• Aucun résultat trouvé

SURFACE RELAXATION OF CONDUCTION ELECTRON SPINS IN SUPERCONDUCTORS

N/A
N/A
Protected

Academic year: 2021

Partager "SURFACE RELAXATION OF CONDUCTION ELECTRON SPINS IN SUPERCONDUCTORS"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00217749

https://hal.archives-ouvertes.fr/jpa-00217749

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

SURFACE RELAXATION OF CONDUCTION

ELECTRON SPINS IN SUPERCONDUCTORS

R. Meservey, F. Tedrow

To cite this version:

(2)

SURFACE RELAXATION OF CONDUCTION ELECTRON SPINS IN SUPERCONDUCTORS

R. Meservey and P.M. Tedrow

Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge,

Massachusetts 02139, U.S.A.

Abstract.- Critical magnetic field and spin-polarized tunnelling measurements of ultra-thin pure su-perconductors give values of the spin-orbit scattering time Ts o in general agreement with the Abri-kosov-Gorkov relation T / TS O = (aZ)1* when T is taken to be the surface scattering time Ts. Here

a = e2/M c and Z is the atomic number of the superconductor. Knight shift experiments on

superconduc-tors and electron spin resonance experiments in which surface scattering dominates also follow this relation.

The importance of spin-orbit scattering in high field superconductivity is well established. Originally suggested by Ferrel and Anderson to ex-plain Knight shift results, the theory of supercon-ductivity including spin-orbit scattering has been developed by Maki, Fulde, Abrikosov, Gorkov and ci-thers. Measurements of Knight shifts, critical fields and tunnelling properties of Al gave good agreement with the theory/1/. The subject has been reviewed by Fulde/2/.

However, in comparing tunnelling and criti-cal field measurements of the spin-orbit relaxation time T for various elements with theory/3/, the

so

data on elements heavier than Al did not appear to fit the theory of Abrikosov and Gorkov (AG)/4/. This theory was developed for impurity scattering and gives the relationship :

e = T/T = (aZ)1* (1) so

Here e is the probability that in a momentum scat-tering collision there will be a change in spin direction, x is the impurity scattering time,

a = e2/Kc and Z is the atomic number of the impuri-ty. For very thin pure films AG interpret x as the surface collision time x ,

ts - d/vp S (2)

where d is the film thickness and v„ is the Fermi r

velocity. In this case Z is taken to be the atomic number of the pure superconductor.

In applying equation (1) to cryogenically condensed ultra-thin films it was originally assu-med/3,5/ that the proper normalization would be

ob-tained if x was taken to be the measured transport relaxation time. However, the resulting dependence of x/x on Z was much less than Z4. Furthermore a

so

recent study of ultra-thin films of Ga/6/ has shown this normalization to be incorrect. A Ga film about

100 A thick was deposited on a substrate at 1 K and the value of x was determined by a tunnelling

so ° measurement before and after the amorphous film

was annealed at 77 K to form a crystalline film. Even though the resistivity of the film decreased by a factor of 6, the value of x did not

signi-so

ficantly change. We conclude that whatever scatte-ring was associated with the additional resistance in the amorphous state was not effective in chan-ging the spin direction and would be meaningless in equation (1).

Another method of determining the mean free path SL uses the measured perpendicular critical field H through the relation

Here 6 = h/2e and it is assumed that the coherence distance £ » i .

In the above-mentioned experiments on Ga the

o

values of 8, from equation (3) were 3 A before

an-o

nealing and 5 A after. From previous experience with polycrystalline thin films we would expect the crystallite size in the annealed film to be

o

about the film thickness, that is, 100 A. The value

o

of 5 A seems much too small for the crystallite si-ze. One explanation of the anomalously small value of i is that the film consists of grains coupled JOURNAL DE PHYSIQUE

Colloque

C6,

supplément au n°

8,

Tome

39,

août

1978,

page

C6-683

Résumé.- Les mesures de champ magnétique critique et d'effet tunnel de spins polarisés sur des su-praconducteurs purs ultra-minces donnent des valeurs pour le temps de diffusion de spin-orbite T s o

en accord avec la relation d'Abrikosov-Gorkov T / TSO = (otZ)1* si on considère T comme le temps de dif-fusion de surface Ts, a = e2/Kc et Z est le nombre atomique du supraconducteur. Les expériences de déplacement de Knight sur les supraconducteurs et les expériences de résonance de spin électronique pour lesquelles la diffusion de surface domine, suivent également cette relation.

