• Aucun résultat trouvé

SEMICLASSICAL CALCULATION OF THE NUCLEAR RESPONSE FUNCTION AT HIGH MOMENTUM TRANSFER

N/A
N/A
Protected

Academic year: 2021

Partager "SEMICLASSICAL CALCULATION OF THE NUCLEAR RESPONSE FUNCTION AT HIGH MOMENTUM TRANSFER"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00224243

https://hal.archives-ouvertes.fr/jpa-00224243

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

SEMICLASSICAL CALCULATION OF THE

NUCLEAR RESPONSE FUNCTION AT HIGH

MOMENTUM TRANSFER

U. Stroth, R. Hasse, P. Schuck

To cite this version:

(2)

JOURNAL

DE

PHYSIQUE

Colloque C6, supplCment au n06, Tome 45, juin 1984 page C6-343

S E M I C L A S S I C A L C A L C U L A T I O N OF THE NUCLEAR RESPONSE F U N C T I O N A T H I G H MOMENTUM TRANSFER

U. S t r o t h , R.W. Hasse and P. Schuck*

I n s t i t u t Laue-Langevin, 156 X , 38042 GrenobZe Cedex, France

* I n s t i t u t des Sciences NucZ&aires, 38042 GrenobZe Cedex, France

RGsum6

-

Nous c a l c u l o n s l a f o n c t i o n de l a rgponse n u c l g a i r e semiclassique- ment. 11 s ' a v h r e que l e s r g s u l t a t s obtenus pour des impulsions t r a n s f b r g e s q 2 2 fm-* s o n t en t r h s bon accord avec un c a l c u l e x a c t .

A b s t r a c t

-

We c a l c u l a t e t h e n u c l e a r response f u n c t i o n i n a s e m i c l a s s i c f a s h i o n . I t i s shown, t h a t t h e o b t a i n e d r e s u l t s a r e f o r h i g h momentum t r a n s f e r s q 8 2 fm-' i n a very good agreement w i t h an e x a c t c a l c u l a t i o n .

I

-

INTRODUCTION

I n e l a s t i c e l e c t r o n and proton s c a t t e r i n g £ran n u c l e i a t h i g h momentum t r a n s f e r s nece- s s i t a t e s on t h e f u l l quantum mechanical l e v e l a b i g numerical e f f o r t . Since i n t h e q u a s i - e l a s t i c peak r e g i o n s h e l l e f f e c t s a r e a b s e n t a s e m i c l a s s i c a l approach may be s u f f i c i e n t . We w i l l show i n t h i s work t h a t t h i s i s e f f e c t i v e l y t h e case f o r momen- tum t r a n s f e r s of q 2 2 fm-1.

I1 - THE THEORY

The f r e e response f u n c t i o n n:)(q,u) f o r an e x c i t a t i o n o p e r a t o r

6

can be c a l c u l a t e d from t h e p a r t i c l e h o l e Greens f u n c t i o n n(0) ( r ,

,

r,, r;

,

r;)

.

d

s h a l l b e t h e l o n g i t u d i n a l e x c i t a t i o n o p e r a t o r

I n c o o r d i n a t e r e p r e s e n t a t i o n , t h e Greens f u n c t i o n a t t a i n s t h e following form:

where h i s t h e one p a r t i c l e h a m i l t o n i a n and

X

t h e Fermi enerLy. For t h e Greens f u n c t i o n we t a k e now a s e m i c l a s s i c a l approximat i o n . This approximation i s achieved by r e p l a c i n g t h e o p e r a t o r s by t h e i r c l a s s i c a l c o u n t e r p a r t s . This Thomas Fermi l i k e approximation h a s been very s u c c e s s f u l i n t h e c a s e of

s article

h o l e d e n s i t i e s

/ I / .

For t h e l o n g i t u d i n a l response f u n c t i o n one o b t a i n s w i t h

k

(3)

JOURNAL

DE

PHYSIQUE

t h e l o c a l Fermi Gas (F.G.) d e r i v e d p r e v i o u s l y i n a somewhat d i f f e r e n t way by Kosen- f e l d e r

121.

R:';~~,,,~

=

1

o\'a

$$%ntw)

This r e s u l t i s v a l i d f o r a r b i t r a r y p o t e n t i a l s . I f t h e p o t e n t i a l i s l o c a l , however, it c a n c e l s i n t h e denominator and e n t e r s only i n t h e arguments of t h e s t e p func- t ions

.

For a s p h e r i c a l p o t e n t i a l a l l b u t one i n t e g r a t i o n can b e performed a n a l y t i c a l l y . F o r t h e imaginary p a r t one thus o b t a i n s f o r k)>

0

:

where

)

*

v )

i s t h e l o c a l Fermi momentum and

ct

=

& ?

$

I

The r e a l p a r t can be c a l c u l a t e d form eq. (7) by a d i s p e r s i o n r e l a t i o n

o r d i r e c t l y from eq. (6)

.

