• Aucun résultat trouvé

Typical amount of entanglement in multipartite quantum systems

N/A
N/A
Protected

Academic year: 2022

Partager "Typical amount of entanglement in multipartite quantum systems"

Copied!
33
0
0

Texte intégral

(1)

Typical amount of entanglement in multipartite quantum systems

Quantifying multipartite entanglement through tensor norms

Cécilia Lancien

Institut de Mathématiques de Toulouse & CNRS

Sakura Meeting – July 1 2021

(2)

Outline

1 Tensor norms and entanglement

2 Quantifying the typical amount of entanglement/correlations in multipartite pure states

(3)

Tensor norms in Banach spaces

LetA1, . . . ,AMbe Banach spaces. Givenx∈A1⊗ · · · ⊗AM, itsprojective tensor normis kxkA1π···⊗πAM:= inf

( r

k=1

k|:aki ∈Ai,kakik61,x=

r

k=1

αka1k⊗ · · · ⊗akM,r∈N )

,

and itsinjective tensor normis

kxkA1ε···⊗εAM:= sup{hb1⊗ · · · ⊗bM|xi:bi∈Ai,kbik61}.

These norms aredualto one another: for allx∈A1⊗ · · · ⊗AM, kxkA1π···⊗πAM= sup

hy|xi:kykA

1ε···⊗εAM61 , kxkA1ε···⊗εAM= sup

hy|xi:kykA

1π···⊗πAM61 .

The projective and injective norms are examples oftensor norms: for alla1∈A1, . . . ,aM∈AM, ka1⊗ · · · ⊗aMkA1π···⊗πAM=ka1⊗ · · · ⊗aMkA1ε···⊗εAM=ka1k · · · kaMk. And they areextremalamong such norms: for any other tensor normk · konA1⊗ · · · ⊗AM,

k · kA1ε···⊗εAM6k · k6k · kA1π···⊗πAM.

(4)

Tensor norms in Banach spaces

LetA1, . . . ,AMbe Banach spaces. Givenx∈A1⊗ · · · ⊗AM, itsprojective tensor normis kxkA1π···⊗πAM:= inf

( r

k=1

k|:aki ∈Ai,kakik61,x=

r

k=1

αka1k⊗ · · · ⊗akM,r∈N )

,

and itsinjective tensor normis

kxkA1ε···⊗εAM:= sup{hb1⊗ · · · ⊗bM|xi:bi∈Ai,kbik61}.

These norms aredualto one another: for allx∈A1⊗ · · · ⊗AM, kxkA1π···⊗πAM= sup

hy|xi:kykA

1ε···⊗εAM61 , kxkA1ε···⊗εAM= sup

hy|xi:kykA

1π···⊗πAM61 .

The projective and injective norms are examples oftensor norms: for alla1∈A1, . . . ,aM∈AM, ka1⊗ · · · ⊗aMkA1π···⊗πAM=ka1⊗ · · · ⊗aMkA1ε···⊗εAM=ka1k · · · kaMk. And they areextremalamong such norms: for any other tensor normk · konA1⊗ · · · ⊗AM,

k · kA1ε···⊗εAM6k · k6k · kA1π···⊗πAM.

(5)

Tensor norms in Banach spaces

LetA1, . . . ,AMbe Banach spaces. Givenx∈A1⊗ · · · ⊗AM, itsprojective tensor normis kxkA1π···⊗πAM:= inf

( r

k=1

k|:aki ∈Ai,kakik61,x=

r

k=1

αka1k⊗ · · · ⊗akM,r∈N )

,

and itsinjective tensor normis

kxkA1ε···⊗εAM:= sup{hb1⊗ · · · ⊗bM|xi:bi∈Ai,kbik61}.

These norms aredualto one another: for allx∈A1⊗ · · · ⊗AM, kxkA1π···⊗πAM= sup

hy|xi:kykA

1ε···⊗εAM61 , kxkA1ε···⊗εAM= sup

hy|xi:kykA

1π···⊗πAM61 .

The projective and injective norms are examples oftensor norms: for alla1∈A1, . . . ,aM∈AM, ka1⊗ · · · ⊗aMkA1π···⊗πAM=ka1⊗ · · · ⊗aMkA1ε···⊗εAM=ka1k · · · kaMk.

And they areextremalamong such norms: for any other tensor normk · konA1⊗ · · · ⊗AM, k · kA1ε···⊗εAM6k · k6k · kA1π···⊗πAM.

