t l e f a c t e u r de rggime permanent e t l e f a c t e u r p g r i o d i q u e d e forme, l e s f a c t e u r s d l a t t & n u a t i o n d ' a m p l i t u d e e t de temps m o r t , e t l e s t e m p e r a t u r e s s u p e r f i c i e l l e s du s o l . Les f a c t e u r s d e p e r t e s d e c h a l e u r d e p l u s i e u r s methodes d ' i s o l a t i o n , a i n s i que l e s donn6es r e l a t i v e s

B

l a t e m p g r a t u r e du s o l d e p l u s i e u r s e n d r o i t s a u Canada s o n t pr'esent'es d a n s l e document. Une comparaison e n t r e l e s p e r t e s d e c h a l e u r c a l c u l e e s e t mesurees i n d i q u e que c e t t e mgthode permet d e p r g v o i r a v e c u n e p r ' e c i s i o n r a i s o n n a b l e l e s p e r t e s d e c h a l e u r p a r l e s s o u s - s o l s .

(5)

TABLE OF CONTENTS

NOMENCLATURE

...

INTRODUCTION

...

DERIVATION OF CALCULATION PROCEDURE FOR BASEMENT HEAT

L O S S B a s e m e n t M o d e l

...

A b o v e - G r a d e H e a t L o s s

...

B e l o w - G r a d e H e a t Loss

...

D e t e r m i n i n g B a s e m e n t H e a t L o s s Factors

...

C o r n e r H e a t Loss

...

CALCULATION O F BASEMENT HEAT L O S S

...

EXPERIMENTAL MEASUREMENTS O F BASEMENT HEAT L O S S

...

ANALYSIS OF T E S T DATA

...

COMPARISON OF CALCULATED AND EXPERIMENTAL R E S U L T S

P a g e 1

5

I n f l u e n c i n g Factors

...

1 7 E x a m p l e C o m p a r i s o n s

...

18 COMMENTS AND D I S C U S S I O N

...

2 3 ACKNOWLEDGEMENTS

...

24

REFERENCES

...

2 5 TABLES I t o V I F I G U R E S 1 t o 17 APPENDICES:

A

-

COMPUTER PROGRAMS USED I N CALCULATIONS B

.

SAMPLE CALCULATION O F BASEMENT HEAT L O S S C

.

DBR/NRC T E S T BASEMENTS

(6)

( A l l dimensions used i n t h i s paper a r e i n

SI

u n i t s e x c e p t i f noted otherwise. ) NOMENCLATURE *n a r e a of segment n a n , b n , c n , and dn c o n s t a n t s t h a t a r e s p e c i f i c t o t h e basement t h e r m a l i n s u l a t i o n system n c o r n e r allowance f a c t o r s D h e i g h t of basement w a l l above g r a d e

E ( t ) experimental energy consumption

G basement p e r i m e t e r H t o t a l h e i g h t of basement w a l l k lower and s o i l thermal c o n d u c t i v i t y k upper L basement l e n g t h M h e i g h t of i n s u l a t i o n coverage over w a l l m month number ( 1 t o 1 2 )

N

number of segments c o n s t i t u t i n g i n t e r i o r s u r f a c e a r e a of below-grade p o r t i o n of t h e basement P ( t > i n s t a n t a n e o u s h e a t s u p p l i e d t o t h e basement o r c a l o r i m e t e r (power)

QT

annual basement h e a t l o s s

Q( t )

h e a t l o s s from t h e below-grade p o r t i o n of t h e basement

Qw

below-grade basement h e a t l o s s f o r w i n t e r p e r i o d q a , n annual mean v a l u e of q n ( t )

(7)

qv, n amplitude of t h e f i r s t harmonic of t h e h e a t f l u x v a r i a t i o n qv,n ( t ) v a r i a b l e component of t h e average h e a t f l u x through t h e

segment,

h ,

a t time t

R thermal r e s i s t a n c e of basement i n s u l a t i o n

RT

o v e r - a l l thermal r e s i s t a n c e of basement w a l l above g r a d e

l e v e l

n shape f a c t o r t h e s t e a d y - s t a t e h e a t l o s s component

Sn(R) s t e a d y - s t a t e shape f a c t o r s f o r a basement i n s u l a t e d t o a thermal r e s i s t a n c e , R

t t ime

U o v e r - a l l thermal conductance of basement w a l l above g r a d e

l e v e l , l / R T

'n shape f a c t o r f o r t h e p e r i o d i c h e a t l o s s component Vn(R) s t e a d y - s t a t e and p e r i o d i c shape f a c t o r s f o r a basement

i n s u l a t e d t o a thermal r e s i s t a n c e , R

W basement width

*n c o r n e r allowance

Y and c o e f f i c i e n t s determined by a s t r a i g h t l i n e f i t t o t h e yo measured energy d a t a o v e r w i n t e r p e r i o d

Zo,Z1,Z2 and Z3 c o e f f i c i e n t s determined by " l e a s t s q u a r e s " f i t of Eq.

(8) t o measured d a t a S u b s c r i p t s a d e n o t e s s t e a d y - s t a t e component n d e n o t e s t h e segment of t h e i n t e r i o r s u r f a c e of below-grade p o r t i o n of basement v d e n o t e s v a r i a b l e component m month number ( 1 t o 1 2 ) Greek Symbols

a time l a g of power wave

(8)

t i m e l a g of t h e h e a t f l u x harmonic r e l a t i v e t o s u r f a c e t e m p e r a t u r e v a r i a t i o n

'

B

basement space a i r t e m p e r a t u r e

'G

ground s u r f a c e t e m p e r a t u r e averaged o v e r b o t h time and a r e a ,

which e q u a l s mean ground t e m p e r a t u r e

eo,m

monthly v a l u e of o u t d o o r a i r t e m p e r a t u r e e o ( t > outdoor a i r t e m p e r a t u r e a s f u n c t i o n of t i m e v a m p l i t u d e of t h e f i r s t harmonic of t h e ground s u r f a c e t e m p e r a t u r e 'n amplitude a t t e n u a t i o n f a c t o r w a n g u l a r v e l o c i t y of t h e f i r s t harmonic of t h e annual c y c l e

(9)

BASEMENT HEAT LOSS STUDIES AT DBR/NRC by

G.P. M i t a l a s

INTRODUCTION

One a r e a of u n c e r t a i n t y i n t h e methods f o r c a l c u l a t i n g e n e r g y n e e d s f o r h e a t i n g i s t h e p r e d i c t i o n of basement h e a t l o s s . The methods used t o c a l c u l a t e t h i s l o s s a r e n o t s u f f i c i e n t l y s e n s i t i v e t o b e a b l e t o d i s t i n g u i s h between d i f f e r e n t i n s u l a t i o n methods o r t y p e s , e . g . , a r e a o f basement covered w i t h i n s u l a t i o n and t h i c k n e s s of i n s u l a t i o n . T h i s d e f i c i e n c y i s e s p e c i a l l y i m p o r t a n t today when h o u s e s a r e c o n s t r u c t e d w i t h more i n s u l a t i o n , b e t t e r f i t t i n g windows and a g r e a t e r d e g r e e o f a i r t i g h t n e s s . A s t h e basement h a s become a major component o f t h e t o t a l house h e a t i n g r e q u i r e m e n t , t h e r e i s need of a n a c c u r a t e method t o p r e d i c t basement h e a t l o s s s o t h a t d e s i g n e r s and r e g u l a t o r y o f f i c i a l s can make well-informed d e c i s i o n s r e g a r d i n g basement i n s u l a t i o n .

To s a t i s f y t h i s need, a house basement s t u d y was i n i t i a t e d a t t h e NRC D i v i s i o n of B u i l d i n g R e s e a r c h c o n s i s t i n g of b o t h a n e x p e r i m e n t a l and an a n a l y t i c a l component. The o b j e c t i v e of t h e s t u d y was t o d e v e l o p a s i m p l e c a l c u l a t i o n p r o c e d u r e f o r p r e d i c t i n g basement h e a t l o s s i n o r d e r t o d e t e r m i n e , f o r any g i v e n s i t u a t i o n ,

( 1 ) t h e maximum r a t e of h e a t l o s s from

a

basement, and

( 2 ) t h e t o t a l h e a t l o s s from a basement o v e r t h e h e a t i n g s e a s o n . The basement h e a t l o s s problem h a s been s t u d i e d by many

i n v e s t i g a t o r s . Of more t h a n 30 p a p e r s o n t h i s s u b j e c t , t h e most r e l e v a n t a r e l i s t e d a s R e f e r e n c e s ( 1 ) t o ( 1 1 ) . Numerous c a l c u l a t i o n methods have been d e v e l o p e d and used. Many of t h e s e t r e a t basement h e a t l o s s a s a two-dimensional s t e a d y - s t a t e h e a t c o n d u c t i o n problem and have s o l v e d i t by p a p e r a n a l o g u e , f i n i t e - d i f f e r e n c e and f i n i t e - e l e m e n t c a l c u l a t i o n methods.