One o b t a i n s

For a s q u a r e w e l l ~ o t e n t i a l eq. (7) l e a d s d i r e c t l y t o t h e Lindhard f u n c t i o n / 3 / ; f o r a harmonic o s c i l l a t o r p o t e n t i a l

VtQ-,

Qn

u

:

R'

,

eq. (7) s t i l l can be given ana- l y t i c a l l y .

111 - COMPARISON WITH MICROSCOPIC CALCULATIONS

(4)

Fig. 1

0

1

2

3

0

2

4

6

-

W

W,

For two momentum t r a n s f e r s t h e response f u n c t i o n i n a harmonic o s c i l l a t i o n p o t e n t i a l (kF = 1.5 fm-l) i s compared t o a quantum mechanical c a l c u l a t i o n 141. For o r i e n t a t i o n t h e Lindhard f u n c t i o n s ( n u c l e a r m a t t e r kF = 1.36 fm-l) a r e a l s o shown.

-1

The s e m i c l a s s i c a l method reproduces f o r momentum t r a n s f e r s q > 0.6 fm t h e average v a l u e s very w e l l . For lower momentum t r a n s f e r s , t h e l o c a l Fermi Gas approximation f a i l s , because only a few eigenvalues a r e e x c i t e d and a l o c a l approximation i s n o t a b l e t o account f o r s i n g l e e i g e n s t a t e s which a r e a g l o b a l p r o p e r t y of t h e system. Energy i n t e g r a t e d q u a n t i t i e s may however s t i l l b e q u i t e a c c u r a t e a s can b e deduced from t h e f a c t t h a t t h e energy weighted sum r u l e i s e x a c t l y f u l l f i l l e d w i t h i n t h e lo- c a l F.G. approximation 121.

I n f i g . 2 t h e l o c a l F.G. response f u n c t i o n c a l c u l a t e d f o r a Woods-Saxon p o t e n t i a l

i s compared with t h e correspondent f u l l y quantum mechanical c a l c u l a t i o n 161. The r e s u l t has been averaged w i t h a Lorenzian of 3 MeV width.

OL - a1 5- local F G

-

unct Calculahon

-

q : l 0 f d 1 p=2.15fm-'

-

> I E U

-

0 2 - + 3. 0 25 50 0 50 100 150 200

Fig. 2: The s e m i c l a s s i c a l response f u n c t i o n i n a Woods-Saxon p o t e n t i a l compared w i t h an e x a c t c a l c u l a t i o n of N.van G i a i 161.

(5)

C6-346 JOURNAL

DE

PHYSIQUE

average p o t e n t i a l i s i l l u s t r a t e d i n f i g . 3 . One f i n d s t h a t t h e n u c l e a r m a t t e r approximation (kF = 1.36 fm) i s b e t t e r f o r heavy n u c l e i t h a n f o r l i g h t e r ones. For l i g h t n u c l e i , s u r f a c e e f f e c t s a r e important and a harmonic o s c i l l a t o r ( k p _ = 1.5 fm-') response f u n c t i o n (eq. (10)) becomes more r e a l i s t i c t h a n t h e Lindhard f u n c t i o n (nu- c l e a r m a t t e r ) .

I I I F i g . 3 : The response func-

t i o n s a r e compared f o r d i f f e r e n t p o t e n t i a l s . The dashed l i n e s belong t o Woods-Saxon p o t e n t i a l s f o r two d i f f e r e n t masses. 0 10 2 0 3 0 LO

I V

-

THE DELTA RESONANCE

For i n e l a s t i c p r o t o n s c a t t e r i n g one can e x c i t e b e s i d e s p u r e nucleon p a r t i c l e - h o l e p a i r s a l s o & - h o l e p a i r s i n t h e l o n g i t u d i n a l c h a n n e l / 7 , 8 , 9 / . Thereby a nucleon can be transformed by a .rro t o a d e l t a p a r t i c l e . We a g a i n want t o s t u d y t h e d i f f e r e n c e be- tween a pure n u c l e a r m a t t e r c a l c u l a t i o n and our s e m i c l a s s i c a l approach. The t o t a l l o n g i t u d i n a l f r e e response i s given by

171.

-

Here f (q,w) and fA(q,w) a r e t h e pion b a r y o n v e r t e x f a c t o r s 1 7 1 :

N

A = 1300 P4eV and

I n analogy t o (6) one f i n d s 1 9 1 :

b a,

w i t h

hl~,?)

.%W.

+

&,+

V

(R>

,

%LO, i s t h e d i f f e r e n c e between t h e Amass (m*) and, t h e nucleon mass. The d e l t a width has been n e g l e c t e d .