(6)

Reminder: separability vs entanglement in multipartite quantum systems

H1, . . . ,HMcomplex Hilbert spaces. In this talk: of finite, but usually large, dimension.

−→HiCdi withdi1, for 16i6M.

Definition [Separability and entanglement]

A stateρonH1⊗ · · · ⊗HMis calledseparableif it is a convex combination of product states, i.e.

positive semidefinite operator with trace 1 onH1⊗ · · · ⊗HM

ρ=

r

k=1

λkρk1⊗ · · · ⊗ρkM,with (

λk>0,16k6r,∑rk=1λk=1 ρki state onHi,16k6r,16i6M . Otherwise it is calledentangled.

[Note: Ifρis a pure state, i.e.ρ=|ψihψ|for some unit vectorψ∈H1⊗ · · · ⊗HM, thenρis separable iffψ=ψ1⊗ · · · ⊗ψMfor some unit vectorsψi∈Hi, 16i6M.]

Fact:If a multipartite quantum system is in a separable state, there is no intrinsically quantum correlation between its subsystems. It thus does not provide any advantage over a classical system in information processing tasks.

−→Characterizing and quantifying the entanglement of multipartite quantum states is an important issue in practice.

(7)

Reminder: separability vs entanglement in multipartite quantum systems

H1, . . . ,HMcomplex Hilbert spaces. In this talk: of finite, but usually large, dimension.

−→HiCdi withdi1, for 16i6M.

Definition [Separability and entanglement]

A stateρonH1⊗ · · · ⊗HMis calledseparableif it is a convex combination of product states, i.e.

positive semidefinite operator with trace 1 onH1⊗ · · · ⊗HM

ρ=

r

k=1

λkρk1⊗ · · · ⊗ρkM,with (

λk>0,16k6r,∑rk=1λk=1 ρki state onHi,16k6r,16i6M . Otherwise it is calledentangled.

[Note: Ifρis a pure state, i.e.ρ=|ψihψ|for some unit vectorψ∈H1⊗ · · · ⊗HM, thenρis separable iffψ=ψ1⊗ · · · ⊗ψMfor some unit vectorsψi∈Hi, 16i6M.]

Fact:If a multipartite quantum system is in a separable state, there is no intrinsically quantum correlation between its subsystems. It thus does not provide any advantage over a classical system in information processing tasks.

−→Characterizing and quantifying the entanglement of multipartite quantum states is an important issue in practice.

(8)

Characterizing entanglement through tensor norms

Pure state entanglement:

Banach spaces

Cdi,k · k`di 2

, 16i6M.

Notation:∀x∈Cd,kxk`d

2:= ∑dk=1|xk|21/2

vector 2-norm A pure stateψ∈Cd1⊗ · · · ⊗CdMis s.t.kψk`d1···dM

2

=1.

And it is separable iffkψk`d1

2ε···⊗ε`dM2 =kψk`d1

2π···⊗π`dM2 =1, where by definition:

kψk`d1

2ε···⊗ε`dM2 := supn

1⊗ · · · ⊗ϕM|ψi:ϕiCdi,kϕik`di 2

=1o , kψk`d1

2π···⊗π`dM2 := inf r

k=1

k|:χkiCdi,kχkik`di 2

=1,ψ= ∑r

k=1

αkχk1⊗ · · · ⊗χkM

.

−→Ifkψkε1 orkψkπ1, thenψis ‘very’ entangled.

Mixed state entanglement: Banach spaces

M

di(C),k · k

Sdi1

, 16i6M.

Notation:∀X∈

M

d(C),kXkSd

1:= Tr|X|

matrix 1-norm A mixed stateρ∈

M

d1(C)⊗ · · · ⊗

M

dM(C)is s.t.ρ>0 andkρk

S1d1···dM

=1. And it is separable iffkρkSd1

1π···⊗πSdM1 =1(Rudolph, Pérez-García), where by definition: kρkS1d1π···⊗πSdM1

:= inf r

k=1

k|:τki

M

di(C),kτkik

S1di

=1,ρ= ∑r

k=1

αkτk1⊗ · · · ⊗τkM

.

−→Ifkρkπ1, thenρis ‘very’ entangled.

(9)

Characterizing entanglement through tensor norms

Pure state entanglement:

Banach spaces

Cdi,k · k`di 2

, 16i6M.

Notation:∀x∈Cd,kxk`d

2:= ∑dk=1|xk|21/2

vector 2-norm A pure stateψ∈Cd1⊗ · · · ⊗CdMis s.t.kψk`d1···dM

2

=1.