The paper by F.C. Houghten e t a 1 ( 1 ) was c i t e d f o r many y e a r s a s t h e s o u r c e of t h e basement h e a t l o s s f a c t o r s g i v e n i n t h e ASHRAE

Handbook of Fundamentals ( 2 ) . It d e s c r i b e s a d e t a i l e d e x p e r i m e n t a l s t u d y of basement h e a t l o s s and t e m p e r a t u r e c o n d u c t e d o n o n e basement. A q u e s t i o n h a s always e x i s t e d a s t o t h e a p p l i c a b i l i t y of t h e

e x p e r i m e n t a l r e s u l t s from o n e basement t o o t h e r s i t u a t i o n s .

The paper by G.G. B o i l e a u and

J.K.

L a t t a ( 3 ) d e s c r i b e s a n o v e l a p p r o a c h f o r d e r i v i n g h o u s e basement h e a t l o s s f a c t o r s . The h e a t f l o w p a t h s around t h e basement a r e assumed t o be c i r c u l a r and t h e l e n g t h of t h e s e p a t h s u s e d t o estimate t h e basement h e a t l o s s f a c t o r s .

U n f o r t u n a t e l y , h e a t flow p a t h s a r e n o t n e c e s s a r i l y c i r c u l a r f o r a l l i n s u l a t i o n arrangements.

(10)

Any review of basement h e a t l o s s must acknowledge p e r t i n e n t Swedish s t u d i e s ( 4 ) . They r e c o g n i z e d t h e s i g n i f i c a n c e of below-grade h e a t l o s s i n t h e t o t a l house h e a t b a l a n c e and c a r r i e d o u t s t u d i e s t o a s s e s s t h e e f f e c t of i n s u l a t i n g below ground l e v e l . Although t h e Swedish a n a l y t i c a l s t u d i e s a r e based on s t e a d y - s t a t e h e a t conduction models, t h e i r r e p o r t s c o n t a i n a g r e a t d e a l of u s e f u l i n f o r m a t i o n on basement i n s u l a t i o n .

The paper by M.C. Swinton and R.E. P l a t t s ( 5 ) f o l l o w s an approach based on c o r r e l a t i n g e x p e r i m e n t a l l y determined basement h e a t l o s s w i t h "degree days" f o r d i f f e r e n t l e v e l s of i n s u l a t i o n . T h i s i s a

q u e s t i o n a b l e approach s i n c e t h e c o r r e l a t i o n of ground t e m p e r a t u r e and number of "degree days" h a s n o t been e s t a b l i s h e d .

The method i n t h i s paper d i f f e r s from t h e p r e v i o u s ones i n two major r e s p e c t s : i t r e c o g n i z e s t h e v a r i a t i o n of basement h e a t l o s s d u r i n g t h e y e a r a s a s i g n i f i c a n t f a c t o r i n t h e house h e a t b a l a n c e and u t i l i z e s a n a l y t i c a l a s w e l l a s e x p e r i m e n t a l d a t a t o d e v e l o p a proposed c a l c u l a t i o n method and t o e s t a b l i s h t h e s i g n i f i c a n t f a c t o r s involved i n t h e c a l c u l a t i o n of basement h e a t l o s s .

T h i s paper on t h e DBR basement h e a t l o s s s t u d i e s c o n s i s t s of s i x p a r t s :

( 1 ) D e s c r i p t i o n of t h e basement p h y s i c a l model and t h e d e r i v a t i o n of t h e c a l c u l a t i o n method,

( 2 ) D e t a i l e d d e s c r i p t i o n of t h e proposed c a l c u l a t i o n method,

( 3 ) D e s c r i p t i o n of t h e basement h e a t l o s s e x p e r i m e n t s , ( 4 ) A n a l y s i s of t e s t d a t a ,

( 5 ) Comparison of t h e e x p e r i m e n t a l and c a l c u l a t e d basement h e a t l o s s r e s u l t s , and f i n a l recommendations f o r basement h e a t l o s s c a l c u l a t i o n s f a c t o r s ,

( 6 ) Comments and d i s c u s s i o n .

1. DERIVATION OF CALCULATION PROCEDURE FOR BASEMENT HEAT LOSS 1.1 Basement Model

F i g u r e 1 shows a p h y s i c a l model of t h e e l e m e n t s i n v o l v e d i n t h e h e a t l o s s from a basement:

( a ) t h e basement w a l l ahove g r a d e ,

( b ) t h e basement w a l l and f l o o r below g r a d e , ( c ) t h e ground s u r f a c e a d j a c e n t t o t h e basement,

(11)

( d ) a lower thermal boundary at a constant temperature equal to

the mean ground temperature,

(e)

the conducting solid mass between the basement, the ground

surf

ace and the lower thermal boundary.

The model assumes that sufficient groundwater flow occurs to

maintain a constant temperature at some depth below the basement floor.

1.2 Above-Grade Heat Loss

The instantaneous heat flux through the above-grade portion of the

basement wall can be represented by

where

Ql

(t) =

heat flux through the above-grade wall,

U

=

over-all thermal conductance of the basement wall above

grade level, I/%,

RT

=

over-all thermal resistance of the basement wall above

grade level,

OB

=

basement space air temperature,

Oo(t)=

outdoor air temperature as a function of time,

t =

time.

1.3 Below-Grade Heat Loss

The instantaneous heat loss from the below-grade portion of the

basement can be expressed as

where

N

=

number of segments constituting the interior surface area

of the below grade portion of the basement,

An

a

area of segment n,

q,(t)

=

average heat flux through the segment area, An, at time

(12)

The a m p l i t u d e v a l u e s f o r t h e f i r s t and second harmonics o f t h e ground s u r f a c e t e m p e r a t u r e f o r s e v e r a l l o c a t i o n s i n Canada ( 1 2 ) , o b t a i n e d by a F o u r i e r s e r i e s a n a l y s i s , a r e shown i n T a b l e I .

S i n c e t h e second harmonic i s r e l a t i v e l y s m a l l , t h e a n n u a l ground s u r f a c e t e m p e r a t u r e v a r i a t i o n can b e approximated u s i n g o n l y t h e f i r s t harmonic of t h e a n n u a l c y c l e . The i n s t a n t a n e o u s h e a t f l u x e s , q n ( t ) , can t h u s be e x p r e s s e d a s q n ( t ) = qa,,

+

q,,, s i n ( w t ) where qa,, = a n n u a l mean v a l u e of q n ( t ) , q v , n = a m p l i t u d e of t h e f i r s t harmonic of t h e h e a t f l u x v a r i a t i o n , w = a n g u l a r v e l o c i t y of t h e f i r s t harmonic. Heat c o n d u c t i o n t h r , ~ u g h a l i n e a r t h e r m a l s y s t e m i s i n d i r e c t p r o p o r t i o n t o t h e t e m p e r a t u r e d i f f e r e n c e a c r o s s t h e s y s t e m and t h e o v e r - a l l conductance. The two components of q,,(t) g i v e n by Eq. ( 3 ) c a n , t h e r e f o r e , be e x p r e s s e d a s qa,, " Sn

(QB

-

QG)

and q V , , ( t ) I Vn o n 0, s i n w ( t + A t n ) ( 5 where S, = shape f a c t o r f o r t h e s t e a d y - s t a t e h e a t l o s s component.

I t i s assumed t h a t s t e a d y - s t a t e and mean a n n u a l h e a t l o s s a r e e q u a l .

OB = basement a i r t e m p e r a t u r e ,

OG = ground s u r f a c e t e m p e r a t u r e averaged o v e r b o t h t i m e and a r e a , which e q u a l s mean ground t e m p e r a t u r e ,

V,

= shape f a c t o r f o r t h e p e r i o d i c h e a t l o s s ,

u,

= a m p l i t u d e a t t e n u a t i o n f a c t o r , 0, = a m p l i t u d e of t h e f i r s t harmonic of t h e ground s u r f a c e t e m p e r a t u r e , A t n = time l a g of t h e h e a t f l u x harmonic r e l a t i v e t o s u r f a c e t e m p e r a t u r e v a r i a t i o n .