(3)

t o g e t h e r w i t h t u n n e l b a r r i e r s . I n such a s i t u a t i o n t h e e f f e c t i v e mean f r e e p a t h Ref£ would be approxi- mately Td where d i s the c r y s t a l l i t e s i z e and T i s t h e t r a n s m i t t a n c e of t h e tunnel b a r r i e r s . For small v a l u e s of T t h i s model l e a d s t o small v a l u e s of

Ref£ and T ~ On ~ the o t h e r hand t h e a c t u a l mo- ~ . mentum s c a t t e r i n g time t o be used i n e q u a t i o n (1) would be given by e q u a t i o n ( 2 ) , t h e s u r f a c e s c a t t e - r i n g time. To t e s t t h i s simple model we p l o t t h e a v a i l a - b l e d a t a on superconductors i n f i g u r e 1 . Values of Fig. 1 : P r o b a b i l i t y E t h a t a s u r f a c e c o l l i s i o n w i l l change t h e conduction e l e c t r o n s p i n d i r e c t i o n p l o t - t e d a s a f u n c t i o n of atomic n u d e r Z . Data a r e g i - ven from c r i t i c a l f i e l d and t u n n e l l i n g measurements on superconductors ( 8 from r e f e r e n c e s 3,6 ;

r

from r e f e r e n c e 5 ) ; Knight s h i f t measurements

A

( r e f e - rence 7) ; and ESR measurements V ( r e f e r e n c e 8 ) .

a r e obtained from c r i t i c a l f i e l d and tunnel- l i n g measurements/3,5,6/ and from Knight s h i f t mea- surements/7/ of superconductors. We a l s o i n c l u d e e l e c t r o n s p i n resonance (ESR) data181 f o r Na and Cu f o r which i t was shown t h a t s u r f a c e s c a t t e r i n g determined t h e l i n e widths. Actually ESR d a t a s u i - t a b l e f o r t h i s purpose can be derived only from samples i n a r a t h e r small range of s i z e s ( z lo-' t o cm). Samples must be small enough s o t h a t s u r f a c e s c a t t e r i n g dominates over impurity s c a t t e - r i n g , b u t must n o t be s o small t h a t t h e quantum s i - ze e f f e c t / 9 / on t h e energy l e v e l s becomes dominant. Figure 1 shows t h a t T ~ / v a r i e s approxima- T ~ ~ t e l y a s 2' and t h a t the a b s o l u t e value i s n o t f a r from t h e AG value of (a2)

'.

The superconducting da-

t a

a r e somewhat h i g h e r than ( a ~ ) ' , b u t a d d i t i o n a l s c a t t e r i n g from vacancies and i m p u r i t i e s would tend t o decrease t h e s e v a l u e s . I t should be emphasized t h a t t h e determination of T~~ and T a r e i n most

S

i n s t a n c e s r a t h e r crude and t h e r e s u l t s of d i f f e r e n t measurements can d i f f e r by an o r d e r of magnitude.

More a c c u r a t e measurements a r e needed, b u t we can conclude t h a t t h e a v a i l a b l e d a t a support the Abri- kosov-Gorkov r e l a t i o n given by e q u a t i o n (1) using t h e s u r f a c e s c a t t e r i n g time .rs. The r e s u l t s do n o t agree with t h e c a l c u l a t i o n of L i s i n and Khabibullin / l o / on t h e r e l a x a t i o n of conduction e l e c t r o n s p i n s a t a metal s u r f a c e .

We wish t o acknowledge t h e s u p p o r t of the National Science Foundation.

References

/ I / Meservey,R., Tedrow,P.M. and Bruno,R.C., Phys. Rev. (1975) 4224

/2/ Fulde,P., Adv. Phys.

&

(1973) 667

/ 3 / Meservey,R. and Tedrow,P.M., Phys. L e t t .

58A

(1976) 136

/4/ Abrikosov,A.A. and Gorkov,L.P., JETP

2

(1962) 1088, Sov. Phys. JETP

15

(1962) 752

/5/ Crow,J.E., Strongin,M. and Bhatnagar,A.K., Phys. Rev. (1974) 135

/ 6 / Meservey,R., Tedrow,P.M. and Bruno,R.C., Phys. Rev. (1978)

/7/ Hines,W.A. and Knight,W.D., Phys. Rev.

(1971) 893 and o t h e r r e f e r e n c e s c i t e d t h e r e i n / 8 / Wang,S.K. and Schumacher,R.T., Phys. Rev.

(1973) 41 19 ; (1974) 2129 (NA) ; Schultz, S: and Latham,C., Phys. Rev. L e t t .

15

(1965)

148

/9/ Kawabata,A., J. Phys. Soc. Jpn

9

(1970) 902 / l o / Lisin,V.W. and Khabibullin,B.M., F i z . Tverd. T e l a

11_

(1975) 1598 ; Sov. Phys. S o l i d S t a t e

Références

Documents relatifs

E. — Pour expliquer l'absence d'effets de quantification des niveaux dans les petites particules nous proposons un mécanisme d'élargissement des niveaux mettant en jeu un passage

où Hp est le champ magnétique, variable dans le temps, associé à la précession libre et où les autres symboles ont la signification usuelle dans les notations de

Dans les conditions où nous nous plaçons ici, le grandissement augmente du centre vers les bords (distorsion isotrope ,en croissant) et, de plus, la rotation de

Expériences pour démontrer que l’électricité se porte à la surface des

Indeed, this interaction gives rise to a resonance signal which is relatively narrow at low temperature (< 100 gauss residual width) and intense, and whose

On peut aborder de même le problème plus complexe d’un écoulement tourbillonnaire en présence d’un gradient de champ magnétique.. Considérons le mouvement du fluide

dont la raie de résonance est élargie par des interactions hyperfines, il se produit des transferts de populations entre les différents paquets de spins. Cet effet

2014 Nous nous intéressons au temps de relaxation spin-réseau dans les supracon- ducteurs sales de deuxième espèce. 2014 This paper discusses the spin