And it is separable iffkψk`d1

2ε···⊗ε`dM2 =kψk`d1

2π···⊗π`dM2 =1, where by definition:

kψk`d1

2ε···⊗ε`dM2 := supn

1⊗ · · · ⊗ϕM|ψi:ϕiCdi,kϕik`di 2

=1o , kψk`d1

2π···⊗π`dM2 := inf r

k=1

k|:χkiCdi,kχkik`di 2

=1,ψ= ∑r

k=1

αkχk1⊗ · · · ⊗χkM

.

−→Ifkψkε1 orkψkπ1, thenψis ‘very’ entangled.

Mixed state entanglement:

Banach spaces

M

di(C),k · k

Sdi1

, 16i6M.

Notation:∀X∈

M

d(C),kXkSd

1:= Tr|X|

matrix 1-norm A mixed stateρ∈

M

d1(C)⊗ · · · ⊗

M

dM(C)is s.t.ρ>0 andkρkSd1···dM

1

=1.

And it is separable iffkρkSd1

1π···⊗πSdM1 =1(Rudolph, Pérez-García), where by definition:

kρkS1d1π···⊗πSdM1

:= inf r

k=1

k|:τki

M

di(C),kτkik

S1di

=1,ρ= ∑r

k=1

αkτk1⊗ · · · ⊗τkM

.

−→Ifkρkπ1, thenρis ‘very’ entangled.

(10)

Particular case of bipartite pure states

Let us look at the previous definitions in the case of pure states whenM=2 andd1=d2=:d.

We can identify|ψi=

d

k,l=1

ψkl|kli ∈CdCd withMψ=

d

k,l=1

ψkl|kihl| ∈

M

d(C). Then clearly,kψk2=kMψk2.

And theSchmidt decompositionofψcorresponds to thesingular value decompositionofMψ:

|ψi=

r

k=1

p

λk|ekfki ←→Mψ=

r

k=1

p

λk|ekihfk|,

withr6dtheSchmidt rankofψ,∑rk=1λk=1,{ek}rk=1,{fk}rk=1orthonormal sets inCd. Sokψkε= max16k6r

λk=kMψkandkψkπ=∑rk=1

λk=kMψk1.

−→Checking bipartite pure state separability is easy. Quantitatively, for allψ∈CdCds.t.kψk2=1,1

d 6kψkε61 and 16kψkπ6√ d. But no such simple characterization forM>2 (no equivalent of the Schmidt decomposition).

(11)

Particular case of bipartite pure states

Let us look at the previous definitions in the case of pure states whenM=2 andd1=d2=:d.

We can identify|ψi=

d

k,l=1

ψkl|kli ∈CdCd withMψ=

d

k,l=1

ψkl|kihl| ∈

M

d(C). Then clearly,kψk2=kMψk2.

And theSchmidt decompositionofψcorresponds to thesingular value decompositionofMψ:

|ψi=

r

k=1

p

λk|ekfki ←→Mψ=

r

k=1

p

λk|ekihfk|,

withr6dtheSchmidt rankofψ,∑rk=1λk=1,{ek}rk=1,{fk}rk=1orthonormal sets inCd. Sokψkε= max16k6r

λk=kMψkandkψkπ=∑rk=1

λk=kMψk1.

−→Checking bipartite pure state separability is easy. Quantitatively, for allψ∈CdCds.t.kψk2=1,1

d 6kψkε61 and 16kψkπ6√ d. But no such simple characterization forM>2 (no equivalent of the Schmidt decomposition).

(12)

Particular case of bipartite pure states

Let us look at the previous definitions in the case of pure states whenM=2 andd1=d2=:d.

We can identify|ψi=

d

k,l=1

ψkl|kli ∈CdCd withMψ=

d

k,l=1

ψkl|kihl| ∈

M

d(C). Then clearly,kψk2=kMψk2.

And theSchmidt decompositionofψcorresponds to thesingular value decompositionofMψ:

|ψi=

r

k=1

p

λk|ekfki ←→Mψ=

r

k=1

p

λk|ekihfk|,

withr6dtheSchmidt rankofψ,∑rk=1λk=1,{ek}rk=1,{fk}rk=1orthonormal sets inCd. Sokψkε= max16k6r

λk=kMψkandkψkπ=∑rk=1

λk=kMψk1.

−→Checking bipartite pure state separability is easy.