(13)

The shape f a c t o r , Sn, r e p r e s e n t s t h e o v e r - a l l conductance between t h e basement i n t e r i o r s u r f a c e segment n ( i n c l u d i n g t h e s u r f a c e h e a t t r a n s f e r c o e f f i c i e n t ) and t h e two b o u n d a r i e s ; and between t h e ground s u r f a c e a d j a c e n t t o t h e basement and t h e h y p o t h e t i c a l lower boundary plane a t mean ground t e m p e r a t u r e , a s i n d i c a t e d i n F i g u r e 1. The shape f a c t o r , Vn, r e p r e l s e n t s t h e o v e r - a l l conductance between o n l y t h e

basement i n t e r i o r s u r f a c e segment n and t h e ground s u r f a c e .

Thus t h e shape f a c t o r s f o r t h e s t e a d y - s t a t e and p e r i o d i c h e a t l o s s components a r e n o t t h e same. S t e a d y - s t a t e h e a t l o s s c o n s i s t s of two components: one between t h e i n t e r i o r s u r f a c e segment and t h e ground s u r f a c e , and t h e o t h e r between t h e i n t e r i o r s u r f a c e segment and t h e p l a n e a t a c o n s t a n t t e m p e r a t u r e below t h e basement f l o o r . P e r i o d i c h e a t l o s s , on t h e o t h e r hand, i s only between t h e i n t e r i o r s u r f a c e segment and t h e ground s u r f a c e , s i n c e t h e ground t e m p e r a t u r e deep down

i s assumed t o be c o n s t a n t .

1.4 Determining Basement Heat Loss F a c t o r s

Below-grade basement h e a t l o s s can be c a l c u l a t e d u s i n g Eqs. ( 2 ) t o

( 5 ) i f v a l u e s c a n b e a s s i g n e d t o : t h e shape f a c t o r s , Sn and V n ; t h e amplitude a t t e n u a t i o n f a c t o r , a n ; and t h e time l a g , A t n . The c r o s s - s e c t i o n a l model of a basement and t h e s u r r o u n d i n g ground ( F i g u r e 1 ) was used t o d e t e r m i n e t h e s e f a c t o r s . T h i s s i m p l e model assumes t h a t two- dimensional h e a t conduction p r e v a i l s around t h e basement. (The t h r e e - d i m e n s i o n a l h e a t c o n d u c t i o n e f f e c t of a n e x t e r i o r c o r n e r i n a

r e c t a n g u l a r basement w i l l be d i s c u s s e d l a t e r . ) F a c t o r s t h a t a r e n o t t a k e n i n t o a c c o u n t by t h i s model a r e :

-

time v a r i a t i o n s of t e m p e r a t u r e and l e v e l of t h e ground w a t e r ,

-

t h e flow of r a i n o r melt water i n t o t h e s o i l s u r r o u n d i n g t h e basement,

-

s p a t i a l v a r i a t i o n of ground t e m p e r a t u r e around a basement due t o s o l a r e f f e c t s , a d j a c e n t b u i l d i n g s and v a r i a t i o n s i n t h e snow c o v e r ,

-

t h e d i f f e r e n c e i n t h e r m a l p r o p e r t i e s of b a c k f i l l and u n d i s t u r b e d s o i l , and of t h e s o i l above and below t h e f r e e z i n g plane.

The model can a l l o w f o r some v a r i a t i o n i n s o i l t h e r m a l p r o p e r t i e s by a s s i g n i n g a d i f f e r e n t c o n d u c t i v i t y v a l u e t o t h e s o i l above and below t h e basement f l o o r l e v e l .

A set of shape f a c t o r s , Sn and Vn, f o r a g i v e n basement i n s u l a t i o n system was o b t a i n e d by c a l c u l a t i n g t h e h e a t f l u x , qn, through An u s i n g one c o n s t a n t u n i t f o r ground s u r f a c e and basement s p a c e t e m p e r a t u r e s . F i n i t e - e l e m e n t numerical methods were used t o d e t e r m i n e t h e h e a t f l u x through t h e basement i n t e r i o r s u r f a c e and s h o r t d e s c r i p t i o n s of t h e programs used i s g i v e n i n Appendix A.

(14)

An a n a l y s i s of t h e c a l c u l a t e d shape f a c t o r s i n d i c a t e s t h a t , i n most c a s e s , t h e basement i n s u l a t i o n t h e r m a l r e s i s t a n c e , R , and t h e shape f a c t o r s c a n be r e l a t e d by and f o r t h e range 1

<

R

<

5

where S,(R) and Vn(R) = s t e a d y - s t a t e and p e r i o d i c s h a p e f a c t o r s f o r a basement i n s u l a t e d t o a t h e r m a l r e s i s t a n c e v a l u e , R , a n , b n , c n = c o n s t a n t s t h a t a r e s p e c i f i c t o t h e basement t h e r m a l i n s u l a t i o n system.

The e x p r e s s i o n s of Sn and V n f o r s e v e r a l basement i n s u l a t i o n systems and f o r two s e t s of s o i l c o n d u c t i v i t y v a l u e s a r e l i s t e d i n T a b l e s I1 and 111.

The a t t e n u a t i o n f a c t o r , a n , and t h e time l a g f a c t o r , A t n , have been d e t e r m i n e d by c a l c u l a t i n g t h e p e r i o d i c h e a t f l u x u s i n g a s i n e wave v a r i a t i o n of t h e ground s u r f a c e t e m p e r a t u r e . C a l c u l a t e d a t t e n u a t i o n and time-lag f a c t o r s a r e p l o t t e d i n F i g u r e 2. Based on t h e s e c u r v e s , a s e t of a t t e n u a t i o n and time-lag f a c t o r s were d e r i v e d and a r e i n c l u d e d i n T a b l e 111.

E x p e r i m e n t a l s t u d i e s have i n d i c a t e d t h a t t h e v a r i a t i o n i n basement h e a t l o s s c a n b e a d e q u a t e l y d e s c r i b e d u s i n g monthly mean v a l u e s of t h e basement h e a t l o s s . Thus, a t i m e i n c r e m e n t , m , of one month was u s e d , w i t h J a n u a r y i d e n t i f i e d by m = 1 and a n g u l a r v e l o c i t y of 30 d e g r e e s p e r month.

1.5 Corner Heat Loss

Using F i g u r e 1 a s t h e b a s i c c r o s s - s e c t i o n of a t h r e e - d i m e n s i o n a l model, t h r e e - d i m e n s i o n a l h e a t c o n d u c t i o n c a l c u l a t i o n s were performed

f o r a basement e x t e r i o r c o r n e r w i t h two l e v e l s of i n s u l a t i o n : t h e w a l l i n s u l a t e d t o half-way down below g r a d e , and i n s u l a t i o n o v e r t h e

f u l l h e i g h t of t h e w a l l . The c a l c u l a t e d s u r f a c e h e a t f l u x v a l u e s f o r t h e two c a s e s a r e shown i n F i g u r e s 3a and 3b. Note t h a t t h e i n c r e a s e i n s u r f a c e h e a t f l u x towards t h e c o r n e r i s o n l y o f s i g n i f i c a n c e f o r t h e lower s e c t i o n of an u n i n s u l a t e d w a l l and f o r t h e f l o o r . Based on t h e s u r f a c e h e a t f l u x v a l u e s c a l c u l a t e d f o r t h e two l e v e l s of basement i n s u l a t i o n , a s e t of c o r n e r allowance f a c t o r s , 'n

(15)

was d e r i v e d f o r a l l t h e basement i n s u l a t i o n systems l i s t e d i n T a b l e 111.

2. CALCULATION OF BASEMENT HEAT LOSS

The i n s i d e s u r f a c e of t h e basement, a s shown i n F i g u r e 1, i s made up of t h e f o l l o w i n g f i v e segments:

Al

= i n s i d e s u r f a c e a r e a of w a l l above g r a d e , A2 = upper i n s i d e s u r f a c e a r e a of w a l l below g r a d e , A3 = lower i n s i d e s u r f a c e a r e a of w a l l below g r a d e , A4 = i n s i d e s u r f a c e a r e a of f l o o r s t r i p 1 m wide a d j a c e n t t o w a l l , and A5 = i n s i d e s u r f a c e a r e a of t h e remainder of t h e f l o o r . The basement f l o o r was d i v i d e d i n t o two r e g i o n s because h e a t f l u x c a l c u l a t i o n s have shown t h a t t h e f l o o r h e a t f l u x a d j a c e n t t o t h e w a l l d i f f e r s s u b s t a n t i a l l y from t h e h e a t f l u x through t h e remainder of t h e f l o o r .

