• Aucun résultat trouvé

Improving Semantic Segmentation of 3D Medical Images on CNNs

N/A
N/A
Protected

Academic year: 2021

Partager "Improving Semantic Segmentation of 3D Medical Images on CNNs"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02265952

https://hal.archives-ouvertes.fr/hal-02265952

Submitted on 13 Aug 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Improving Semantic Segmentation of 3D Medical Images on CNNs

Alejandra Marquez Herrera, Alex Cuadros Vargas, Helio Pedrini

To cite this version:

Alejandra Marquez Herrera, Alex Cuadros Vargas, Helio Pedrini. Improving Semantic Segmentation of 3D Medical Images on CNNs. LatinX in AI Research at ICML 2019, Jun 2019, California, United States. �hal-02265952�

(2)

Improving Semantic Segmentation of 3D Medical Images on CNNs

Alejandra Márquez Herrera1, Alex Cuadros Vargas1, Helio Pedrini2

Universidad Católica San Pablo1 (Perú), University of Campinas2 (Brazil) alemarquez.he@gmail.com

1. Overview

I PROBLEM

- A good formulation of a loss function is cru- cial for training a segmentation network.

- Typical classification loss functions adapted to semantic segmentation may fail to mea- sure error in a class-imbalanced context.

- Medical images suffer of class-imbalance.

I CONTRIBUTION

- A loss function for training a semantic segmentation CNN, that automatically deals with class imbalance on medical images.

- Compare our results against other pre- existing loss functions.

I PRE-EXISTING LOSSES

L = − 1 N

N

X

n=1

K

X

k=1

, Gkn

log(Pkn) (1)

2 × θTP

(2 × θTP + ΘFP + ΘFN) (2)

2 × θTP

TP + θFN)2 + (θTP + θFP)2 (3) Cross-Entropy (1), Dice Loss (2) and Gener- alised Wasserstein Dice Loss (3).

2. V-Net (Fausto M.)

Fig. 1: 3D Medical Image Segmentation Network.

6.Accuracy Comparison (Plot)

5 10 15 20 25 30

0.64 0.66 0.68 0.7 0.72 0.74

# of iterations (in scale of thousands)

Dicescore

D CE WD

MC

5 10 15 20 25 30

0.2 0.3 0.4 0.5

# of iterations (in scale of thousands)

Dicescore

D CE WD

MC

Fig. 2: Plots of the Dice scores shown in Table 1.

3. Matthews Correlation (MCC)

TP × TN − FP × FN

p(TP+FP) × (FN+TN) × (FP+TN) × (TP+FN) (4)

I MCC is an efficient statistical measure for spatial overlap (class imbalance).

I The MCC formula as in Eq. (4), cannot be directly applied as a loss function for se- mantic segmentation training.

4.Adapting MCC as a Loss F.

TP =

N

X

n=1

K

X

k=1

Pkn ∗ Gkn (5a)

TN =

N

X

n=1

K

X

k=1

(1 − Pkn) ∗ (1 − Gkn) (5b)

FP =

N

X

n=1

K

X

k=1

Pkn ∗ (1 − Gkn) (5c)

FN =

N

X

n=1

K

X

k=1

(1 − Pkn) ∗ Gkn (5d)

Network parameters w can be optimised using Stochastic Gradient Descent (Eq. 6).

arg min

w

L = 1 − MCC (6)

5. Segmentation Results

PROMISE12: PROSTATE SEGMENTATION DATASET

[ MC ] [ D ] [ CE ] [ WD ]

[ MC ] [ D ] [ CE ] [ WD ]

[ MC ] [ D ] [ CE ] [ WD ]

Fig. 3: Groundtruth (white pixels) and inference prediction results (semi-transparent green pixels).

BRATS15: BRAIN TUMOR SEGMENTATION DATASET

[ MC ] [ D ] [ CE ] [ WD ]

[ MC ] [ D ] [ CE ] [ WD ]

[ MC ] [ D ] [ CE ] [ WD ]

Fig. 4: Groundtruth (white pixels) and inference prediction results (semi-transparent red pixels).

Loss functions: [MC] Matthews Correlation loss (proposal), [D] Dice loss, [CE] Cross-Entropy loss, [WD] Wasserstein Dice loss.

7. Accuracy Comparison (Dice scores)

Loss Function

BRATS15 PROMISE12

Number of training iterations Number of training iterations

5000 10000 20000 25000 30000 5000 10000 20000 25000 30000 Dice 0.676 0.652 0.719 0.735 0.732 0.236 0.317 0.395 0.379 0.402 Cross-entropy 0.675 0.662 0.666 0.709 0.709 0.337 0.351 0.361 0.314 0.329 Wasserstein 0.642 0.678 0.687 0.701 0.701 0.23 0.239 0.267 0.295 0.352 Matthews 0.692 0.671 0.721 0.733 0.741 0.553 0.468 0.442 0.306 0.468

Table 1. Average Dice scores obtained by the different loss functions after inference. Our proposed loss function achieves the overall highest performance in both datasets.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to