Quantitatively, for allψ∈CdCds.t.kψk2=1,1

d 6kψkε61 and 16kψkπ6√ d.

But no such simple characterization forM>2 (no equivalent of the Schmidt decomposition).

(13)

Geometric measure of entanglement

Definition [Geometric measure of entanglement(Shimony, Wei/Goldbart, Zhu/Chen/Hayashi)] Letψ∈H1⊗ · · · ⊗HMbe a pure state. Itsgeometric measure of entanglement (GME)is

E(ψ) :=−log sup

|hϕ1⊗ · · · ⊗ϕM|ψi|2i∈Hi,kϕik2=1 . By definition,E(ψ) =−2logkψkε. SoE(ψ) =0 iffψis separable.

−→Eis afaithful entanglement measurefor multipartite pure states.

Remark:The definition of the GME can be extended to mixed states onH1⊗ · · · ⊗HM(but it is not an entanglement measure anymore), as

E(ρ) :=−log sup{hϕ1⊗ · · · ⊗ϕM|ρ|ϕ1⊗ · · · ⊗ϕMi:ϕi∈Hi,kϕik2=1}

=−log sup{Tr(ρσ) :σseparable state onH1⊗ · · · ⊗HM}. Fact:For any unit vectorψ∈(Cd)M,kψkε> d1M1, i.e.E(ψ)6(M−1) logd. This can be checked recursively, starting from the bipartite case:

For any unit vectorψ∈Cd1Cd2,kψkε> 1d, whered:= min(d1,d2).

maximal possible Schmidt rank ofψ Question:Are multipartite pure states generically ‘very’ or ‘little’ entangled?

−→What is the typical value of the GME for a unit vectorψ∈(Cd)Msampled at random?

(14)

Geometric measure of entanglement

Definition [Geometric measure of entanglement(Shimony, Wei/Goldbart, Zhu/Chen/Hayashi)] Letψ∈H1⊗ · · · ⊗HMbe a pure state. Itsgeometric measure of entanglement (GME)is

E(ψ) :=−log sup

|hϕ1⊗ · · · ⊗ϕM|ψi|2i∈Hi,kϕik2=1 . By definition,E(ψ) =−2logkψkε. SoE(ψ) =0 iffψis separable.

−→Eis afaithful entanglement measurefor multipartite pure states.

Remark:The definition of the GME can be extended to mixed states onH1⊗ · · · ⊗HM(but it is not an entanglement measure anymore), as

E(ρ) :=−log sup{hϕ1⊗ · · · ⊗ϕM|ρ|ϕ1⊗ · · · ⊗ϕMi:ϕi∈Hi,kϕik2=1}

=−log sup{Tr(ρσ) :σseparable state onH1⊗ · · · ⊗HM}.

Fact:For any unit vectorψ∈(Cd)M,kψkε> d1M1, i.e.E(ψ)6(M−1) logd. This can be checked recursively, starting from the bipartite case:

For any unit vectorψ∈Cd1Cd2,kψkε> 1d, whered:= min(d1,d2).

maximal possible Schmidt rank ofψ Question:Are multipartite pure states generically ‘very’ or ‘little’ entangled?

−→What is the typical value of the GME for a unit vectorψ∈(Cd)Msampled at random?

(15)

Geometric measure of entanglement

Definition [Geometric measure of entanglement(Shimony, Wei/Goldbart, Zhu/Chen/Hayashi)] Letψ∈H1⊗ · · · ⊗HMbe a pure state. Itsgeometric measure of entanglement (GME)is

E(ψ) :=−log sup

|hϕ1⊗ · · · ⊗ϕM|ψi|2i∈Hi,kϕik2=1 . By definition,E(ψ) =−2logkψkε. SoE(ψ) =0 iffψis separable.

−→Eis afaithful entanglement measurefor multipartite pure states.

Remark:The definition of the GME can be extended to mixed states onH1⊗ · · · ⊗HM(but it is not an entanglement measure anymore), as

E(ρ) :=−log sup{hϕ1⊗ · · · ⊗ϕM|ρ|ϕ1⊗ · · · ⊗ϕMi:ϕi∈Hi,kϕik2=1}

=−log sup{Tr(ρσ) :σseparable state onH1⊗ · · · ⊗HM}. Fact:For any unit vectorψ∈(Cd)M,kψkε> d1M1, i.e.E(ψ)6(M−1) logd.

This can be checked recursively, starting from the bipartite case:

For any unit vectorψ∈Cd1Cd2,kψkε> 1d, whered:= min(d1,d2).

maximal possible Schmidt rank ofψ

Question:Are multipartite pure states generically ‘very’ or ‘little’ entangled?