The e s s e n t i a l d a t a needed t o c a l c u l a t e t h e basement h e a t l o s s a r e t h e s t e a d y - s t a t e and p e r i o d i c s h a p e f a c t o r s , Sn and V n , t h e amplitude a t t e n u a t i o n f a c t o r , a n , and t h e time-lag f a c t o r , A t n . T a b l e I1 l i s t s c a l c u l a t e d h e a t l o s s f a c t o r s f o r s e v e r a l i n s u l a t i o n systems found i n t h e t e s t basements. (These v a l u e s a r e used i n t h e f o l l o w i n g s e c t i o n s t o compare c a l c u l a t e d and measured basement h e a t l o s s r e s u l t s . ) Based on t h i s comparison, t h e s t e a d y - s t a t e f l o o r s h a p e f a c t o r s were modified t o improve agreement between measured and c a l c u l a t e d r e s u l t s . These a d j u s t e d f a c t o r s (where t h e a d j u s t m e n t s are b a s e d o n e x p e r i m e n t a l r e s u l t s ) f o r a l a r g e number of basement i n s u l a t i o n systems a r e l i s t e d i n T a b l e 111.

It s h o u l d b e n o t e d t h a t t h e f a c t o r s f o r t h e c a s e s of t h e p a r t i a l l y i n s u l a t e d w a l l s were c a l c u l a t e d assuming a v e r t i c a l dimension (M-D) of 0.6 m f o r A 2 . The dimension, 0.6 m, was s e l e c t e d because t h a t i s t h e amount s p e c i f i e d i n some Canadian b u i l d i n g s t a n d a r d s . The f a c t o r s f o r t h e s e c a s e s can, however, b e used t o c a l c u l a t e t h e l o s s e s from o t h e r p a r t i a l l y i n s u l a t e d w a l l s where D 4 M

<

H.

(16)

The f o l l o w i n g summarizes t h e s t e p s t o be t a k e n t o c a l c u l a t e t h e h e a t l o s s . For a s p e c i f i c basement: S t e p 1

-

S p e c i f y t h e r e q u i r e d i n p u t d a t a f o r : ( a ) I n s i d e basement dimensions

-

l e n g t h , L,

-

w i d t h , W ,

-

t o t a l h e i g h t of w a l l , H ,

-

h e i g h t of w a l l above g r a d e , D. ( b ) Basement i n s u l a t i o n

-

o v e r - a l l thermal r e s i s t a n c e of w a l l above g r a d e , RT,

-

r e s i s t a n c e v a l u e of i n s u l a t i o n , R,

-

h e i g h t of i n s u l a t i o n coverage over w a l l , M ,

-

e x t e n t of i n s u l a t i o n coverage over f l o o r (e.g., none, 1 m s t r i p a d j a c e n t t o w a l l , f u l l coverage).

( c ) Temperature

-

basement space t e m p e r a t u r e , O B ,

-

mean ground t e m p e r a t u r e , O G ( s e e Table 1 of Ref. 121,

-

a m p l i t u d e of t h e f i r s t harmonic of t h e ground s u r f a c e

t e m p e r a t u r e v a r i a t i o n , O V , and t h e t i m e l a g of t h e f i r s t harmonic, A t n , i n months ( s e e Table I ) ,

-

monthly a v e r a g e outdoor a i r t e m p e r a t u r e , Oo,m, where i d e n t i f i e s t h e month ( s e e Ref. 13).

S t e p 2

-

C a l c u l a t e t h e a r e a s of t h e segments c o n s t i t u t i n g t h e basement f l o o r and w a l l s .

( a ) For a r e c t a n g u l a r basement of a d e t a c h e d house:

G = p e r i m e t e r = 2 (L+W) A 1 = G D ,

A4 = G

-

4 ,

(17)

( i ) w i t h i n s u l a t i o n p a r t i a l l y c o v e r i n g t h e w a l l ,

( i i ) w i t h i n s u l a t i o n c o v e r i n g t h e e n t i r e w a l l , u s e t h e following:

(Even though b o t h A2 and

A3

a r e covered by i n s u l a t i o n , t h e y a r e t r e a t e d s e p a r a t e l y because of t h e manner i n which t h e f a c t o r s were d e r i v e d (Table 111).

( b ) For a basement of a home t h a t is l o c a t e d i n t h e middle of a row of housing u n i t s , n o t e t h e f o l l o w i n g changes:

A4 = G , and

S t e p 3

-

S e l e c t an a p p r o p r i a t e v a l u e of s o i l thermal c o n d u c t i v i t y ; f o r t h e p a r t i c u l a r R-value of basement i n s u l a t i o n , e x t r a c t and c a l c u l a t e t h e f a c t o r s Sn, V,, C n , a, and A t n from Table 111. (The h i g h v a l u e of s o i l thermal c o n d u c t i v i t y would probably b e a p p r o p r i a t e f o r r o c k s and

w e t sand; t h e lower v a l u e could be used f o r well-drained c l a y . )

S t e p 4

-

Using t h e s e l e c t e d c o r n e r allowance f a c t o r s , Cn, c a l c u l a t e t h e a c t u a l c o r n e r allowances, Xn, f o r t h e basement.

( a ) For t h e two upper w a l l segments, t h e i n c r e a s e d h e a t l o s s due t o c o r n e r s c a n b e n e g l e c t e d , i . e . , X1 = X2 = 0.

( b ) For t h e bottom segment of t h e w a l l ,

X 3

= i C3 ( c ) For t h e one metre s t r i p of f l o o r ,

X 4 = i C 4 , and ( d ) For t h e c e n t r a l a r e a of f l o o r ,

(18)

For a detached house, i =

4.

For a semi-detached o r end u n i t of a

row of houses, i = 2. There a r e no c o r n e r s t o b e c o n s i d e r e d i n a middle u n i t of a row of houses, a l l X f a c t o r s a r e zero.

S t e p 5

-

C a l c u l a t e t h e monthly average h e a t l o s s r a t e (power) through t h e f i v e basement segments:

where

"30" i s i n d e g r e e s p e r month which e q u a l s 2x112 r a d i a n s p e r month A t n and t = time i n months (m p l u s a number from 1 t o 1 2

i d e n t i f i e s t h e month)

(Note t h a t t h e c o r n e r allowance, Xn, i s n o t used i n t h e same f a s h i o n f o r a l l t h e segment h e a t l o s s c a l c u l a t i o n s . )

S t e p 6

-

C a l c u l a t e t h e annual h e a t l o s s (energy) from t h e f u l l basement:

where

(730) (3600) = average number of seconds p e r month,

(19)

Step

7

-

Calculate below-grade basement heat loss for the winter

period, QW

I

where

m

=

start of winter season

1

m2 =

end of winter season.

This equation can be rearranged as follows:

5

12+m2

+

0,

C

An Vn

an

C

sin w(m-t8+~t,).

n=2

ml

A sample calculation of basement heat loss is presented in

Appendix B.

3. EXPERIMENTAL MEASUREMENTS OF BASEMENT HEAT LOSS

During a three-year period (Sept. 1978 to Sept. 1981), heat loss

experiments were conducted on several basements by the Division and by

a private consultant under contract to DBR/NRC. These experiments were

conducted on:

1)

three experimental basements (A, B and C) constructed on the

NRC campus in Ottawa,

2)

basement of an experimental house (basement D) located near

the Ottawa International Airport,

3)

basements in two experimental houses (HUDAC Mark XI Houses H1

and H4) in Orleans, Ontario,

4)

three basements of houses in Gatineau, P.Q., and

5)

several basements in Saskatoon, Charlottetown, and Ottawa.

The majority of heat loss measurements were made with large

2

calorimeters with a test area of 2 m (14).

Total basement heat loss

measurements were only attempted in a few cases.

A

description of the

tests conducted by the contractor on basements in Gatineau, Ottawa,

Saskatoon and Charlottetown, are given in References 15 to 17. The

construction details of the HUDAC houses are given in Reference 18.

Test basements A, B, C and D are described in Appendix C.

(20)

4. ANALYSIS OF TEST DATA

It was found t h a t t h e energy consumption v a l u e s measured i n t h e s e e x p e r i m e n t s c o u l d be r e p r e s e n t e d q u i t e a c c u r a t e l y by t h e f o l l o w i n g e q u a t i o n : where E ( t ) = e x p e r i m e n t a l energy consumption, Zo Z1,Z2, and Z3 = c o e f f i c i e n t s determined by a " l e a s t s q u a r e s " 9 f i t of Eq. ( 8 ) t o measured d a t a ; w = 30 d e g r e e s per month.