(6)

And f o r t h e r e a l p a r t one o b t a i n s :

a

1"

~ - ~ ~ ~ ~ w ~ ~ ~ A * ~ ~ L - ~ , - ~ ~ ) ~

k~\%tqp\=

--

j d ~ $

~{A-VIRI)

dhLl

9%hP

\A+~.~,W\\\A

-

I.r.Q,WI

I n f i g . 4 t h e t o t a l response f u n c t i o n i s drawn t o g e t h e r w i t h i t s components. I n t h e imaginary p a r t ( f u l l l i n e ) t h e n u c l e a r and t h e d e l t a c o n t r i b u t i o n s a r e c l e a r l y sepa- r a t e d i n energy. The d e l t a response, however, c o n t r i b u t e s t o t h e t o t a l response f u n c t i o n through i t s r e a l p a r t (dashed d o t t e d l i n e ) even f o r lower e n e r g i e s , and modifies t h e r e a l p a r t of t h e nucleon response (dashed l i n e ) . For comparison, t h e d e l t a p a r t of t h e response f u n c t i o n i s a l s o shown f o r t h e n u c l e a r m a t t e r case ( d o t t e d l i n e ) .

n 1.5 I I I

-

Fig. 4: The t o t a l response

f u n c t i o n and i t s components (dashed: t h e nucleon p a r t dashed d o t t e d : f o r t h e A

p a r t ) . The f u l l l i n e s g i v e t h e sum of both. The calcu- l a t i o n was done i n a Woods- Saxon p o t e n t i a l f o r %a. The p o i n t s i n d i c a t e t h e re- s u l t f o r t h e n u c l e a r , m a t t e r

r? 0 2 0 0 COO c a s e of t h e d e l t a p a r t .

2 . -

I V

-

RESPONSE FUNCTION INCLUDING PARTICLE-HOLE INTERACTION

The Greens f u n c t i o n i n c l u d i n g i n t e r a c t i o n s i s c a l c u l a t e d from t h e t r e e one by means of ( n e g l e c t i n g t h e exchange p a r t of t h e i n t e r a c t i o n ) :

One can show t h a t t o z e r o o r d e r of .ti one o b t a i n s f o r t h e r e s u o n s e f u n c t i o n :

.

..

For t h e s p e c i a l c a s e of a one exchange p o t e n t i a l (OPEP) p l u s tlidgal parameter, r e p r e s e n t i n g t h e short-range r e p u l s i o n ,

m i s t h e pion mass.

h a s been used.

(7)

C6-348 JOURNAL

DE

PHYSIQUE

The p a r t i c l e h o l e i n t e r a c t i o n causes a s o f t e n i n g of t h e response f u n c t i o n whereas t h e A c o n t r i b u t i o n causes an enhancement. We omit h e r e a d e t a i l e d comparison w i t h

t h e pure n u c l e a r m a t t e r r e s u l t because we were s o f a r unable t o e x a c t l y repro- duce t h e c a l c u l a t i o n s of r e f . / 8 / . The r e s u l t s p r e s e n t e d i n Fig. 5 should t h e r e f o r e a t t h e moment only be considered a s q u a l i t a t i v e i n d i c a t i n g t h e g e n e r a l t r e n d of t h e e f f e c c s .

I n conclusion we can say t h a t we have shown i n t h i s work t h a t t h e s e m i c l a s s i c a l approach t o t h e c a l c u l a t i o n of n u c l e a r response f u n c t i o n s works p e r f e c t l y w e l l f o r h i g h momentum t r a n s f e r s (q 2 2 fm l ) opening t h u s t h e p o s s i b i l i t y of q u i t e p r e c i s e and e a s y c a l c u l a t i o n s even i n t h e case of q u i t e s o p h i s t i c a t e d l i n e a r response theo- r i e s .

N e v e r t h e l e s s some f u r t h e r s t u d i e s and r e f i n e m e n t s should b e done i n f u t u r e :

i ) One should i n c l u d e t h e f i r s t % - c o r r e c t i o n t o improve t h e f a r t a i l r e g i o n of t h e c r o s s s e c t i o n .

i i ) A comparison of our r e s u l t (Fig. 5) i n c l u d i n g r e s i d u a l i n t e r a c t i o n w i t h an e x a c t quantum c a l c u l a t i o n should be performed, though it i s our s t r o n g b e l i e f t h a t t h e same degree of accuracy h o l d s i n t h e i n t e r a c t i n g c a s e a s i n t h e non i n t e r a c t i n g one.

REFERENCES

/1/ GHOSH G., HASSE R.W., SCHUCK P. and WINTER J . , Phys. Rev. L e t t . 50 (1983) 1250 /2/ ROSENFELDER R . , Ann. Phys. 128 (1980), 188.

/ 3 / LINDHARD J . , Dan. Mat. Fys. Medd. 28, no. 8 (1954)

/ 4 / SHLOMO S., Phys. L e t t . 118B (1982), 233

/5/ SCHUCK P . , GHOSH G. and HASSE R.W., Phys. L e t t . ll8B (1982) 237.

/ 6 / We thank D r . N. v. G I A I f o r performing t h e e x a c t c a l c u l a t i o n f o r t h e f r e e r e s - ponse f u n c t i o n f i g . 2.

/ 7 / OEST E . , TOKI H. and WEISE W . , Phys. Rep. 83(1982) 281.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to