−→What is the typical value of the GME for a unit vectorψ∈(Cd)Msampled at random?

(16)

Geometric measure of entanglement

Definition [Geometric measure of entanglement(Shimony, Wei/Goldbart, Zhu/Chen/Hayashi)] Letψ∈H1⊗ · · · ⊗HMbe a pure state. Itsgeometric measure of entanglement (GME)is

E(ψ) :=−log sup

|hϕ1⊗ · · · ⊗ϕM|ψi|2i∈Hi,kϕik2=1 . By definition,E(ψ) =−2logkψkε. SoE(ψ) =0 iffψis separable.

−→Eis afaithful entanglement measurefor multipartite pure states.

Remark:The definition of the GME can be extended to mixed states onH1⊗ · · · ⊗HM(but it is not an entanglement measure anymore), as

E(ρ) :=−log sup{hϕ1⊗ · · · ⊗ϕM|ρ|ϕ1⊗ · · · ⊗ϕMi:ϕi∈Hi,kϕik2=1}

=−log sup{Tr(ρσ) :σseparable state onH1⊗ · · · ⊗HM}. Fact:For any unit vectorψ∈(Cd)M,kψkε> d1M1, i.e.E(ψ)6(M−1) logd.

This can be checked recursively, starting from the bipartite case:

For any unit vectorψ∈Cd1Cd2,kψkε> 1d, whered:= min(d1,d2).

maximal possible Schmidt rank ofψ Question:Are multipartite pure states generically ‘very’ or ‘little’ entangled?

−→What is the typical value of the GME for a unit vectorψ∈(Cd)Msampled at random?

(17)

Outline

1 Tensor norms and entanglement

2 Quantifying the typical amount of entanglement/correlations in multipartite pure states

(18)

GME of uniformly distributed multipartite pure states

Theorem [Typicalεnorm of a random unit vector(Aubrun/Szarek)]

There exist constantsc,C,c0>0 s.t., forψ∈(Cd)Ma uniformly distributed unit vector,

P c

rMlogM

dM1 6kψkε6C

rMlogM dM1

!

>1−ec0dMlogM.

Consequence:Forψ∈(Cd)Ma uniformly distributed unit vector, whendorMis large, E(ψ) = (M−1) logd−log(MlogM) +O(1)with high probability.

−→A random multipartite pure state is typically close to maximally entangled.

Proof idea:Observe thatψ∼g/kgk2, whereg∈(Cd)Mhas independent complex Gaussian entries with mean 0 and variance 1.

•By the standard Gaussian concentration inequality:P

kgk2≷√

dM(1±ε)

6edMε2.

•Set

V

:=ϕ1⊗ · · · ⊗ϕMiCd,kϕik2=1 , so thatEkgkε=Esupϕ∈V|hϕ|gi|. To estimate the latter quantity, use results about suprema of Gaussian processes. Upper bound: ‘small’ covering subset of

V

. Lower bound: ‘large’ separated subset of

V

.

Conclusion:Ekgkεis of order√

dMlogM.

Then show thatg7→ kgkεalso concentrates around its average.

Question:Are ‘interesting’ multipartite pure states really captured by the uniform distribution?

(19)

GME of uniformly distributed multipartite pure states

Theorem [Typicalεnorm of a random unit vector(Aubrun/Szarek)]

There exist constantsc,C,c0>0 s.t., forψ∈(Cd)Ma uniformly distributed unit vector,

P c

rMlogM

dM1 6kψkε6C

rMlogM dM1

!

>1−ec0dMlogM.

Consequence:Forψ∈(Cd)Ma uniformly distributed unit vector, whendorMis large, E(ψ) = (M−1) logd−log(MlogM) +O(1)with high probability.

−→A random multipartite pure state is typically close to maximally entangled.

Proof idea:Observe thatψ∼g/kgk2, whereg∈(Cd)Mhas independent complex Gaussian entries with mean 0 and variance 1.

•By the standard Gaussian concentration inequality:P

kgk2≷√

dM(1±ε)

6edMε2.

•Set

V

:=ϕ1⊗ · · · ⊗ϕMiCd,kϕik2=1 , so thatEkgkε=Esupϕ∈V|hϕ|gi|. To estimate the latter quantity, use results about suprema of Gaussian processes.

Upper bound: ‘small’ covering subset of

V

. Lower bound: ‘large’ separated subset of

V

.