The d i f f e r e n t i a t i o n of Eq. ( 8 ) g i v e s t h e power,

where

P ( t ) = i n s t a n t a n e o u s h e a t s u p p l i e d t o t h e basement o r c a l o r i m e t e r , Z1 = s t e a d y s t a t e o r t h e a v e r a g e power,

w *

4

Z$

+

223 = t i m e l a g of t h e power wave where t h e r e f e r e n c e

p o i n t i s t h e s t a r t i n g d a t e of t h e test.

The power was a l s o c a l c u l a t e d by numerical d i f f e r e n t i a t i o n , i.e.,

where

6 t = t i m e i n t e r v a l between t h e kWh meter r e a d i n g s E ( t ) and E ( t

+

6 t )

The f o r e g o i n g a n a l y s i s was performed on a l l t h e measured h e a t l o s s d a t a f o r t h e DBR/NRC t e s t basements and t h e HUDAC Mark X I basements.

F i g u r e 5 d e m o n s t r a t e s t h e s t e p s used t o a r r i v e a t t h e h e a t l o s s r a t e ( o r power). The energy consumption d a t a p o i n t s and t h e c u r v e f i t r e p r e s e n t e d by Eq. ( 8 ) a r e i n d i c a t e d a s curve 1. Curve 2 r e p r e s e n t s t h e non-cyclic component of t h e h e a t l o s s , i.e., Zo

+

Z1 t. Curve 3 r e p r e s e n t s Eq. ( 9 ) , t h e d i f f e r e n t i a t i o n of t h e e n e r g y consumption curve. F i n a l l y , c u r v e

4

r e p r e s e n t s t h e n u m e r i c a l d i f f e r e n t i a t i o n of t h e a c t u a l d a t a p o i n t s of curve 1 (Eq. (10).

The comparison of measured and p r e d i c t e d h e a t l o s s v a l u e s f o r t h e HUDAC houses a r e g i v e n i n F i g u r e 4 and T a b l e I V . The comparison of

(21)

measured and p r e d i c t e d l o s s r a t e s f o r t h e DBR/NRC t e s t basements a r e shown i n F i g u r e s 5 t o 15.

T e s t d a t a were c o l l e c t e d o n l y d u r i n g t h e w i n t e r p e r i o d f o r t h e t e s t basements i n Ottawa, G a t i n e a u , S a s k a t o o n , and C h a r l o t t e t o w n . Values of t h e a v e r a g e h e a t i n g (power) o v e r t h e w i n t e r p e r i o d were o b t a i n e d by p e r f o r m i n g a s t r a i g h t l i n e f i t t o t h e d a t a , i . e . ,

where

Y1 = a v e r a g e power o v e r t h e t i m e p e r i o d u n d e r c o n s i d e r a t i o n . The e x p e r i m e n t a l l y - d e t e r m i n e d h e a t i n g i n p u t power and t h e c a l c u l a t e d h e a t l o s s r a t e f o r t h e s e basements a r e compared i n T a b l e s V and V I .

5. COMPARISON OF CALCULATED AND EXPERIMENTAL RESULTS 5.1 I n f l u e n c i n g F a c t o r s

Before comparing t h e c a l c u l a t e d and measured h e a t l o s s v a l u e s , i t might b e h e l p f u l t o d i s c u s s t h o s e f a c t o r s t h a t have a s i g n i f i c a n t e f f e c t on t h i s comparison. These f a c t o r s a r e :

( a ) t h e s e a s o n a l t e m p e r a t u r e of basement s p a c e a i r , ( b ) t h e s o i l t h e r m a l c o n d u c t i v i t y ,

( c ) t h e mean ground t e m p e r a t u r e ,

( d ) t h e w a t e r flow i n ground a d j a c e n t t o basement ( e . g.

,

f l o w a t f o o t i n g d r a i n ) ,

( e l t h e l e v e l and f l o w of groundwater.

( a ) The basement a i r t e m p e r a t u r e i s one of t h e main f a c t o r s

c o n t r o l l i n g basement h e a t l o s s . I n most basements, a change of 1 K i n basement t e m p e r a t u r e c a n change basement h e a t l o s s by 5 t o 1 0 p e r c e n t

(19, 2 0 ) . Knowledge of t h e basement t e m p e r a t u r e i s e s s e n t i a l .

( b ) The c o m p u t a t i o n of basement h e a t l o s s r e q u i r e s a r e a s o n a b l y p r e c i s e e s t i m a t e of s o i l t h e r m a l c o n d u c t i v i t y , e s p e c i a l l y when a

s i g n i f i c a n t p o r t i o n of t h e t o t a l t h e r m a l r e s i s t a n c e i s provided by t h e s o i l . T h i s c o n d i t i o n p r e v a i l s w i t h b o t h t h e p a r t i a l l y i n s u l a t e d

basement w a l l and t h e e x t e r n a l i n s u l a t i o n t h a t g o e s down t h e w a l l and t h e n outwards. I n t h e l a t t e r c a s e , a s o i l w i t h a low t h e r m a l

r e s i s t a n c e l o c a t e d b e n e a t h t h e i n s u l a t i o n c o u l d n e g a t e much of t h e h e a t r e s i s t a n c e of t h e i n s u l a t i o n .

( c ) A change of 1 K i n t h e mean ground t e m p e r a t u r e c a n change t h e s t e a d y - s t a t e component of t h e basement h e a t l o s s by 5 t o 1 0 p e r c e n t .

(22)

Snow-cleared d r i v e w a y s , a t t a c h e d g a r a g e s , c a r p o r t s , walkways, and s o l a r s h a d i n g a r e a l l f a c t o r s t h a t c a n r e d u c e t h e mean ground t e m p e r a t u r e and, h e n c e , i n c r e a s e basement h e a t l o s s . C o n v e r s e l y , t h e p r o x i m i t y of a n e i g h b o u r i n g basement c o u l d i n c r e a s e t h e mean ground t e m p e r a t u r e and r e d u c e basement h e a t l o s s e s . U n f o r t u n a t e l y , t h e s e e f f e c t s a r e

d i f f i c u l t t o q u a n t i f y .

( d ) Basement h e a t l o s s e s i n c r e a s e w i t h an i n c r e a s e i n w a t e r f l o w a t t h e f o o t i n g . T h i s was i n d i c a t e d by t h e w a t e r f l o w s and h e a t l o s s r a t e s

measured i n t h e DBR t e s t basements i n 1978179.

( e ) The l e v e l and flow of groundwater a f f e c t t h e ground t e m p e r a t u r e f i e l d b e n e a t h t h e basement and, t h e r e f o r e , a f f e c t t h e f l o o r h e a t l o s s and, t o a l e s s e r e x t e n t , t h e w a l l h e a t l o s s . U n f o r t u n a t e l y t h e

i n f l u e n c e of w a t e r o n basement l o s s c a n n o t b e q u a n t i f i e d . Example Comparisons

5.2.1 S a s k a t o o n , Ottawa and C h a r l o t t e t o w n ( T a b l e V)

For t h e s e 6 h o u s e s , h e a t l o s s r a t e s from t h e basements were measured w i t h c a l o r i m e t e r s d u r i n g t h e h e a t i n g s e a s o n o n l y . Basement a i r t e m p e r a t u r e s were n o t c o n t r o l l e d d u r i n g t h e 1978179 t e s t y e a r , b u t t h e y were c l o s e l y c o n t r o l l e d i n s u b s e q u e n t y e a r s . The measured h e a t l o s s r a t e s l i s t e d i n T a b l e V a r e v a l u e s averaged o v e r t h e h e a t i n g season.

( a ) Basement A ( S a s k a t o o n )

-

The basement was u n i n s u l a t e d e x c e p t f o r a s e c t i o n of t h e n o r t h w a l l which was c o v e r e d w i t h i n s u l a t i o n (R = 1 . 6 ) 3.6 m wide and extended from t h e t o p of t h e w a l l down t o 0.6 m below grade. I n a l l c a s e s , t h e measured h e a t l o s s r a t e s were g r e a t e r t h a n t h e c a l c u l a t e d o n e s , but t h e d i f f e r e n c e between t h e two was somewhat l e s s f o r t h e i n s u l a t e d w a l l . T h i s would i n d i c a t e t h a t t h e a c t u a l ground t h e r m a l c o n d u c t i v i t y was g r e a t e r t h a n t h e v a l u e s assumed i n t h e c a l c u l a t i o n s ( i . e , 0.8 and 0.9 Wlm-K).

A s a l r e a d y n o t e d , t h e basement a i r t e m p e r a t u r e was allowed t o v a r y

i n 1978179. It went from 14.5"C i n November t o 10°C i n J a n u a r y t o

13.5OC i n A p r i l . The e f f e c t of t h i s v a r i a t i o n i n s p a c e t e m p e r a t u r e was n o t a l l o w e d f o r i n t h e c a l c u l a t e d v a l u e s .