Conclusion:Ekgkεis of order√

dMlogM.

Then show thatg7→ kgkεalso concentrates around its average.

Question:Are ‘interesting’ multipartite pure states really captured by the uniform distribution?

(20)

GME of uniformly distributed multipartite pure states

Theorem [Typicalεnorm of a random unit vector(Aubrun/Szarek)]

There exist constantsc,C,c0>0 s.t., forψ∈(Cd)Ma uniformly distributed unit vector,

P c

rMlogM

dM1 6kψkε6C

rMlogM dM1

!

>1−ec0dMlogM.

Consequence:Forψ∈(Cd)Ma uniformly distributed unit vector, whendorMis large, E(ψ) = (M−1) logd−log(MlogM) +O(1)with high probability.

−→A random multipartite pure state is typically close to maximally entangled.

Proof idea:Observe thatψ∼g/kgk2, whereg∈(Cd)Mhas independent complex Gaussian entries with mean 0 and variance 1.

•By the standard Gaussian concentration inequality:P

kgk2≷√

dM(1±ε)

6edMε2.

•Set

V

:=ϕ1⊗ · · · ⊗ϕMiCd,kϕik2=1 , so thatEkgkε=Esupϕ∈V|hϕ|gi|. To estimate the latter quantity, use results about suprema of Gaussian processes.

Upper bound: ‘small’ covering subset of

V

. Lower bound: ‘large’ separated subset of

V

.

Conclusion:Ekgkεis of order√

dMlogM.

Then show thatg7→ kgkεalso concentrates around its average.

(21)

‘Physical’ states of many-body quantum systems and tensor network states

Curse of dimensionalityin many-body quantum systems: A system composed ofM d-dimensional subsystems has dimensiondM, which is exponential inM.

However, ‘physically relevant’ states of many-body quantum systems, such asground states of gapped local Hamiltonians, are (conjectured to be) well approximated by so-calledtensor network states (TNS), which form a small subset of the global state space(Hastings, Landau/Vazirani/Vidick).

Tensor network state on(Cd)M:Take a graphGwithMvertices andLedges.

Put at each vertexva tensorχvCd⊗(Cq)⊗δ(v)to get a tensorˆχG∈(Cd)M⊗(Cq)2L. Contract together the indices ofˆχGassociated to a same edge to get a tensorχG∈(Cd)M.

−→Ifδ(v)6δfor allv, thenχGis described by at mostMqδdparameters, which is linear inM.

• •

• •

• • Gwith 6 vertices and 7 edges

• •

• •

• •

ˆχG∈(Cd)6⊗(Cq)14

• •

• •

• • χG∈(Cd)6 d-dimensional indices:physicalindices.q-dimensional indices:bondindices.

If the underlying graphGis 1-dimensional (line or circle),χGis amatrix product state (MPS).

(22)

‘Physical’ states of many-body quantum systems and tensor network states

Curse of dimensionalityin many-body quantum systems: A system composed ofM d-dimensional subsystems has dimensiondM, which is exponential inM.

However, ‘physically relevant’ states of many-body quantum systems, such asground states of gapped local Hamiltonians, are (conjectured to be) well approximated by so-calledtensor network states (TNS), which form a small subset of the global state space(Hastings, Landau/Vazirani/Vidick). Tensor network state on(Cd)M:Take a graphGwithMvertices andLedges.

Put at each vertexva tensorχvCd⊗(Cq)⊗δ(v)to get a tensorˆχG∈(Cd)M⊗(Cq)2L. Contract together the indices ofˆχGassociated to a same edge to get a tensorχG∈(Cd)M.

−→Ifδ(v)6δfor allv, thenχGis described by at mostMqδdparameters, which is linear inM.

• •

• •

• • Gwith 6 vertices and 7 edges

• •

• •

• •

ˆχG∈(Cd)6⊗(Cq)14

• •

• •

• • χG∈(Cd)6 d-dimensional indices:physicalindices.q-dimensional indices:bondindices.

If the underlying graphGis 1-dimensional (line or circle),χGis amatrix product state (MPS).

(23)

‘Physical’ states of many-body quantum systems and tensor network states

Curse of dimensionalityin many-body quantum systems: A system composed ofM d-dimensional subsystems has dimensiondM, which is exponential inM.

However, ‘physically relevant’ states of many-body quantum systems, such asground states of gapped local Hamiltonians, are (conjectured to be) well approximated by so-calledtensor network states (TNS), which form a small subset of the global state space(Hastings, Landau/Vazirani/Vidick). Tensor network state on(Cd)M:Take a graphGwithMvertices andLedges.