( b ) Basement B ( S a s k a t o o n )

- There was r e a s o n a b l e agreement between

t h e c a l c u l a t e d and measured h e a t l o s s v a l u e s .

( c ) Basement C ( S a s k a t o o n )

-

a s e c t i o n of t h e n o r t h w a l l was c o v e r e d w i t h i n s u l a t i o n (R = 1.32) on t h e e x t e r n a l f a c e (above g r a d e o n l y ) . Another s e c t i o n of t h e n o r t h w a l l was covered w i t h i n s u l a t i o n on t h e e x t e r n a l f a c e above g r a d e ; t h e i n s u l a t i o n p r o j e c t e d h o r i z o n t a l l y 1.2 m away from t h e w a l l on t h e g r a d e . The w i d t h of w a l l covered w i t h i n s u l a t i o n was 3.05 m which i s o n l y 2 m w i d e r t h a n t h e c a l o r i m e t e r . T h i s p r o b a b l y r e s u l t e d i n h e a t b y p a s s i n g t h e h o r i z o n t a l i n s u l a t i o n and e x p l a i n s t h e r e l a t i v e l y l a r g e d i f f e r e n c e between measured and

(23)

The f l o o r c a l o r i m e t e r was l o c a t e d n e a r t h e n o r t h e a s t c o r n e r of t h e basement and probably e x p e r i e n c e d t h r e e - d i m e n s i o n a l c o n d u c t i o n which was n o t a c c o u n t e d f o r i n t h e c a l c u l a t e d v a l u e . T h i s c o u l d e x p l a i n t h e d i f f e r e n c e between measured and c a l c u l a t e d f l o o r h e a t l o s s .

( d ) Basement E (Ottawa)

-

The measured and c a l c u l a t e d v a l u e s a g r e e q u i t e w e l l .

( e ) Basement A ( C h a r l o t t e t o w n )

-

T h i s was a w e l l i n s u l a t e d basement (R = 3.52 i n 1979180) w i t h t h e e a r t h bermed up a g a i n s t t h e basement w a l l . The c a l c u l a t e d v a l u e s assumed g r a d e l e v e l was t h e h i g h e s t p o i n t of t h e e a r t h berm a g a i n s t t h e w a l l . I n a c t u a l f a c t , t h e t h e r m a l

r e s i s t a n c e of t h e ground would be less t h a n t h a t assumed i n t h e

c a l c u l a t i o n d u e t o a r e d u c t i o n i n e a r t h c o v e r away from t h e w a l l . T h i s c o u l d be t h e r e a s o n f o r t h e h i g h e r measured h e a t l o s s r a t e s .

( f ) Basement D (Ottawa)

-

T h i s basement was c h a r a c t e r i z e d by a r e l a t i v e l y h i g h w a t e r t a b l e which would t e n d t o i n c r e a s e h e a t l o s s . T h i s was p r o b a b l y t h e r e a s o n why t h e measured l o s s from t h e u n i n s u l a t e d f l o o r was h i g h e r t h a n t h a t c a l c u l a t e d . The l o s s from t h e i n s u l a t e d w a l l s showed b e t t e r agreement between measured and c a l c u l a t e d v a l u e s .

Houses i n G a t i n e a u

(P.Q.)

( T a b l e V I )

I n t h e s e t h r e e homes an a t t e m p t was made t o i s o l a t e t h e basement t h e r m a l l y from t h e remainder of t h e house. The power i n p u t t o t h e e l e c t r i c h e a t e r t h a t m a i n t a i n e d t h e basement a t a c o n s t a n t a i r t e m p e r a t u r e was r e c o r d e d from December 1977 t o A p r i l 1978.

I s o l a t i o n of t h e basement from t h e house was o n l y p a r t i a l l y

s u c c e s s f u l a s t h e a i r i n f i l t r a t i o n i n t o t h e house t h r o u g h t h e basement could n o t be c o m p l e t e l y e l i m i n a t e d . An a l l o w a n c e f o r h e a t i n g

i n f i l t r a t i n g a i r was made, t h e r e f o r e t o a r r i v e a t t h e "measured" v a l u e s l i s t e d i n T a b l e V I I . These v a l u e s a l s o i n c o r p o r a t e a s m a l l c o r r e c t i o n f o r e x t r a n e o u s h e a t l o s s from t h e basement t h r o u g h t h e h e a v i l y

i n s u l a t e d house above. C o n s i d e r i n g a l l t h e s e f a c t o r s , T a b l e V I shows r e a s o n a b l y good agreement between e s t i m a t e d measured h e a t l o s s r a t e s and c a l c u l a t e d l o s s r a t e s .

5.2.3 HUDAC Mark X I Houses ( T a b l e I V , F i g u r e 4 )

The basement of house H 1 was i n s u l a t e d on t h e i n s i d e (R = 1 . 2 3 ) from t h e t o p of t h e w a l l t o 0.9 m below grade. The i n s u l a t i o n v a l u e was i n c r e a s e d t o R = 3.52 and c o v e r a g e was i n c r e a s e d t o f u l l h e i g h t i n November 1980. The basement of house H4 was i n s u l a t e d on t h e e x t e r i o r f a c e (R = 1.23) o v e r t h e f u l l h e i g h t of t h e w a l l . C a l o r i m e t e r s were mounted on t h e n o r t h w a l l of H 1 , and on t h e n o r t h and w e s t w a l l s and t h e f l o o r of H4.

The basement a i r t e m p e r a t u r e was h e l d a s c o n s t a n t a s p o s s i b l e u s i n g a r e s i d e n t i a l t h e r m o s t a t t h a t c o n t r o l l e d t h e f u r n a c e . The e n e r g y i n p u t s t o t h e f i v e e l e c t r i c c a l o r i m e t e r h e a t e r s were r e c o r d e d from J a n u a r y 1979 t o December 1 9 8 1 ( s e e F i g u r e 4 ) . Only t h e d a t a r e c o r d e d

(24)

up t o November 1980 (when t h e i n s u l a t i o n system i n H 1 was upgraded) were u s e d i n t h e comparison shown i n T a b l e I V .

Values of s o i l t h e r m a l c o n d u c t i v i t y , measured a l o n g a c o n d u c t i v i t y probe, were 0.72 W / ( ~ * K ) a d j a c e n t t o t h e basement w a l l , and 1.1 ~ / ( m - K ) 15 m from t h e house. The w a t e r f l o w a t t h e f o u n d a t i o n f o o t i n g , which was a l s o m o n i t o r e d , was i n t e r m i t t e n t w i t h a maximum f l o w r a t e of 30 L/h.

E x p r e s s i o n s d e s c r i b i n g t h e h e a t l o s s r a t e were d e r i v e d from t h e e x p e r i m e n t a l d a t a (1979 and 1980) and a r e p r e s e n t e d i n T a b l e I V . Loss r a t e e x p r e s s i o n s c a l c u l a t e d w i t h s o i l c o n d u c t i v i t y v a l u e s of 0.8 and 0.9 W/m*K a r e a l s o p r e s e n t e d . The H 1 v a l u e s a r e f o r t h e o r i g i n a l , p a r t i a l i n s u l a t i o n system.

The l a r g e d i f f e r e n c e i n measured l o s s t h r o u g h t h e n o r t h and w e s t w a l l s of H4 i s i m p o r t a n t . The r e a s o n s f o r t h i s d i f f e r e n c e c o u l d be t h a t : t h e west w a l l f a c e s a n o t h e r house which i s o n l y 4 m away; t h e n o r t h w a l l c a l o r i m e t e r was p l a c e d on a r e l a t i v e l y s h o r t s e c t i o n of w a l l and t h e r e f o r e t h e measured l o s s might be i n f l u e n c e d by t h e t h r e e - d i m e n s i o n a l e f f e c t of two c o r n e r s .

The c a l c u l a t e d v a l u e s f o r t h e west w a l l of house H4 a g r e e w i t h t h e measured l o s s v a l u e , b u t t h e r e i s a c o n s i d e r a b l e u n d e r e s t i m a t i o n of t h e h e a t l o s s t h r o u g h t h e n o r t h w a l l , even when t h e c o r n e r s of t h e n o r t h w a l l a r e c o n s i d e r e d . One r e a s o n f o r t h e h i g h e r measured l o s s t h r o u g h t h e n o r t h w a l l could be t h a t , b e c a u s e of s o l a r s h a d i n g , t h e a c t u a l ground t e m p e r a t u r e o n t h e n o r t h s i d e was lower t h a n t h e v a l u e of 8.9OC used i n t h e c a l c u l a t i o n .