Put at each vertexva tensorχvCd⊗(Cq)⊗δ(v)to get a tensorˆχG∈(Cd)M⊗(Cq)2L. Contract together the indices ofˆχGassociated to a same edge to get a tensorχG∈(Cd)M.

−→Ifδ(v)6δfor allv, thenχGis described by at mostMqδdparameters, which is linear inM.

• •

• •

• • Gwith 6 vertices and 7 edges

• •

• •

• •

ˆχG∈(Cd)6⊗(Cq)14

• •

• •

• • χG∈(Cd)6 d-dimensional indices:physicalindices.q-dimensional indices:bondindices.

If the underlying graphGis 1-dimensional (line or circle),χGis amatrix product state (MPS).

(24)

A simple model of random translation-invariant MPS

Mparticles on a circle

• • • • • M

Pick a tensorχ∈Cd⊗(Cq)2whose entries are independent complex Gaussians with mean 0 and variance 1/dq.

Repeat it on all sites and contract neighboringq-dimensional indices.

−→Obtained tensorχM∈(Cd)M:random translation-invariant MPS with periodic boundary conditions(typically almost normalized).

d q q

|χi= ∑d

i=1 q

a,a0=1

giaa0|iaa0i

M

Mi= ∑d

i1,...,iM=1

q

a1,...,aM=1

gi1aMa1· · ·giMaM1aM

|i1· · ·iMi

Associatedtransfer operator: T:CqCqCqCq, obtained by contracting the

d-dimensional indices ofχandχ¯. T= ∑d

i=1

q

a,a0,b,b0=1

giaa0¯gibb0|abiha0b0|

=: ∑d

i=1

GiG¯i

Remark:The parameterqquantifies the amount of bipartite entanglement: Across any bipartite cut preserving the ordering of subsystems,χMhas Schmidt rank at mostq2dM/2.

area vs volume law Now what about genuinely multipartite entanglement?

−→Ifq=1,χMMis separable. But what can we say forq1?

(25)

A simple model of random translation-invariant MPS

Mparticles on a circle

• • • • • M

Pick a tensorχ∈Cd⊗(Cq)2whose entries are independent complex Gaussians with mean 0 and variance 1/dq.

Repeat it on all sites and contract neighboringq-dimensional indices.

−→Obtained tensorχM∈(Cd)M:random translation-invariant MPS with periodic boundary conditions(typically almost normalized).

d q q

|χi= ∑d

i=1 q

a,a0=1

giaa0|iaa0i

M

Mi= ∑d

i1,...,iM=1

q

a1,...,aM=1

gi1aMa1· · ·giMaM1aM

|i1· · ·iMi

Associatedtransfer operator:

T:CqCqCqCq, obtained by contracting the

d-dimensional indices ofχandχ¯. T= ∑d

i=1

q

a,a0,b,b0=1

giaa0¯gibb0|abiha0b0|

=: ∑d

i=1

GiG¯i

Remark:The parameterqquantifies the amount of bipartite entanglement: Across any bipartite cut preserving the ordering of subsystems,χMhas Schmidt rank at mostq2dM/2.

area vs volume law Now what about genuinely multipartite entanglement?

−→Ifq=1,χMMis separable. But what can we say forq1?

(26)

A simple model of random translation-invariant MPS

Mparticles on a circle

• • • • • M

Pick a tensorχ∈Cd⊗(Cq)2whose entries are independent complex Gaussians with mean 0 and variance 1/dq.

Repeat it on all sites and contract neighboringq-dimensional indices.

−→Obtained tensorχM∈(Cd)M:random translation-invariant MPS with periodic boundary conditions(typically almost normalized).

d q q

|χi= ∑d

i=1 q

a,a0=1

giaa0|iaa0i

M

Mi= ∑d

i1,...,iM=1

q

a1,...,aM=1

gi1aMa1· · ·giMaM1aM

|i1· · ·iMi

Associatedtransfer operator:

T:CqCqCqCq, obtained by contracting the

d-dimensional indices ofχandχ¯. T= ∑d

i=1

q

a,a0,b,b0=1

giaa0¯gibb0|abiha0b0|

=: ∑d

i=1

GiG¯i

Remark:The parameterqquantifies the amount of bipartite entanglement: Across any bipartite cut preserving the ordering of subsystems,χMhas Schmidt rank at mostq2dM/2.

area vs volume law Now what about genuinely multipartite entanglement?

−→Ifq=1, = Mis separable. But what can we say forq1?

(27)

Correlations in an MPS

LetA,Bbe 1-site observables, i.e. observables onCd. Goal:Quantify the correlations between the outcomes of AandB, when performed on ‘distant’ sites.

A A:CdCd

B B:CdCd

Compute the value on the MPSχMof the observableA1⊗Ik⊗B1⊗IMk2, i.e. vχ(A,B,k) :=hχM|A1⊗Ik⊗B1⊗IMk2Mi.

Compare it to the product of the values onχMofA1⊗IM1andIk+1⊗B1⊗IMk2, i.e. vχ(A)vχ(B) :=hχM|A1⊗IM1MihχM|Ik+1⊗B1⊗IMk2Mi. Correlationsin the MPSχMχ(A,B,k) :=

vχ(A,B,k)−vχ(A)vχ(B) . Question:Do we haveγχ(A,B,k) −→

kM→∞0? And if so, at which speed?

A B

M

k

A B

'?

Mk1 ×

(28)

Correlations in an MPS

LetA,Bbe 1-site observables, i.e. observables onCd. Goal:Quantify the correlations between the outcomes of AandB, when performed on ‘distant’ sites.

A A:CdCd

B

B:CdCd Compute the value on the MPSχMof the observableA1⊗Ik⊗B1⊗IMk2, i.e.

vχ(A,B,k) :=hχM|A1⊗Ik⊗B1⊗IMk2Mi.

Compare it to the product of the values onχMofA1⊗IM1andIk+1⊗B1⊗IMk2, i.e.

vχ(A)vχ(B) :=hχM|A1⊗IM1MihχM|Ik+1⊗B1⊗IMk2Mi.

Correlationsin the MPSχMχ(A,B,k) :=

vχ(A,B,k)−vχ(A)vχ(B) . Question:Do we haveγχ(A,B,k) −→

kM→∞0? And if so, at which speed?

A B

M

k

A B

'?

Mk1 ×

(29)

Exponential decay of correlations in random translation-invariant MPS

Clearly, separability implies no correlation between 1-site observables:

IfχMM, thenγχ(A,B,k) =0 for anyk6Mand any observablesA,BonCd.

Intuition:In an MPSχM, the correlations between 1-site observables decay exponentially with the distance separating the sites, i.e. there existC(χ),τ(χ)>0 s.t., for anykMand any observablesA,BonCd,

γχ(A,B,k)6C(χ)e−τ(χ)kkAkkBk. Correlation lengthin the MPSχM:ξ(χ) :=1/τ(χ).

Theorem [Typical correlation length of a random MPS(Lancien/Pérez-García)] There exist constantsC,c0>0 s.t., forχM∈(Cd)Ma random translation-invariant MPS,

P

ξ(χ)6 C logd

>1−ec0q.

Proof idea:Letλ1(T),λ2(T)be the two largest eigenvalues of the transfer operatorT and set ε(T) :=|λ2(T)|/|λ1(T)|. Then,γχ(A,B,k)6C(T)ε(T)kkAkkBk. Soξ(χ) =1/|logε(T)|. We can then prove thatP

1(T)|>1C

d and|λ2(T)|6 Cd

>1−ec0q. spectral analysis for a non-normal random matrix with tensor product structure

Références

Documents relatifs

Keywords: Coupled quantum systems; Marginal states; Extreme points; Doubly stochastic matrices; Separable and nonseparable states.. E-mail address:

Hence, although this does not rule out, strictly speaking, the possibility for a symmetric state to have maximal persistency of nonlocality, it nevertheless shows that too much

Cécilia Lancien Typical correlations and entanglement in random tensor network states Journée théorie CPTGA – September 27 2021

Conjecture: The parent Hamiltonian of a PEPS being gapped is equivalent to its boundary state being a Gibbs state of a (1D) local Hamiltonian

Instead of constructing a ground state at random and then studying the spectral properties of the corresponding local translation-invariant Hamiltonian, what about directly

Instead of constructing a ground state at random and then studying the spectral properties of the corresponding local translation-invariant Hamiltonian, what about directly

In this paper, we show that the non equilibrium dynamics following a single local quench out of the ground state is suf- ficient to unveil the excitation spectrum of a

Since in many practical applications [5, 6, 7], the dimension of the encoding subspace is in general much smaller than the total Hilbert space dimension (m n), our results (see