A s noted e a r l i e r , t h e basement a i r t e m p e r a t u r e was i n d i r e c t l y c o n t r o l l e d by t h e s p a c e h e a t i n g t h e r m o s t a t l o c a t e d on t h e main f l o o r of t h e house. I t i s p o s s i b l e , t h e r e f o r e , t h a t t h e basement a i r

t e m p e r a t u r e was h i g h e r t h a n t h e 20.7OC t h e r m o s t a t t e m p e r a t u r e which was used t o c a l c u l a t e t h e l o s s e s . T h i s c o u l d e x p l a i n why t h e measured l o s s v a l u e s were always h i g h e r t h a n t h e c a l c u l a t e d o n e s . t h e measured f l o o r h e a t l o s s was s i g n i f i c a n t l y h i g h e r t h a n t h a t p r e d i c t e d , p o s s i b l y due t o some groundwater flow b e n e a t h t h e basement. T h i s i n d i c a t e s t h a t a h i g h e r v a l u e of s t e a d y - s t a t e , f l o o r shape f a c t o r s h o u l d have been used i n t h e h e a t l o s s p r e d i c t i o n .

DBR/NRC T e s t Basements ( F i g u r e s 5 t o 1 5 )

T e s t basements A , B and C , l o c a t e d on t h e NRC grounds i n Ottawa, a r e d e s c r i b e d i n Appendix C. Both c a l o r i m e t e r and t o t a l basement h e a t l o s s measurements were r e c o r d e d f o r t h e t h r e e - y e a r pe-riod (September 1978 t o September 1981). D a t a from t h e f i r s t y e a r a r e n o t i n c l u d e d i n t h e f o l l o w i n g d i s c u s s i o n b e c a u s e t h e t h e r m a l b a l a n c e o f t h e ground s u r r o u n d i n g t h e basements was i n a t r a n s i e n t s t a t e d u r i n g t h a t t i m e and b e c a u s e t h e groundwater flow was a b n o r m a l l y h i g h d u r i n g t h i s p e r i o d , a s

shown i n F i g u r e 16. A d r a i n a g e d i t c h was dug around t h e t e s t s i t e i n t h e summer of 1979 t o lower t h e w a t e r t a b l e u n i f o r m l y and t o reduce t h e w a t e r flow a t t h e f o o t i n g s t o a more "normal" r a t e .

(25)

The measured t e s t d a t a were a n a l y z e d a s d e s c r i b e d i n s e c t i o n 4 , and a r e p r e s e n t e d i n F i g u r e s 5 t o 15. The h e a t l o s s v a l u e s c a l c u l a t e d by t h e method p r e s e n t e d e a r l i e r a r e shown on t h e same f i g u r e s . The t o t a l h e a t l o s s v a l u e s f o r basements A , B and C a r e g i v e n i n F i g u r e s

5 ,

9 and 13, r e s p e c t i v e l y . The h e a t l o s s v a l u e s f o r s p e c i f i c s e c t i o n s of

t h e basements a r e shown i n t h e o t h e r f i g u r e s i n t h a t group.

The f o l l o w i n g a r e some o b s e r v a t i o n s and comments t h a t a p p l y t o a l l t h r e e t e s t basements.

( a ) The groundwater t a b l e a f t e r c o n s t r u c t i o n of t h e d r a i n a g e d i t c h was a b o u t 0.5 m below t h e basement f l o o r s u r f a c e . The w a t e r l e v e l d i f f e r e n c e a c r o s s basement C (which had e x p e r i e n c e d t h e g r e a t e s t w a t e r flow a t t h e f o o t i n g d r a i n s ) was r e d u c e d t o p r a c t i c a l l y z e r o , i n d i c a t i n g v e r y l i t t l e groundwater flow p a s t t h e basement.

( b ) The basements were c o n s t r u c t e d i n an a r e a of Leda c l a y . The measured s o i l t h e r m a l c o n d u c t i v i t y v a l u e s a r e g i v e n i n Appendix C.

( F o r more i n f o r m a t i o n on s o i l t h e r m a l c o n d u c t i v i t y s e e Ref. 21.) ( c ) Each t e s t basement was d i v i d e d i n t o a n o r t h , a c e n t r e and a s o u t h

room, and e a c h room had i t s own e l e c t r i c h e a t e r . For a l l t h r e e basements, i t was found t h a t t h e n o r t h room r e q u i r e d more h e a t i n g energy i n p u t t h a n t h e s o u t h room:

-

8% more i n basement B ( p a r t i a l i n s u l a t i o n ) ,

- 7%

more i n basement A ( f u l l - h e i g h t i n s u l a t i o n ) ,

-

5% more i n basement C (down-and-out i n s u l a t i o n on e x t e r i o r ) . T h i s d i f f e r e n c e was p r o b a b l y due t o a lower t e m p e r a t u r e of t h e ground a d j a c e n t t o t h e n o r t h basement room c a u s e d , i n p a r t , by s o l a r s h a d i n g of t h e ground by t h e h u t s ( s e e Fig. C l ) , and by augmented ground h e a t l o s s from a pathway l e a d i n g t o t h e h u t s which was k e p t f r e e of snow a l l w i n t e r .

Following a r e comments on e a c h of t h e s e t h r e e basements.

Basement A ( f u l l - h e i g h t w a l l i n s u l a t i o n on i n s i d e , f l o o r u n i n s u l a t e d ) F i g u r e s 5 t o 8 show t h a t t h e r e i s r e a s o n a b l e agreement between t h e measured and c a l c u l a t e d h e a t l o s s v a l u e s ( b o t h t o t a l and s e c t i o n a l ) e x c e p t f o r t h e f l o o r , where t h e measured v a l u e s a r e c o n s i d e r a b l y h i g h e r t h a n t h o s e c a l c u l a t e d . T h i s l a r g e d i f f e r e n c e c o u l d be d u e t o

groundwater e f f e c t s t h a t were n o t accounted f o r i n t h e c a l c u l a t i o n s , i . e . , t h e v a l u e s used i n t h e c a l c u l a t i o n s were t o o low t o approximate t h e conductance t o t h e lower boundary.

Basement B ( p a r t i a l - w a l l i n s u l a t i o n on i n s i d e , f l o o r u n i n s u l a t e d ) F i g u r e s 9 t o 12 show r e a s o n a b l e agreement between measured and c a l c u l a t e d h e a t l o s s v a l u e s . Again, a h i g h e r f l o o r h e a t l o s s was

(26)

measured t h a n was p r e d i c t e d p r o b a b l y because of unaccounted groundwater e f f e c t s .

S p e c i a l c a l o r i m e t e r s were used t o measure t h e s u r f a c e h e a t f l u x t h r o u g h t h e u p p e r ( i n s u l a t e d ) s e c t i o n of t h e e a s t w a l l and t h r o u g h t h e lower ( u n i n s u l a t e d ) s e c t i o n . For t h e i n s u l a t e d p o r t i o n of t h e w a l l , t h e measured h e a t l o s s was s l i g h t l y h i g h e r t h a n t h a t p r e d i c t e d ; f o r t h e u n i n s u l a t e d p o r t i o n , t h e measured h e a t l o s s was s i g n i f i c a n t l y h i g h e r t h a n t h a t p r e d i c t e d . The r e a s o n f o r t h e d i f f e r e n c e between measured and p r e d i c t e d l o s s f o r t h e lower s e c t i o n c o u l d be t h e same a s t h a t f o r t h e f l o o r , i . e . , e f f e c t s of groundwater.

Basement C ( e x t e r i o r i n s u l a t i o n t o 0.35 m below g r a d e , t h e n outwards 1.4 m; f l o o r u n i n s u l a t e d )

There was poor agreement between measured and c a l c u l a t e d h e a t l o s s v a l u e s when t h e c a l c u l a t i o n s assumed c l a y s o i l s u r r o u n d i n g t h e basement

( i . e . , k = 0.8 and 0.9 W/m*K f o r upper and lower s o i l ( F i g . I ) ,

r e s p e c t i v e l y ) . Agreement was much b e t t e r when l o s s e s were c a l c u l a t e d

assuming sandy s o i l ( i . e , k = 1.2 and 1.35 W/rn*K f o r upper and lower

s o i l , r e s p e c t i v e l y ) . These l a t t e r v a l u e s a r e compared w i t h measured v a l u e s i n F i g u r e s 13 t o 15.

C a l c u l a t i o n s u s i n g t h e h i g h c o n d u c t i v i t i e s may be a p p r o p r i a t e when

i t i s r e c a l l e d t h a t sand was used a s b a c k f i l l u n d e r n e a t h t h e i n s u l a t i n g

l a y e r p r o j e c t i n g outward from t h e basement w a l l ( s e e Appendix C).

Moreover, t h i s s a n d would have a r e l a t i v e l y hi.gh m o i s t u r e c o n t e n t (and h i g h c o n d u c t i v i t y ) s i n c e t h e w a t e r t a b l e a t t h e t e s t s i t e i s q u i t e high.

The t e s t r e s u l t s emphasize one p o t e n t i a l weakness of t h e "down- and-out" e x t e r i o r i n s u l a t i o n method. Because i t r e l i e s h e a v i l y on t h e t h e r m a l r e s i s t a n c e of t h e s o i l t o reduce w a l l h e a t l o s s , i t s use w i t h a h i g h c o n d u c t i v i t y s o i l o r i n a s o i l w i t h moving groundwater may n o t b e a d v i s a b l e . T h i s example a l s o i n d i c a t e s t h a t t h e s i m p l e p r e d i c t i o n method o u t l i n e d i n t h i s p a p e r h a s d i f f i c u l t y i n h a n d l i n g t h o s e i n s u l a t i o n systems t h a t r e l y p r i m a r i l y on t h e t h e r m a l r e s i s t a n c e of t h e s o i l . T h i s i s e s p e c i a l l y t r u e when t h e r e i s some u n c e r t a i n t y r e g a r d i n g t h e s o i l c o n d u c t i v i t y .

5.2.5 Recommendations: C a l c u l a t i o n P r o c e d u r e and F a c t o r s f o r Basement

Heat L o s s C a l c u l a t i o n s

I n g e n e r a l , comparison of t h e e x p e r i m e n t a l and c a l c u l a t e d basement h e a t l o s s e s i n d i c a t e s t h a t t h e proposed c a l c u l a t i o n p r o c e d u r e f o r

basement h e a t l o s s i s c a p a b l e of a c c o u n t i n g r e a s o n a b l y w e l l f o r a l l t h e s i g n i f i c a n t w e a t h e r p a r a m e t e r s and basement s h a p e s . The q u e s t i o n a b l e p a r t of t h e p r o c e d u r e i s t h e f a c t o r s used t o p r e d i c t f l o o r - s u r f a c e h e a t l o s s s i n c e , i n n e a r l y a l l c a s e s , t h e p r e d i c t e d l o s s e s were l e s s t h a n t h e measured v a l u e s . The u n d e r p r e d i c t i o n of l o s s s u g g e s t s t h a t t h e a c t u a l c o n d u c t a n c e between t h e basement and t h e l o w e r t h e r m a l boundary i s g r e a t e r t h a n t h a t c a l c u l a t e d on t h e b a s i s of t h e basement model

(27)

shown i n F i g u r e 1 ( i . e . , t h e n u m e r i c a l v a l u e s of t h e f l o o r - s u r f a c e s t e a d y - s t a t e s h a p e f a c t o r s g i v e n i n T a b l e

I1

a r e t o o low).

The v a l u e s of t h e f l o o r s h a p e f a c t o r were i n c r e a s e d by assuming t h a t t h e conductance between t h e basement and t h e lower boundary i s 1 . 5 t i m e s t h e v a l u e s c a l c u l a t e d f o r t h e basement model ( F i g u r e 1 ) . The f l o o r s h a p e f a c t o r s l i s t e d i n T a b l e 111

i n c l u d e t h i s i n c r e a s e i n t h e r m a l conductance.

The change i n t h e f l o o r - s u r f a c e s t e a d y - s t a t e s h a p e f a c t o r s

improves t h e match between c a l c u l a t e d and measured v a l u e s ( F i g u r e 1 7 ) . I n t h i s F i g u r e t h e measured s t e a d y - s t a t e h e a t l o s s v a l u e s f o r DBR/NRC t e s t basements a r e p l o t t e d v e r s u s t h e c a l c u l a t e d v a l u e s b a s e d on t h e f l o o r - s u r f a c e s t e a d y - s t a t e shape f a c t o r s g i v e n i n T a b l e s I1 and 111. The improvement i n agreement between t h e measured and c a l c u l a t e d v a l u e s u s i n g t h e m o d i f i e d f a c t o r i s a p p a r e n t .

It s h o u l d be n o t e d t h a t t h e a m p l i t u d e a t t e n u a t i o n f a c t o r s f o r f l o o r s u r f a c e were a l s o changed ( i . e . , n u m e r i c a l l y i n c r e a s e d ) t o i n c r e a s e t h e c a l c u l a t e d a n n u a l v a r i a t i o n of t h e f l o o r s u r f a c e h e a t f l u x . T h i s improves t h e match between t h e c a l c u l a t e d and measured annual h e a t l o s s v a r i a t i o n s .

T a b l e I11 l i s t s f a c t o r s f o r a l a r g e number of basement i n s u l a t i o n systems. The f l o o r f a c t o r s have been m o d i f i e d t o p r o v i d e a b e t t e r match between t h e measured and p r e d i c t e d l o s s e s . I t i s recommended,

t h e r e f o r e , t h a t t h e s e f a c t o r s b e used i n p r e d i c t i n g basement h e a t l o s s .

6. COMMENTS AND DISCUSSION

From t h i s comparison between measured and p r e d i c t e d basement h e a t , l o s s v a l u e s , i t c a n b e concluded t h a t :

( a ) The two-dimensional s t e a d y - s t a t e h e a t c o n d u c t i o n model f o r house basements i s a d e q u a t e f o r c a l c u l a t i n g t h e s h a p e f a c t o r s r e q u i r e d f o r t h e s i m p l i f i e d basement h e a t l o s s c a l c u l a t i o n method.

( b ) The a n n u a l v a r i a t i o n of ground s u r f a c e t e m p e r a t u r e c a n b e

accommodated by u s i n g a p e r i o d i c h e a t f l o w c a l c u l a t i o n a p p r o a c h , i . e . , by u s i n g a m p l i t u d e decrement and time-delay f a c t o r s .

Because t h e p r e d i c t e d basement h e a t l o s s i s n o t a s t r o n g f u n c t i o n of t h e s e f a c t o r s , o n l y an a p p r o x i m a t i o n of a m p l i t u d e r e d u c t i o n and

time l a g i s s u f f i c i e n t and t h e f a c t o r s d o n o t have t o b e c a l c u l a t e d f o r e v e r y c a s e .

( c ) Basements w i t h s i m p l e r e c t a n g u l a r s h a p e s c a n be t r e a t e d r e a s o n a b l y w e l l by u s i n g s h a p e f a c t o r s d e t e r m i n e d f o r s t r a i g h t w a l l s e c t i o n s and c o r n e r a l l o w a n c e f a c t o r s t o accommodate t h r e e - d i m e n s i o n a l h e a t

flow a t o u t s i d e c o r n e r s . The t h r e e - d i m e n s i o n a l h e a t flow of basements w i t h i r r e g u l a r s h a p e s ( s u c h a s t h o s e w i t h i n s i d e c o r n e r s ) c a n n o t b e accommodated by t h i s s i m p l e method. It i s

Figure

TABLE  OF  CONTENTS
Table  V I .   Measured  and  C a l c u l a t e d   Heat  Loss  of  Gatineau  Basements*  (December  1977  t o   A p r i l   1978)  Basement  - G-1  U n i n s u l a t e d   C a l c u l a t e d   Jan
Table B1.  Month  January  February  March  April  May  June  July  August  September  October  November  December
Table  B2.  Average  Basement  Heat  Loss,  W ,   by  Months  and  Segments
+2

Références

Documents relatifs

En effet, on montrera que σ est autoduale pour une dualit´e que l’on pr´ecisera (essentiellement la contragr´ediente) ; cela entraˆıne que tout sous-module irr´eductible de σ

On peut prescrire le massage réciproque du dos avec in- terdiction de rapport sexuel ; les massages sont de toute façon bons pour la santé et donc relativement faciles à in-

Chromatin state data has been collected for the human genome across approximately 90 different cell types.. However, regulatory processes change across different cell

A series of postflashover room burn tests shows that the destructive potential (severity) of fire is not influenced by the presence of insulation in the walls behind a 16

After an in depth analysis of Hadoop’s behavior and because the proposed control technique needs to be independent of the implementation or the Hadoop / MapReduce version (see [3]),

Figure 2 shows the 20-ppi spongy type titanium material that was used as the anode substrate and was approximately 90% porous, according to the manufac- turer’s material data

Cet engendrement ne se perçoit souvent qu’a posteriori, lorsque les camps sont devenus, avec le temps, des sortes de projets inac- complis de ville (ou de ghettos, ou de « villages

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.